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Introduction

Potassium channels (K+ channels) are very important membrane 
proteins present in every cell. They determine the cell membrane 

potential and thereby regulate the excitability of neurons and 
myocytes and transport of ions and water in epithelia, such as the 
pancreas and salivary glands. Duct epithelial cells in the pancreas 
secrete a HCO

3
–-rich pancreatic juice that neutralizes acid chyme 

in the duodenum. Secretin, acetylcholine, and ATP stimulate fluid 
secretion via signal transduction involving cAMP and Ca2+ signal-
ing pathways. The generally accepted model for HCO

3
– transport 

involves Cl––HCO
3

– exchangers (SLC26A3 and SLC26A6) that 
operate in parallel with cAMP-activated Cl– channels (CFTR) or 
Ca2+-activated Cl– channels (most likely TMEM16A) on the lumi-
nal membrane and Na+-coupled transporters such Na+–K+–Cl– 
co-transporter (NKCC1), Na+–HCO

3
– co-transporter (SLC4A4), 

and Na+–H+ exchanger (SLC9A1) and Na+–K+-pump on the 
basolateral membrane (Fig. 1).1-3 In addition, H+–K+-pumps are 
expressed on the luminal and basolateral membranes of pancre-
atic ducts.4 K+ channels are clearly important for setting the resting 
membrane potential and providing the driving force for anion exit 
and fluid secretion in a stimulated epithelium.1-3,5 K+ channels may 
also provide the transport partners for H+–K+-pumps.4 In addi-
tion, certain K+ channels could play an important role in pancre-
atic pathology, such as cystic fibrosis, pancreatitis, and pancreatic 
adenocarcinoma. Perhaps surprisingly, there are not so many K+ 
channels studies performed on pancreatic ducts.

Early electrophysiological studies using microelectrodes and 
patch-clamp methods indicated that pancreatic ducts expressed 
voltage- and Ca2+-activated K+-channels, consistent with maxi-K+ 
channels (BK channels), intermediate-conductance Ca2+-activated 
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Potassium channels regulate excitability, epithelial ion trans-
port, proliferation, and apoptosis. In pancreatic ducts, K+ channels 
hyperpolarize the membrane potential and provide the driving 
force for anion secretion. This review focuses on the molecular 
candidates of functional K+ channels in pancreatic duct cells, 
including KCNN4 (KCa3.1), KCNMA1 (KCa1.1), KCNQ1 (Kv7.1), KCNH2 
(Kv11.1), KCNH5 (Kv10.2), KCNT1 (KCa4.1), KCNT2 (KCa4.2), and KCNK5 
(K2P5.1). We will give an overview of K+ channels with respect to 
their electrophysiological and pharmacological characteristics 
and regulation, which we know from other cell types, preferably 
in epithelia, and, where known, their identification and func-
tions in pancreatic ducts and in adenocarcinoma cells. We con-
clude by pointing out some outstanding questions and future 
directions in pancreatic K+ channel research with respect to the 
physiology of secretion and pancreatic pathologies, including 
pancreatitis, cystic fibrosis, and cancer, in which the dysregula-
tion or altered expression of K+ channels may be of importance.
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K+ channels (IK channels), and pH/HCO
3

– sensitive K+ chan-
nels.6-13 Recent studies focusing on molecular candidates have 
shown that pancreatic ducts express the following channels that 
could be candidates for above functional channels: K

Ca
1.1 channels 

coded by the KCNMA1 and KCNMB1 genes (α – and β-subunits 
of the BK channel); the K

Ca
3.1 protein coded by the KCNN4 gene 

(IK channel); the KCNK5 gene (K
2P

5.1); and they also express: 
KCNQ1 (K

v
7.1, KVLQT1), KCNH2 (K

v
11.1, HERG), KCNH5 

(K
v
10.2, EAG2), KCNT1 (K

Ca
4.1, Slack), and KCNT2 (K

Ca
4.2, 

Slick), the functions of which remain unclear in duct cells.10,11,13

It is not known whether many of these candidates are func-
tional in pancreatic ducts or what is their localization and 
regulation. Therefore, their physiological and possibly patho-
physiological functions have not to be confirmed. The aim of 
this review is to provide an overview of the above mentioned K+ 
channels with respect to their electrophysiological and pharma-
cological characteristics and functions, as we know from other 
cell types, preferably in epithelia, and, where known, their identi-
fication and functions in pancreatic ducts is given (Table 1). We 
also address some outstanding questions and future directions in 
pancreatic K+ channel research.

KCNN4 (KCa3.1, IK, SK4)

Tissue expression
KCNN4 coding for the K

Ca
3.1 protein was cloned from the 

placenta and pancreas.14,15 Functional expression of the KCNN4 

gene has been demonstrated in colonic crypts,16 salivary acini,17-19 
and pancreatic ducts.11,13 Immunoreactivity of the K

Ca
3.1 protein 

has also been reported in the esophagus, stomach, small intes-
tine, proximal colonic crypts, salivary glands, luminal membrane 
of lacrimal gland duct cells,20-22 and intercalated and intralobular 
ducts of the pancreas.13,23 Interestingly, K

Ca
3.1 channel immu-

noreactivity was shown to be localized in both the basolateral 
and luminal membranes in pancreatic ducts and monolayer of 
Capan-1, a human pancreas adenocarcinoma cell line, though 
its expression appeared to be stronger in the luminal membrane. 
Consistent with this finding, the short-circuit current (I

sc
) of 

the Capan-1 cell monolayer was enhanced by the K
Ca

3.1 chan-
nel activator DC-EBIO in luminal or basolateral bathing solu-
tion.13,24 K

Ca
3.1 could potentially be an important candidate for 

luminal K+ channels in pancreatic ducts. Importantly, equiva-
lent-circuit analysis revealed that luminal K+ conductance con-
tributed to a minimum of 10% of the total K+ conductance in 
pancreatic duct cells.8 Moreover, stimulation of the rat pancreas 
with secretin caused a marked increase in K+ concentrations in 
the pancreatic juice, which was equal to twice that in the plasma, 
indicating that K+ was secreted.25 K+ efflux was also shown to be 
mediated via mucosal K

Ca
3.1 channels in other epithelia, such as 

the distal colon, and provided, in part, the driving force for ago-
nist-induced anion secretion.26 Another example is salivary acini, 
in which both K

Ca
1.1 and K

Ca
3.1 were shown to be expressed 

on the apical membrane and contribute to optimal secretion.27 
Furthermore, H+–K+-pumps were reported to be expressed on the 
luminal membranes of pancreatic ducts4 and their function, such 
as contributing to local epithelial protection, appeared to depend 
on the operation of K+ channels.

Channel properties
Patch-clamp studies using Xenopus oocytes and mammalian 

expression systems established the basic electrophysiological and 
pharmacological properties of K

Ca
3.1 channels.15,28,29 Single-

channel openings were observed at both positive and negative 
membrane potentials, and this gating showed no significant volt-
age dependency. The single-channel current–voltage relationship 
showed weak inward rectification with conductance of 30–54 pS 
in heterologous expression systems. Interestingly, intermediate-
conductance K+ channels exhibited a conductance of 80 pS in 
rat pancreatic duct cells.13 One explanation for this discrepancy 
is that unidentified auxiliary proteins for K

Ca
3.1 channels or 

additional KCNN4 genes may exist in rodent cells. Regarding 
pharmacology, K

Ca
3.1 currents were inhibited by charybdotoxin, 

clotrimazole, TRAM-34, and maurotoxin with K
i
 values of 2–28 

nM, 25–150 nM, 20 nM, and 1 nM, respectively.15,28-32 K
Ca

3.1 
currents were also activated by 1-EBIO and DC-EBIO with K

d
 

values of 15–84 μM and 0.8 μM, respectively.28,29,31,33

Regulation
Regarding regulation, it is well established that K

Ca
3.1 chan-

nels are activated by the Ca2+/calmodulin signaling pathway. 
For example, heterologously expressed K

Ca
3.1 channels were 

previously shown to be activated by submicromolar free Ca2+ 
concentrations with EC

50
 values of 0.1–0.3 μM.14,15,29,31 There 

is also strong evidence to suggest that the Ca2+ sensitivity of 
K

Ca
3.1 channels is mediated by calmodulin and calmodulin 

Figure 1. Model of ion transport in a pancreatic duct cell. Intracellular 
HCO3

– is derived from CO2 through the action of carbonic anhydrase (Ca) 
and from HCO3

– uptake via the Na+–HCO3
– cotransporter. H+ is extruded 

at the basolateral membrane by the Na+–H+ exchanger and H+–K+ pump. 
HCO3

– efflux across the luminal membrane is mediated by Cl––HCO3
– 

exchangers and/or Cl– channels, and the H+–K+ pump may provide a 
buffering/protection zone for the alkali-secreting epithelium. K+ chan-
nels provide an exit pathway for K+ and play a vital role in maintaining 
the membrane potential, which is a crucial component of the driving 
force for anion secretion.
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kinase.18,29,34 In addition, ATP/UTP was shown to regulate K
Ca

3.1 
channels via purinergic receptors in pancreatic cell lines and rat 
pancreatic duct cells.10,12,24,35 Both P2Y

2
 and P2Y

4
 receptors upreg-

ulated K
Ca

3.1 activity in the Xenopus oocyte expression system.11 
Importantly, luminal ATP/UTP, most likely delivered by secret-
ing acini,36,37 was reported to stimulate ductal secretion.24,35,38-41

The physiological role of K
Ca

3.1 channels in pancreatic secre-
tion could be also investigated with respect to secretin, which acts 
predominantly via the cAMP/cAMP-dependent protein kinase 
(PKA) signaling pathway, however, until this becomes available, 
we need to resort to studies on other cell types. A membrane-
associated PKA has been proposed to activate K

Ca
3.1 channels 

Table 1. Molecular candidates of functional K+ channels in pancreatic duct cells

Gene Protein Conductance (p)S) Blockers (Ki) Activators (Kd) Regulation

KCNN4 KCa3.1 30–5415,28,29

charybdotoxin
(2–28 nM)15,28,29,31

clotrimazole
(25–150 nM)15,28-31

TraM-34 (20 nM)30

maurotoxin (1 nM)32

1-eBIO
(15–84 μM)28,29,31,33

DC-eBIO
(0.8 μM)33

Ca2+ 14,15,29,31

calmodulin18,29,34

PKa19,42,43

extracellular UTP11

cell swelling47,48

KCMA1 KCa1.1 100–27050,56

tetraethylammonium
(0.14 mM)50

charybdotoxin
(1–31 nM)57,58,62

iberiotoxin
(1–9 nM)58,61,62

paxilline (2–9 nM)58-60

NS1608 (2 μM)60

NS11021 (0.4 μM)63

membrane potential7,50,56,64

Ca2+ 7,50,56,64

PKa7,56

extracellular UTP11

KCNQ1 Kv7.1 0.7–480,81

chromanol 293B
(10–41 μM)68,82,86,87

azimilide (77 μM)86

Xe991 (0.8 μM)88

L-364,37390
membrane potential78-81

caMP91

cytosolic pH83

KCNQ1/
KCNE1

Kv7.1/
minK 4.5–1680,81

chromanol 293B
(3–10 μM)70,82,86,87

azimilide (5.6 μM)86

Xe991 (11 μM)88

Mefloquine (0.9 μM)89

DIDS86

mefenamic acid86

membrane potential78-81

caMP91,92

cytosolic pH83

KCNH2 Kv11.1 10–13102-104

e-4031
(7–1250 

nM)104,105,108-111

BeKm-1
(3–12 nM)106-110

ergtoxin
(4.5–17 nM)107,109

Ly97241
(2.2–19 nM)111,112

mallotoxin
(0.5 μM)114

PD-118057
(3.1 μM)115

ICa-105574
(0.5 μM)108

membrane potential116

PKa119,120

KCNH5 Kv10.2
Ly97241

(1.5 μM)113
membrane potential97

PKC97

KCNT1 KCa4.1 180122 bepridil (1 μM)125

quinidine (90 μM)125

bithionol
(0.8 μM)125

niclosamide
(2.9 μM)126

loxapine (4.4 μM)126

niflumic acid
(2.7 mM)127

membrane potential121,122

Ca2+ 121

Na+ 122,123

Cl− 123

PKC130

KCNT2 KCa4.2 140122 quinidine122

isoflurane128

meclofenamic acid
(80 μM)127

flufenamic acid
(1.1–1.4 mM)127,129

niflumic acid
(2.1 mM)127,129

membrane potential122

Na+ 122,130

Cl− 122

intracellular aTP122

PKC130

KCNK5 K2P5.1 50–78133,136,137
quinine (22 μM)133

clofilium (25 μM)138

bupivacaine (26 μM)139

ropivacaine (95 μM)139

halothane, isoflu-
rane, chloroform140

extracellular pH133,138,140,141

PKC140

osmolality138
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in human erythrocytes, the T84 human colonic crypt cell line, 
and rat submandibular acinar cells.19,42,43 Interestingly, the PKA 
consensus phosphorylation site at serine 334 in K

Ca
3.1 channels 

was not involved in PKA-dependent activation.43 In contrast 
to these studies, heterologously expressed K

Ca
3.1 channels were 

not affected by PKA activators and/or inhibitors,29,44 or were 
inhibited by the catalytic subunit of PKA.45 Given these contra-
dictory results, it is tempting to speculate that K

Ca
3.1 channels 

may be activated via the phosphorylation of a closely associated 
protein, the expression of which is tissue-specific. One candi-
date for this protein is A-kinase anchoring protein (AKAP), 
which is able to scaffold PKA and components of cAMP signal-
ing pathways, including G protein-coupled receptors and ion 
channels.46

In addition to transepithelial transport, K
Ca

3.1 channels 
were also shown to be stimulated by cell swelling, which trig-
gered regulatory volume decreases.47,48 Notably, KCNN4 mRNA 
levels were upregulated in primary pancreatic tumors, and the 
growth of ductal adenocarcinoma cell lines in vitro was inhib-
ited by blockers of K

Ca
3.1 channels, which indicated that these 

were correlated with the proliferation of pancreatic cancer.49

KCNMA1 (KCa1.1, Slo1, α-subunit of 
BK) and KCNMB (β-subunits)

Tissue expression
The KCNMA1 coding K

Ca
1.1 (Slo1) protein was cloned 

from brain and skeletal muscle.50 Functional expression of the 
KCNMA1 gene has been demonstrated in the colon,51 salivary 
acini,17 pancreatic acini,52 and pancreatic ducts.11,53 The K

Ca
1.1 

protein is located in the luminal membrane of colonic epithe-
lia,51,54 salivary acini and ducts,27,55 and pancreatic ducts.53 It is 
noteworthy that there was no labeling of the basolateral mem-
brane of guinea-pig pancreatic duct cells, although the first 
recordings of maxi-K+ currents were made on the basolateral 
membrane of rat pancreatic ducts.7 Venglovecz et al.53 proposed 
that luminal K

Ca
1.1 channels, which are activated by bile acids 

in the lumen, regulate HCO
3

– secretion in pancreatic ducts. 
Nevertheless, experiments on K

Ca
1.1 regulation have also indi-

cated that some channels may be confined to the basolateral 
membrane (see below). Luminal K

Ca
1.1 channels in the distal 

colon were shown to be responsible for resting and stimulated 
Ca2+-activated K+ secretion.51

Channel properties
K

Ca
1.1 channels have the largest single-channel conduc-

tance of all K+ selective channels: 100–270 pS in symmetrical 
150 mM KCl.50,56 Maxi-K+ currents in isolated rat pancreatic 
duct cells had a conductance of 170–180 pS.7,13 Regarding 
pharmacology, the α-subunit of K

Ca
1.1 was inhibited by tet-

raethylammonium, charybdotoxin, iberiotoxin, and paxilline 
with K

i
 values of 0.14 mM, 1–31 nM, 1–9 nM, and 2–9 nM, 

respectively.50,57-62 The α-subunit of K
Ca

1.1 was also activated 
by NS1608 and NS11021 with K

d
 values of 2 μM and 0.4 μM, 

respectively.60,63 Interestingly, dehydrosoyasaponin I (DHS-I) 
activated the α-subunit of K

Ca
1.1 only if co-expressed with the 

β1-subunit, an auxiliary protein for K
Ca

1.1 channels.57

Regulation
Significant diversity has been reported in the functional char-

acteristics of K
Ca

1.1 channels. It is well established that K
Ca

1.1 
channels are activated by membrane depolarization alone, intra-
cellular Ca2+ alone, or synergistically by depolarization and 
Ca2+.7,50,56,64 The single-channel open probability of K

Ca
1.1 chan-

nels markedly increased when the cytoplasmic face of a patch 
membrane was exposed to 10 μM Ca2+ and voltage was changed 
over a range of −60 to +80 mV. Under these conditions, the 
half-maximal voltage (V

1/2
) was +23 mV in 10 μM Ca2+;50 how-

ever, these were unphysiological conditions for pancreatic ducts. 
Importantly, maxi-K+ channels on pancreatic duct cells were acti-
vated by much lower Ca2+ concentrations. For example, maxi-K+ 
channels exposed to 3 μM Ca2+ reached V

1/2
 at −4 mV.7 This 

difference indicated that the β-subunit exists in pancreatic duct 
cells. Maxi-K+ channels on Xenopus oocytes that heterologously 
expressed both the α – and β1-subunits of K

Ca
1.1 proteins were 

about 10-fold more sensitive to activation by voltage and Ca2+ 
concentration than channels composed of the α-subunit alone.57 
Indeed, KCNMB1 coding the β1 subunit was detected in isolated 
pancreatic ducts.11

Interestingly, UTP was shown to inhibit K
Ca

1.1 channels via 
the P2Y

2
 receptor,11 and appeared to lead to a decrease in secre-

tion. The basolateral application of ATP/UTP inhibited K+ con-
ductance in rat duct cells and secretion in guinea-pig ducts and 
human duct cell monolayers.35,39,40 These results collectively indi-
cated that P2Y

2
 receptors on the basolateral membrane appeared 

to downregulate secretion via K
Ca

1.1 channels in the ductal 
system.

Regarding the cAMP/PKA signaling pathway, cAMP-depen-
dent phosphorylation can also activate maxi-K+ channels on pan-
creatic duct cells.7 The functional response of K

Ca
1.1 channels 

to PKA phosphorylation depends on the splice-variant of the 
α-subunit. For example, PKA was shown to activate the ZERO 
splice variant, whereas PKA inhibited the STREX variant. PKA 
activation of the ZERO variant requires a conserved C-terminal 
PKA site.65 Indeed, the ZERO splice variant has been shown to 
conduct adrenaline-induced K+ secretion in the distal colon.66

KCNQ1 (Kv7.1, KVLQT1) and KCNE1 (minK)

Tissue expression
The KCNQ1 coding K

v
7.1 protein was cloned from the heart.67 

Functional expression of the KCNQ1 gene has also been demon-
strated in the kidney, stomach, small intestine, colon,68-71 pancre-
atic acini,69,72,73 and pancreatic ducts.13 Immunoreactivity of the 
K

v
7.1 protein was reported in the parietal cells of the stomach, in 

the basolateral membrane of small intestinal and colonic crypt 
cells,69,74,75 and in acinar and duct cells of the pancreas.13,69 K

v
7.1 

resides in the tubulovesicular and canalicular membranes of gas-
tric parietal cells together with H+–K+-pumps and participates 
in gastric acid secretion.71,74,75 K

v
7.1 was localized in the lumi-

nal membrane of pancreatic duct cells,13 and may be involved 
in cell volume regulation during purinergic stimulation in epi-
thelial transport,76,77 and/or may potentially be associated with 
H+–K+-pumps expressed by pancreatic ducts.4
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The K
v
7.1 protein can assemble with the KCNE family of 

regulatory β-subunits to fulfill various physiological functions. 
For example, minK coded by the KCNE1 gene has been shown 
to modify K

v
7.1 activity by increasing unitary conductance, slow-

ing activation, causing a right shift in the voltage dependence of 
activation, and modulating pharmacology.78-82 It is worth noting 
that the acidification of cytosolic pH increased K

v
7.1–minK, but 

decreased K
v
7.1 currents, whereas alkalinization decreased K

v
7.1–

minK, but increased K
v
7.1 currents.83 Indeed, the whole pancreas 

expresses KCNE1 and KCNE2 genes.84,85 The K
v
7.1 current was 

shown to be strongly diminished and membrane targeting of the 
K

v
7.1 protein was impaired in acinar cells in KCNE1 knockout 

mice.69 The expression and function of KCNE in duct cells has 
not yet been investigated.

Channel properties
K

v
7.1 channels have very small conductance. Noise analysis 

revealed estimated single-channel conductances of 0.7–4 pS.80,81 
Small conductance K+ channels had 1 pS and were inhibited by 
chromanol 293B, a K

v
7.1 blocker, in the basolateral membrane of 

rat pancreatic acinar cells.73 Chromanol 293B inhibited α-subunit 
of K

v
7.1 with K

i
 values of 10–41 μM in Xenopus oocytes and 

mammalian expression systems.68,82,86,87 Importantly, KCNE 
β-subunits increase the sensitivity of K

v
7.1 to chromanol 293B. 

K
i
 values for K

v
7.1/KCNE1, K

v
7.1/KCNE2 and K

v
7.1/KCNE3 

were 3–10 μM, 0.4 μM, and 3–4 μM, respectively.68,70,82,86,87 
Voltage-gated K+ currents in pancreatic acinar cells were shown 
to be inhibited by chromanol 293B with a K

i
 value of 3 μM.72 

This result supports voltage-gated K+ channels being composed 
of K

v
7.1 and KCNE1 β-subunit in acinar cells. Azimilide inhib-

ited K
v
7.1 and K

v
7.1/KCNE1 in the same manner as chromanol 

293B with K
i
 values of 77 μM and 5.6 μM, respectively.86 In 

contrast, XE991 inhibited K
v
7.1 and K

v
7.1/KCNE1 with K

i
 val-

ues of 0.8 μM and 11 μM, respectively.88 Mefloquine inhibited 
K

v
7.1/KCNE1 with a K

i
 value of 0.9 μM.89 DIDS and mefenamic 

acid activated K
v
7.1/KCNE1, but not K

v
7.1.86 On the other hand, 

L-364,373 activated K
v
7.1, but did not affect K

v
7.1/KCNE1.90

Regulation
Regarding regulation, voltage-gated K

v
7.1 channels are known 

to be regulated by the cAMP signaling pathway.91 In addition, 
AKAPs are required for cAMP regulation of recombinant K

v
7.1 

channels in mammalian cell lines.92 Interestingly, a K+ current 
was elicited by cAMP stimulation in CFTR-transfected, but 
not untransfected CFPAC-1 cells derived from a cystic fibrosis 
patient with deletion in Phe-508 in CFTR.93 AKAPs also mediate 
PKA compartmentalization with CFTR;94 therefore, these find-
ings imply that functional CFTR regulates the K

v
7.1 channel, 

presumably in the luminal membrane of pancreatic duct cells.

KCNH2 (Kv11.1, HERG) and KCNH5 (Kv10.2, EAG2)

Tissue expression
The KCNH2 coding K

v
11.1 (HERG) protein was isolated 

from the hippocampal cDNA library.95 Functional expression 
of the KCNH2 gene has been demonstrated in colon carci-
noma cells.96 Immunoreactivity of the K

v
11.1 protein was also 

reported in colon carcinoma cells96 and the luminal membrane 

of pancreatic duct cells.13 The KCNH5 coding K
v
10.2 (EAG2) 

protein was identified in the thalamus and was expressed in the 
brain, testes, skeletal muscle, heart, placenta, lung, liver, and at 
low levels in the kidney and whole pancreas.97,98 Notably, K

v
10.2 

was shown to promote medulloblastoma tumor progression by 
regulating cell volume dynamics.99 KCNH2 and KCNH5 are 
clearly expressed in rodent and human pancreatic duct cells.13 
However, the physiological or potentially pathophysiological 
role of K

v
11.1 and K

v
10.2 channels remains unclear. The related 

K
v
10.1 (KCNH1) channel has been shown to be upregulated in 

several cancers including pancreatic cancer, based on studies of 
human pancreatic adenocarcinoma cell lines.100,101

Channel properties
K

v
11.1 channels have small conductance of 10–13 pS.102-

104 Regarding pharmacology, K
v
11.1 was inhibited by E-4031, 

BeKm-1, and ergtoxin with K
i
 values of 7–1250 nM, 3–12 nM, 

and 4.5–17 nM, respectively.104-111 K
v
11.1 channels formed with 

KCNE2 were about 2-fold more sensitive to E-4031.104 LY97241 
was shown to inhibit K

v
10.2 and K

v
11.1 currents with K

i
 values of 

1.5 μM and 2.2–19 nM, respectively.111-113 K
v
11.1 currents were 

also activated by mallotoxin, PD-118057, and ICA-105574 with 
K

d
 values of 0.5 μM, 3.1 μM, and 0.5 μM, respectively.108,114,115

Regulation
K

v
11.1 currents were activated at voltages more positive than 

−50 mV and V
1/2

 was – 15.1 mV,116 whereas K
v
10.2 currents were 

activated at around – 100 mV and V
1/2

 was – 35.5 mV.97 However, 
a 14–3-3 protein was associated with K

v
11.1 in a phosphoryla-

tion-dependent manner at specific PKA sites and shifted V
1/2

 in 
a hyperpolarizing direction by – 11.1 mV.117 K

v
11.1 may exist in a 

macromolecular signaling complex that includes 14–3-3 proteins 
and possibly AKAPs.118 Importantly, the K

v
11.1 protein can also 

assemble with KCNE1 or KCNE2 regulatory β-subunits.103,104 
Regarding inhibition, phorbol 12-myristate 13-acetate (PMA), 
an activator of protein kinase C (PKC), produced a potent dose-
dependent block of K

v
10.2 or K

v
11.1 currents.97,119 In addition, 

K
v
11.1 currents were reduced by the cAMP-specific phosphodi-

esterase inhibitor Ro-20–1724 or the adenylate cyclase activator 
forskolin, which were shown to result in increased cAMP levels 
and PKA stimulation.120

KCNT1 (KCa4.1, Slo2.2, Slack) and 
KCNT2 (KCa4.2, Slo2.1, Slick)

Tissue expression
KCNT1 (K

Ca
4.1, Slo2.2, or Slack), which encodes for the 

Na+-activated K+ channel, was isolated from the brain cDNA 
library.121 KCNT1 and KCNT2 (K

Ca
4.2, Slo2.1, or Slick) are 

expressed in the heart, kidney and testis, as well as in the brain.121-

123 The functional expression of K
Ca

4.1 has been demonstrated 
in the basolateral membrane of the thick ascending limbs of 
Henle’s loop.124 Pancreatic duct cells also expressed KCNT1 and 
KCNT2.13 Interestingly, the expression pattern of KCNT1 and 
KCNT2 was different between Capan-1 cells expressing func-
tional CFTR channels and CFPAC-1 cells derived from a cystic 
fibrosis patient with a mutation in CFTR. Capan-1 cells express 
KCNT1, but not KCNT2, while CFPAC-1 cells express KCNT2, 
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but not KCNT1. This discrepancy indicates that the expression of 
KCNT1 and KCNT2 channels is in some way associated with the 
expression of functional CFTR. However, the function of these 
K+ channels in pancreatic duct cells remains to be investigated.

Channel properties
K

Ca
4.1 and K

Ca
4.2 channels have large conductances of 180 

pS and 140 pS in symmetrical 130 mM KCl.122 In the basolat-
eral membrane of the thick ascending limbs of Henle’s loop, 
Na+-activated K+ channels had a conductance of 140–180 pS.124 
Regarding pharmacology, K

Ca
4.1 was inhibited by bepridil and 

quinidine with K
i
 values of 1 μM and 90 μM, respectively.125 

K
Ca

4.1 was activated by bithionol, niclosamide, loxapine, and 
niflumic acid with K

d
 values of 0.8 μM, 2.9 μM, 4.4 μM, 

and 2.7 mM, respectively.125-127 K
Ca

4.2 was inhibited by 1 mM 
quinidine and isoflurane,122,128 and was activated by meclof-
enamic acid, flufenamic acid, and niflumic acid with K

d
 values of  

80 μM, 1.1–1.4 mM, and 2.1 mM, respectively.127,129

Regulation
K

Ca
4.1 was shown to be unusually inhibited by intracellular 

Ca2+ at 1 μM.121 However, K
Ca

4.1 may co-assemble with K
Ca

1.1 
subunits to generate Ca2+-activated K+ channels.121 K

Ca
4.1 and 

K
Ca

4.2 channels were reported to be activated by intracellular 
Na+ and K

d
 values of 41 mM and 89 mM in the presence of 30 

mM internal Cl−, respectively.122 These channels were also acti-
vated by intracellular Cl− or synergistically by Na+ and Cl−.122,123 
Intracellular ATP inhibited K

Ca
4.2 directly, via the presence 

of a consensus ATP binding motif.122 A similar ATP binding 
motif has not been demonstrated in the K

Ca
4.1 sequences.122,124 

Interestingly, the PKC activator PMA increased K
Ca

4.1 currents, 
but inhibited K

Ca
4.2 currents.130

KCNK5 (K2P5.1, TASK-2)

Tissue expression
Two-pore domain K+ channels (K

2P
) generate background K+ 

currents over the whole membrane potential range.131 The pH-
sensitive K

2P
 subunits (TALK-1, TALK-2 and TASK-2) were 

shown to be expressed in pancreatic acini.132 An electrophysi-
ological study indicated that TASK-2 was expressed in HPAF, 
a human pancreatic ductal adenocarcinoma cell line.10 KCNK5 
coding TASK-2 (K

2P
5.1) was isolated from the brain cDNA 

library.133 KCNK5 is expressed in the kidney, liver, stomach, 
small intestine, colon, and pancreatic acinus.132-134 The functional 
expression of K

2P
5.1 has been demonstrated in kidney proximal 

convoluted tubule cells, which could be involved in volume regu-
lation and HCO

3
– transport.135 Clofilium-sensitive K+ conduc-

tance, possibly K
2P

5.1, was located in the luminal membrane of 
the monolayer of HPAF.10 pH-sensitive K+ channels on the lumi-
nal membrane of pancreatic duct cells may be physiologically 
relevant in terms of maintaining the electrical driving force for 
electrogenic HCO

3
– secretion and providing an exit pathway for 

K+ secretion.
Channel properties
K

2P
5.1 channels have an intermediate conductance of 50–78 

pS.133,136,137 Regarding pharmacology, K
2P

5.1 was inhibited by 
quinine, clofilium, bupivacaine, and ropivacaine with K

i
 values 

of 22 μM, 25 μM, 26 μM, and 95 μM, respectively.133,138,139 
K

2P
5.1 was activated by halothane, isoflurane, and chloroform, 

which are volatile anesthetics.140

Regulation
K

2P
5.1 is very sensitive to extracellular pH in the physiological 

range, with a pK
a
 value of 7.5–8.3.133,138,140,141 Phorbol 12,13-dibu-

tyrate and PMA, activators of PKC, were shown to potentiate 
K

2P
5.1 currents in Xenopus oocytes.140 Extracellular ATP acti-

vated TASK-like channels (K
2P

3.1 and/or K
2P

5.1), possibly via 
the P2Y

11
 receptor in thoracic aorta myocytes.142 P2Y

11
 receptors 

were reported to be expressed on the basolateral membrane of 
canine pancreatic duct epithelia, which increased cAMP and 
I

sc
.143 The K

2P
5.1 channel is also osmosensitive and participates 

in cell volume regulation.138 Therefore, pH-sensitive K+ channels 
may be important on both the luminal (alkaline) and basolateral 
(acid) membranes of pancreatic ducts.

Potassium Channels in Pancreatic Cancer

Ion channels have been associated with the malignant phe-
notype of cancer cells, as well as contributing to virtually all 
basic cellular processes, including crucial roles in maintaining 
tissue homeostasis such as proliferation, differentiation, and 
apoptosis.144 Several potassium channels have been suggested as 
the hallmarks of cancer,145 including pancreatic duct adenocar-
cinoma.144 For example, K

Ca
3.1 channels have been correlated 

with the proliferation of pancreatic cancer.49 In addition, the 
expression of G protein-activated inward rectifier potassium 
channel 1 (K

ir
3.1) was markedly higher in pancreatic adenocar-

cinomas than in a normal pancreas, whereas K
v
1.3 expression 

was decreased in pancreatic adenocarcinomas. Downregulation 
in the expression of K

v
1.3 has been associated with metastatic 

tumors.146 K
v
1.5 was also shown to be highly expressed in pan-

creatic adenocarcinomas.147 Furthermore, a specific monoclonal 
antibody that inhibits the function of K

v
10.1 (EAG1) reduced 

tumor growth of BxPC3, a human pancreas adenocarcinoma 
cell line, which implicates this channel in cancer progression.100 
Altered pH homeostasis is known to be one of the key hall-
marks of cancer.148,149 Thus, pH-sensitive K

2P
 channels may 

also play a role in pancreatic adenocarcinoma. The human duct 
adenocarcinoma cell line, HPAF cells, were reported to express 
K

2P
5.1 channels.10 However, its contribution to cancer progres-

sion is still unknown. Although further studies on K+ channels 
in pancreatic cancer must be performed, some candidates, such 
as K

v
10.1, already have the potential to be diagnostic tools and 

therapeutic targets.101

Concluding Remarks

This review described the current status on the molecular 
basis for a number of K+ channels found in pancreatic ducts. 
Electrophysiological studies on ducts and duct cells using 
microelectrode, patch-clamp, and Ussing chamber methods 
showed how some of these K+ channels contribute to physiologi-
cal processes in ductal secretion by providing the driving forces 
for anion transport and as partial accompanying partners in 
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secretion. Future studies are needed to verify the localization of 
K+ channels to a polarized ductal epithelium and affirm their 
physiological function in secretion or associated cell processes 
such as cell volume regulation, as well as their participation in 
cell proliferation and apoptosis. The pancreas and especially the 
ductal epithelium are involved in a number of diseases including 
cystic fibrosis and pancreatitis.150 Some target therapies should 
include K+ channel openers to maintain or upregulate pancre-
atic secretion. Our knowledge regarding the role of K+ channels 
in duct cell homeostasis remains relatively sparse. Because some 
K+ channels are being regarded as the hallmark of cancer pro-
gression and emerging studies on pancreatic adenocarcinoma 

foreshadow similar trends, more knowledge is required in this 
area before specific K+ channel openers or inhibitors can be used 
in the treatment of pancreatic diseases.
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