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Purpose: To build a novel predictive model for hepatocellular carcinoma (HCC) patients
based on DNA methylation data.
Methods: Four independent DNA methylation datasets for HCC were used to screen for
common differentially methylated genes (CDMGs). Gene Ontology (GO) enrichment, and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were
used to explore the biological roles of CDMGs in HCC. Univariate Cox analysis and least
absolute shrinkage and selection operator (LASSO) Cox analysis were performed to identify
survival-related CDMGs (SR-CDMGs) and to build a predictive model. The importance of
this model was assessed using Cox regression analysis, propensity score-matched (PSM)
analysis and stratification analysis. A validation group from the Cancer Genome Atlas (TCGA)
was constructed to further validate the model.
Results: Four SR-CDMGs were identified and used to build the predictive model. The risk
score of this model was calculated as follows: risk score = (0.01489826 × methylation level
of WDR69) + (0.15868618 × methylation level of HOXB4) + (0.16674959 × methylation level
of CDKL2) + (0.16689301 × methylation level of HOXA10). Kaplan–Meier analysis demon-
strated that patients in the low-risk group had a significantly longer overall survival (OS;
log-rank P-value =0.00071). The Cox model multivariate analysis and PSM analysis identi-
fied the risk score as an independent prognostic factor (P<0.05). Stratified analysis results
further confirmed this model performed well. By analyzing the validation group, the results of
receiver operating characteristic (ROC) curve analysis and survival analysis further validated
this model.
Conclusion: Our DNA methylation-based prognosis predictive model is effective and reli-
able in predicting prognosis for patients with HCC.

Introduction
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors worldwide, with its inci-
dence increasing over the last 10 years [1]. Current TNM staging systems and Barcelona Clinic Liver Can-
cer staging systems were constructed based on the anatomical features of the tumor and clinic-pathological
information [2,3]. These approaches remain the most commonly used staging systems for patients with
HCC. Therefore, the prognoses of patients with HCC vary significantly even among those with similar
clinical staging. Therefore, more prognostic and survival-related factors of patients with HCC must be
identified and applied to improve prognostic accuracy.

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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DNA methylation is an important epigenetic modification that is involved in the regulation of gene expression and
genome stability [4]. There is mounting evidence that aberrant DNA methylation in promoter regions contributes
to the carcinogenesis, progression and prognosis of many tumors [5–13]. For example, promoter methylation of
P16 (CDKN2A or Ink4a) may directly inactivate gene transcription and drive cancer metastasis [11]. Besides, DNA
methylation in the promoter regions of IRAK3 is clearly associated with the tumor stage and clinical outcomes of
HCC patients [10]. Moreover, the development of next-generation sequencing and microarrays further improves our
understanding of DNA methylation associated with tumors.

Here, we aimed to identify important prognosis-related methylation signatures. Furthermore, we constructed a
composite predictive model for HCC patients using CpG methylation data.

Materials and methods
Retrieval of DNA methylation data
Four independent DNA methylation datasets for HCC examined by HumanMethylation450 Bead Chip (Illumina)
were downloaded from public databases. Three of the datasets (GSE54503, GSE77269 and GSE56588 datasets) were
obtained from the Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo/), while the fourth dataset
(from the Cancer Genome Atlas [TCGA], https://cancergenome.nih.gov/) contained corresponding clinical prognos-
tic information. Each dataset contained information on more than ten cancer tissues and ten adjacent non-cancerous
tissues. For the TCGA dataset, non-HCCs and patients without DNA methylation information were removed; 365
HCC samples and 50 non-tumor samples were retained. The methylation levels of each probe are expressed as a
β-value.

Identification of common differentially methylated genes
In the four datasets, we used the Chip Analysis Methylation Pipeline Bio-conductor package to identify differentially
methylated genes (DMGs) between HCC and adjacent non-cancerous tissues [14]. Only DNA methylation at CpG
islands within the promoter region of the gene was screened for analysis. The promoter region indicates loci residing
within the Tss1500 (200–1500 bps upstream of the transcription start site) and Tss200 (200 bps upstream of the
transcription start site) of known genes [15]. DNA methylation sites on sex chromosomes, probes containing single
nucleotide polymorphisms as reported by Zhou et al. [16] and probes aligning to multiple locations as identified by
Nordlund et al. [17] were removed. In addition, probes withβ values in less than 95% of samples were removed. Then,
NAs were replaced by the k-nearest neighbor imputation procedure [18,19]. Only probes with adjusted P<0.05 and a
|log(fold change)| ≥ 1 were regarded as differentially methylated probes (DMPs). The genes mapped by DMPs were
confirmed as DMGs. DMGs that were common across the four datasets (common differentially methylated genes,
CDMGs) were selected for further analysis.

Bioinformatics analysis for CDMGs
CDMGs, including common hyper-methylated genes and common hypo-methylated genes obtained from the four
independent datasets, were subjected to Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis via DAVID 6.8 (https://david.ncifcrf.gov/) to investigate their ac-
tivities in HCC [20,21]. The STRING database (https://string-db.org/) and Cytoscape 3.6.0 were used to build a
protein–protein interaction (PPI) network of CDMGs. The STRING database is a precomputed resource used to
investigate protein regulatory networks in different diseases [22–24]. The PPI score (confidence) was set as 0.4.

Identification of survival-related CDMGs and construction of the
predictive model
After removing patients with detectable residual tumors (R1 and R2) and patients who received adjuvant treatment
(including radiation therapy, chemotherapy and embolization treatment), 296 HCC samples in the TCGA dataset
were retained to screen for survival-related methylated markers and to construct a predictive model. Univariate Cox
regression analysis was used to identify risk markers among the CDMGs that were clearly associated with the over-
all survival (OS) of HCC. The results were considered significant when P<0.05. The risk markers from univariate
Cox analysis were further analyzed using the least absolute shrinkage and selection operator (LASSO) Cox regres-
sion model for survival-related CDMG (SR-CDMG) selection and classifier construction. LASSO Cox analysis is a
regularized Cox regression approach that is suitable for analyzing high-dimensional data of small sample size [25].
In this way, it was possible to select a subset of variables that best predict OS while reducing the overfitting of data
[26]. Ten-fold cross-validation with minimum criteria was applied to identify the optimal parameter λ in the LASSO
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Figure 1. CDMGs in four datasets

(A) Venn diagram showing 757 common hyper-methylated genes in HCC samples. (B) Venn diagram showing 21 common hy-

po-methylated genes in HCC samples.

Cox model [27,28]. Using this model, the regression coefficients of most features were shrunk towards zero, allowing
the most useful predictors (representing SR-CDMGs) to be identified. Then, the SR-CDMGs with non-zero coeffi-
cient were used to build a predictive model for HCC. A risk score for each patient was computed according to the
summation of the methylation levels (β value) multiplied by the corresponding coefficients from the LASSO Cox
analysis.

We divided patients into two groups according to the median values of SR-CDMGs and the risk score.
Kaplan–Meier survival curves were used to analyze the correlation of SR-CDMGs and the risk score with OS. In ad-
dition, univariate and multivariate-adjusted Cox regression analysis, propensity score-matched (PSM) analysis and
stratification analysis were performed to estimate the importance of the predictive model in the prognosis of HCC.

Moreover, in order to further validate the predictive model that we constructed, HCC samples with DNA methy-
lation information and clinical prognostic information in the TCGA dataset were randomly selected to construct a
validation group. Then the predictive model was verified by receiver operating characteristic (ROC) curve and sur-
vival analysis. Area under the ROC curve (AUC) values for 1-, 3-, and 5-year survival of the predictive model were
also calculated.

Statistical analysis
R software 3.3.4 (https://www.r-project.org/) was used to perform the statistical analysis and graphic visualization.
The results were considered statistically significant at a two-tailed P value <0.05. Differences in continuous vari-
ables between the two groups were analyzed using the non-parametric Mann–Whitney U test or Student’s t test [29].
DNA methylation data from HumanMethylation450 Bead Chip were processed with the R package ‘ChAMP’ [14].
LASSO Cox analysis was performed with the R package ‘glmnet’ [30,31]. Cox regression analysis was carried out with
the package ‘survival’ [32]. The R package ‘MatchIt’ was used for PSM analysis [33]. The ROC curve analyses were
performed using the R package pROC [34].

Results
Identification of CDMGs and bioinformatics analysis
To improve the reliability of our results, four independent datasets were used to recognize differentially methylated
markers of tumor vs adjacent non-cancerous tissues. A total of 778 CDMGs (Additional file 1: Supplementary Ta-
ble S1) from the four datasets were regarded as credible, including 757 hyper-methylated genes (Figure 1A) and 21
hypo-methylated genes (Figure 1B) in HCC.

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 2. GO enrichment analysis and KEGG pathway enrichment analysis of CDMGs

(A) Significant GO terms for biological processes. (B) Significant GO terms for cellular components. (C) Significant GO terms for

molecular functions. (D) Significant KEGG pathways. Terms and pathways with P<0.05 were here considered significant.

To explore the biological roles of the 778 CDMGs, GO enrichment analysis and KEGG pathway analysis were
performed. Significant GO terms and pathways (P<0.05) are shown in Figure 2. The main terms of the biological
processes include the regulation of tissue development, morphogenesis and transcription (Figure 2A). Terms related
to the synapse and nucleosome were significantly enriched in the cellular component (Figure 2B). The main terms
related to molecular functions were clearly related to DNA binding (Figure 2C). In addition, pathways involving
transcriptional misregulation in cancer, Rap1 signaling, systemic lupus erythematosus, morphine addiction and al-
coholism were enriched in KEGG analysis (Figure 2D). To evaluate the interactive relationships among all CDMGs
and to elucidate the molecular mechanisms underlying HCC, a PPI network with 180 nodes and 299 edges was con-
structed (Figure 3).

Identification of SR-CDMGs and construction of the predictive model
For the 778 candidate CDMGs, univariate Cox regression analysis was conducted to screen significant risk markers
associated with OS in the TCGA dataset. Seventy-two CDMGs with P<0.05 were identified (Additional file 2: Sup-
plementary Table S2). To identify SR-CDMGs among these 72 CDMGs, LASSO Cox analysis was performed. The
parameter log(λ) = −2.418524 (λ = 0.08905296), chosen by the ten-fold cross-validation method with minimum

4 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 3. PPI network of CDMGs

After removing the unconnected nodes, 180 nodes and 299 edges were retained. Red nodes represent common hyper-methylated

genes, and blue nodes represent common hypo-methylated genes. Node size is proportional to the node’s degree. Line thickness

indicates the strength of data support. The PPI score was set at 0.4.

criteria, produced the best value (Figure 4A). Four genes with non-zero coefficients were identified as SR-CDMGs
(HOXA10, CDKL2, HOXB4 and WDR69) (Figure 4B); all four genes had higher methylation levels in HCC samples
(Additional file 3: Supplementary Figure S1A–D). Based on the median values of the methylation levels (β values)
of these four SR-CDMGs, patients in the TCGA dataset were divided into hyper-methylated and hypo-methylated
groups. All SR-CDMGs were closely related to poor OS (log-rank P-value <0.05) (Figure 5A–D).

To build an individualized predictive model for HCC based on the four SR-CDMGs, a risk score for each pa-
tient in the TCGA dataset was computed by summing the methylation levels multiplied by the corresponding coef-
ficients from the LASSO Cox analysis: risk score = (0.01489826 × methylation level of WDR69) + (0.15868618 ×
methylation level of HOXB4) + (0.16674959 × methylation level of CDKL2) + (0.16689301 × methylation level of

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).
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Figure 4. Four SR-CDMGs selected through LASSO Cox analysis

(A) Ten-fold cross-validation for selection of the parameter λ. The solid vertical lines represent partial likelihood deviance +− standard

error (SE). The two dotted vertical lines were drawn at the optimal values using minimum criteria (right) and 1-SE criteria (left). The

parameter λ= 0.08905296 (log(λ) = −2.418524) was chosen using minimum criteria. (B) LASSO coefficients of the four SR-CDMGs.

The dotted vertical line was drawn at the λ value chosen using minimum criteria. The upper axis represents the number of non-zero

coefficients at each λ (the degrees of freedom for the LASSO model). The L1 norm represents the summation of absolute non-zero

coefficients at each λ. The vertical axis represents the values of non-zero coefficients at each λ. The LASSO coefficients of the four

SR-CDMGs HOXA10, CDKL2, HOXB4 and WDR69 were 0.16689301, 0.16674959, 0.15868618 and 0.01489826, respectively.

HOXA10). The distributions of the risk score, survival status and the methylation level of the four SR-CDMGs are
presented in Figure 6A. Patients with higher risk scores generally had lower survival rates than with patients with low
risk scores. Patients were divided into low-risk and high-risk groups according to the median value of the risk score.
Kaplan–Meier analysis demonstrated that patients in the low-risk group had a significantly longer OS than those in
the high-risk group (log-rank P-value = 0.00071) (Figure 6B).

Cox regression analysis and PSM analysis of the predictive model
Univariate Cox analysis and Cox model multivariate analysis were used to examine the prognostic factors for OS
in HCC patients (Table 1). The unadjusted univariate Cox model showed that (i) the risk score (P<0.001), (ii) the
American Joint Committee on Cancer (AJCC) stage (P=0.008, II, III and IV vs I) and (iii) α-fetoprotein (AFP) levels
(P=0.015) were statistically related to the prognosis of HCC. A multivariate Cox model adjusted for important clinical
factors (such as sex, age and race) showed that the risk score remained a significant independent risk factor for OS
(P<0.05).

To reduce the confounding effects of the outcomes of the statistical comparisons between high- and low-risk score
groups, PSM was performed to balance all known variables. The baseline characteristics of the two groups are shown
in Table 2. Univariate Cox and multivariate-adjusted Cox regression analyses after PSM support the result that the
risk score was an independent risk factor associated with poor prognosis (Table 3, all P-values of the risk scores were
under 0.05).

Stratification analysis of the predictive model
Stratification analysis was performed using important clinical variables to further estimate the influence of the pre-
dictive model in the prognosis of HCC. The results showed that patients with high-risk scores had shorter OS in
some HCC subgroups (Figure 7, Additional file 4: Supplementary Figure S2), including male patients (2.083 [95%
CI, 1.227–3.537], P=0.007), patients ≤ 60 years (2.750 [95% CI, 1.432–5.283], P=0.002), patients with risk factors
(2.391 [95% CI, 1.417–4.034], P=0.001), AJCC stage I patients (3.336 [95% CI, 1.631–6.822], P=0.001), patients

6 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 5. Kaplan–Meier survival analysis for the four SR-CDMGs

(A) Survival curve of HOXA10. (B) Survival curve of CDKL2. (C) Survival curve of WDR69. (D) Survival curve of HOXB4. Two-hundred

and ninety-six patients from the TCGA were divided into a hyper-methylated and hypo-methylated groups according to the median

value of the four SR-CDMGs. P-values were calculated with the log-rank test.

without vascular invasion (3.495 [95% CI, 1.895–6.445], P<0.001) and patients with low AFP levels (4.262 [95% CI,
1.692–10.740], P=0.002). The race and histological grade of patients did not influence the performance of the model.

Validation of the predictive model
A validation group was constructed by randomly selecting 148 HCC samples in the TCGA dataset, and ROC curve
and survival analyses were used to further validate the prognosis predictive model. The results confirm that our
predictive model is effective in the prognosis of HCC (Additional file 5: Supplementary Figure S3).
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Figure 6. Survival analysis of the predictive model

(A) Distribution of the risk score of the predictive model, the survival status of patients and the methylation level of the four SR-CD-

MGs. (B) Kaplan–Meier survival curve of the predictive model. Patients were divided into low-risk and high-risk groups according

to the median value of the risk score. P-values were calculated with the log-rank test.
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Figure 7. Stratification analysis of the predictive model

(A) Univariate COX regression analysis of the predictive model in different subgroups stratified by important clinical variables. (B,C)

Kaplan–Meier survival analysis of the predictive model in subsets of different AJCC stage patients with HCC (log-rank test). Other:

Asian and black patients. Risk factors: hepatitis B, hepatitis C, hemochromatosis, cirrhosis, alcohol consumption, non-alcoholic

fatty liver disease or α-1 antitrypsin deficiency.
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Table 1 Cox regression analysis of risk factors associated with OS in TCGA

Unadjusted Adjusted 1 Adjusted 2
Variables HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value

Risk score

Low

High 1.997 (1.328–3.003) <0.001 2.400 (1.312–4.390) 0.005 2.54 (1.485–4.347) <0.001

Sex

Female

Male 0.803 (0.537–1.199) 0.283 1.072 (0.535–2.148) 0.845

Age (years)

≤60

>60 1.200 (0.810–1.780) 0.363 1.359 (0.717–2.577) 0.348

Race

Other*

White 1.363 (0.903–2.057) 0.141 1.876 (0.925–3.801) 0.081

Risk factors†

No

Yes 0.666 (0.435–1.019) 0.061 1.063 (0.523–2.159) 0.866

Grade

G1 and G2

G3 and G4 1.140 (0.762–1.704) 0.525 1.298 (0.697–2.416) 0.411

AJCC

I

II and III and IV 1.775 (1.165–2.706) 0.008 1.088 (0.555–2.133) 0.806 1.261 (0.772–2.061) 0.354

Vascular invasion

No

Yes 1.405 (0.884–2.233) 0.150 1.168 (0.566–2.408) 0.674

AFP (ng/ml)

<20

�20 1.890 (1.163–3.073) 0.010 2.020 (1.075–3.798) 0.029 1.551 (0.937–2.567) 0.088

History of other
malignancy

No

Yes 1.232 (0.620–2.449) 0.552 1.863 (0.670–5.185) 0.233

Family history of
cancer

No

Yes 1.114 (0.732–1.696) 0.615 0.897 (0.483–1.665) 0.730

Adjusted 1: Adjusted covariates include all the indicators above.
Adjusted 2: Adjusted covariates include the prognostic factors from unadjusted univariate COX analysis.
*Represents Asian and black patients.
†Represents patients with the history of hepatitis B, hepatitis C, hemochromatosis, cirrhosis, alcohol consumption, non-alcoholic fatty liver disease or
α-1 antitrypsin deficiency.
The values in bold denote that the difference between the two groups is statistically significant (P<0.05).

Discussion
DNA methylation is a common mechanism of epigenetic regulation in eukaryotic organisms ranging from fungi to
mammals [35]. Increased methylation of tumor-associated genes is an early event in many tumors [36,37]. HCC is one
of the most common solid tumors; its incidence is increasing, and it has high mortality rates worldwide. Therefore, it
is urgent to identify reliable prognostic markers and construct a robust risk model to predict HCC outcomes. In this
study, we developed an effective DNA methylation-based prognosis predictive model.

To screen genes with different levels of methylation between HCC and non-tumor tissues, we first analyzed the
DNA methylation data in multiple independent datasets to significantly enhance the reliability of our results. GO
enrichment analysis and KEGG pathway enrichment analysis were performed to investigate the biological roles of
CDMGs. As shown in Figure 2, CDMGs were clearly enriched in pathways involved in transcriptional misregulation
in cancer and in Rap1 signaling. The important roles of these two pathways in the development and progression of
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Table 2 Baseline characteristics of the patients in the PSM cohort stratified by risk score (high vs low group)

PSM cohort
Variable Risk score: High (n=89) Risk score: Low (n=89) P

Age (years), mean (SD) 60.31 (12.08) 58.42 (11.67) 0.288

Sex 0.263

Male 56 (62.9) 64 (71.9)

Female 33 (37.1) 25 (28.1)

Race 0.540

White 38 (42.7) 33 (37.1)

Other 51 (57.3) 56 (62.9)

History of other malignancy 1.000

Yes 7 (7.9) 7 (7.9)

No 82 (92.1) 82 (92.1)

Family history of cancer 0.108

Yes 34 (38.2) 23 (25.8)

No 55 (61.8) 66 (74.2)

Risk factors 0.112

Yes 63 (70.8) 73 (82.0)

No 26 (29.2) 16 (18.0)

Grade 0.880

G1 and G2 49 (55.1) 47 (52.8)

G3 and G4 40 (44.9) 42 (47.2)

AJCC 0.759

I 52 (58.4) 55 (61.8)

II and III and IV 37 (41.6) 34 (38.2)

Vascular invasion 0.339

Yes 33 (37.1) 26 (29.2)

No 56 (62.9) 63 (70.8)

AFP (ng/ml) 0.450

≥20 42 (47.2) 36 (40.4)

<20 47 (52.8) 53 (59.6)

HCC have been reported in many studies [38–41]. Therefore, bioinformatics analysis could enhance our understand-
ing of the molecular and pathological mechanisms underlying HCC.

Furthermore, we identified four SR-CDMGs (HOXA10, CDKL2, HOXB4 and WDR69) that were significantly
associated with the survival of HCC patients. It has been reported that the homeobox (HOX) transcription factors play
critical roles in many physiological and pathological processes [42,43]. Previous studies have reported that HOXA10
contributes to tumorigenesis and progression in HCC [44–46]. In addition, it has been reported that the combination
of HOXA9 and HOXA10 promoter CpG islands could predict the survival of breast cancer patients [47]. HOXB4
has been reported to contribute to tumorigenesis in many cancers [48–51]. Moreover, HOXB4 methylation could be
a potential marker in human cervical cancer [52] and in extrahepatic cholangiocarcinoma [49]. Hyper-methylation
of the CDKL2 promoter has been suggested to play an important role in hepatocarcinogenesis and to be a potentially
valuable biomarker for HCC [53,54].

WDR69 is a member of the WD-repeat domain (WDR) family. Although its association with cancer has not been
reported, an increasing number of members of the WDR family have been identified as involved in tumorigenesis
and cancer progression, including (i) WDR34, which may be used as a prognosis predictor in breast cancer and may
provide a novel target for the treatment of breast cancer [55], (ii) WDR54, which serves as an oncogene in colorectal
cancer and may be a potential prognostic marker and therapeutic target [56], (iii) WDR1, which plays a predictive
role in nodal metastasis for primary breast cancer [57], and (iv) WDR34, which inhibits oral squamous cell carcinoma
progression [58]. In the present study, WDR69 methylation was significantly negatively correlated with the survival
of HCC patients. Furthermore, after analyzed the clinical and pathological features of HCC patients in the TCGA
dataset, the results showed that the WDR69 methylation level was higher in HCC tumor tissues with high histological
grade, AJCC stage, and AFP levels (Additional file 6: Supplementary Figure S4). Therefore, the molecular functions
of WDR69 in HCC deserve to be further exploited. In summary, the potential molecular biological mechanism of
the SR-CDMGs HOXA10, CDKL2, HOXB4 and WDR69 further supports the reliability of our results.

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).
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Table 3 Cox regression analysis of risk factors associated with OS in TCGA after PSM analysis

Unadjusted Adjusted 1 Adjusted 2
Variables HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value

Risk Score

Low

High 2.815 (1.554–5.097) <0.001 2.536 (1.355–4.749) 0.004 2.481 (1.364–4.513) 0.003

Sex

Female

Male 0.576 (0.329–1.01) 0.054 1.102 (0.546–2.222) 0.787

Age (years)

≤60

>60 1.567 (0.895–2.744) 0.116 1.37 (0.712–2.634) 0.346

Race

Other*

White 2.168 (1.222–3.847) 0.008 2.049 (0.994–4.223) 0.052 2.056 (1.153–3.667) 0.015

Risk factors†

No

Yes 0.742 (0.396–1.393) 0.353 1.133 (0.547–2.349) 0.736

Grade

G1 and G2

G3 and G4 1.264 (0.726–2.198) 0.408 1.248 (0.663–2.351) 0.492

AJCC

I

II and III and IV 1.18 (0.674–2.066) 0.561 0.961 (0.475–1.943) 0.912

Vascular invasion

No

Yes 1.411 (0.775–2.569) 0.26 1.283 (0.607–2.711) 0.514

AFP (ng/ml)

<20

�20 2.015 (1.146–3.542) 0.015 2.047 (1.079–3.886) 0.028 1.954 (1.105–3.457) 0.021

History of other
malignancy

No

Yes 1.944 (0.76–4.97) 0.165 2.053 (0.725–5.814) 0.176

Family history of
cancer

No

Yes 1.307 (0.746–2.291) 0.349 0.846 (0.451–1.587) 0.602

Adjusted 1: Adjusted covariates include all the indicators above.
Adjusted 2: Adjusted covariates include the prognostic factors from unadjusted univariate COX analysis.
*Represents Asian and black patients.
†Represents patients with the history of hepatitis B, hepatitis C, hemochromatosis, cirrhosis, alcohol consumption, non-alcoholic fatty liver disease or
α-1 antitrypsin deficiency.
The values in bold format denote that the difference between the two groups is statistically significant (P<0.05).

A previous study reported that altered DNA methylation patterns could be among the first detectable neoplas-
tic changes associated with tumorigenesis [36,37]. DNA methylation alteration is frequently observed in HCC and
is known to play important roles in carcinogenesis and diagnosis. Therefore, many studies have focused on DNA
methylation in HCC, and several HCC methylation-based models have been proposed.

In terms of diagnostic prediction models, Cheng et al. identified six HCC-specific hyper-methylated sites
(NEBL [cg23565942], FAM55C [cg21908638, cg11223367 and cg03509671], GALNT3 [cg05569109], and DSE
[cg11481534]) as potential diagnostic biomarkers, and the combination of these six sites showed a high sensitivity
and a high specificity for the diagnosis of HCC [59]. Kisiel et al. identified a methylated DNA marker panel (HOXA1,
EMX1, AK055957, ECE1, PFKP and CLEC11A), which was proven to accurately detect HCC by plasma tests [60].
Zhao et al. identified three DMGs, i.e., ZNF300, SLC22A20 and SHISA7, which are potential markers for the early de-
tection of HCC [61]. Zhong et al. reported that a panel of promoter methylations in RNA5SP38, IL21 and SDC4P can
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serve in the diagnosis of HCC [62]. The study by Wu et al. supported the idea that methylation markers (cg10272601
in WNK2, cg12680131 in TPO and cg22511877 in MYT1L) in white blood cell DNA can serve as biomarkers of HCC
susceptibility [63].

In terms of diagnostic and prognostic prediction model, Xu et al. successfully constructed a diagnostic prediction
model using a 10-methylation marker panel (BMPR1A, PSD, ARHGAP25, KLF3, PLAC8, ATXN1, Chr 6:170, Chr
6:3, ATAD2 and Chr 8:20) and a prognostic prediction model with an 8-methylation marker panel (SH3PXD2A,
C11orf9, PPFIA1, Chr 17:78, SERPINB5, NOTCH3, GRHL2 and TMEM8B) after screening for circulating tumor
DNA methylation markers in HCC [64]. However, this study was limited by a relatively short follow-up period. Long
et al. constructed prognostic and diagnostic models consisting of two DNA methylation-driven genes (SPP1 and
LCAT) [65] and Lu et al. showed that a combination of multiple methylation markers (APC, COX2, RASSF1A and
miR-203) could accurately identify hepatitis B virus (HBV)-related HCC from patient plasma samples and exhibited
diagnostic and prognostic potential [66], but the inclusion and exclusion criteria of HCC patients were not reported
in these two papers.

In terms of prognostic prediction model, Li et al. developed a model to predict prognosis for HCC patients based
on six methylation-driven genes (SNHG6, S100P, DCDC2, LIME1, FMO3 and GPR171) [67]. However, again, the
inclusion and exclusion criteria of HCC patients were not reported. Dong et al. constructed a DNA methylation-based
survival prediction model for HCC based on 134 methylation sites [68]. However, due to the high number of methy-
lated markers, this model is not convenient for clinical application. Qiu et al. reported that a three-CpG island sig-
nature (SCAND3, SGIP1 and PI3) is useful in predicting recurrence for patients with early-stage HBV-related HCC
[69]. However, it needs to be confirmed that it can be applied in patients with advanced-stage disease.

In our study, after excluding patients with detectable residual tumors (R1 and R2) and patients who received
adjuvant treatment (including radiation therapy, chemotherapy and embolization treatment), we identified four
SR-CDMGs and constructed a composite predictive model for HCC patients. The Kaplan–Meier curve showed that
the OS were significantly different between different risk groups of HCC patients. Moreover, by Cox multivariate
analysis and PSM analysis, we identified the risk score as an independent prognostic factor for poor prognosis, even
after adjusting for important clinical variables. Furthermore, stratified analysis results showed that our model per-
formed well in predicting the outcome of some HCC subgroups (mainly including male patients, patients aged ≤
60 years, AJCC stage I patients, patients without vascular invasion and patients with low AFP levels). Besides, we
constructed a validation group by randomly selecting 148 HCC samples in the TCGA dataset; the results of ROC
curve analysis and survival analysis further validated our predictive model. In addition, because this model only uses
a small number of prognostic markers, it is practical and easy to use for patient assessment and therapeutic decision
making. In summary, we developed a relatively objective and effective DNA methylation-based predictive model that
could provide more accurate and useful information in the prognosis of HCC.

In the future, we plan to further investigate the roles of these four methylated markers in HCC carcinogenesis. In
particular, the molecular functions and mechanisms of WDR69 in HCC deserve to be further exploited. Finally, this
DNA methylation-based prognosis predictive model needs to be further validated.

Conclusion
We identified four methylated biomarkers that are significantly associated with HCC survival, which might serve
as potential therapeutic targets for HCC. Our DNA methylation-based prognosis predictive model is effective and
reliable in the prediction of prognosis in HCC, which could be useful for patient stratification in clinical practice,
facilitate clinical therapeutic decision-making and therefore improve the prognosis for patients with HCC.
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