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Abstract: Bacterial antibiotic resistance is rapidly growing globally and poses a severe health threat
as the number of multidrug resistant (MDR) and extensively drug-resistant (XDR) bacteria increases.
The observed resistance is partially due to natural evolution and to a large extent is attributed to
antibiotic misuse and overuse. As the rate of antibiotic resistance increases, it is crucial to develop new
drugs to address the emergence of MDR and XDR pathogens. A variety of strategies are employed
to address issues pertaining to bacterial antibiotic resistance and these strategies include: (1) the
anti-virulence approach, which ultimately targets virulence factors instead of killing the bacterium,
(2) employing antimicrobial peptides that target key proteins for bacterial survival and, (3) phage
therapy, which uses bacteriophages to treat infectious diseases. In this review, we take a renewed look
at a group of ESKAPE pathogens which are known to cause nosocomial infections and are able to
escape the bactericidal actions of antibiotics by reducing the efficacy of several known antibiotics. We
discuss previously observed escape mechanisms and new possible therapeutic measures to combat
these pathogens and further suggest caseinolytic proteins (Clp) as possible therapeutic targets to
combat ESKAPE pathogens. These proteins have displayed unmatched significance in bacterial
growth, viability and virulence upon chronic infection and under stressful conditions. Furthermore,
several studies have showed promising results with targeting Clp proteins in bacterial species, such
as Mycobacterium tuberculosis, Staphylococcus aureus and Bacillus subtilis.

Keywords: ESKAPE pathogens; antibiotic resistance; caseinolytic proteins; Clp ATPases

1. Introduction

The ESKAPE pathogens are a group of pathogens that pose a global health threat due
to their ability to evade antibiotic biocidal effects. This group of pathogens is composed
of both Gram-positive and Gram-negative bacterial species, namely: Enterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa
and Enterobacter (Figure 1) [1–3]. ESKAPE pathogens are mainly responsible for nosocomial
infections and these infections are defined as hospital-acquired infections (HAIs) that affect
patients within 48 h of admission, 3 days of discharge or 30 days of an operation [4]. HAIs
present challenges in care delivery and no institution in any country seems to have solved
this challenging situation. As a result, ESKAPE pathogens are responsible for more than
40% of infections in intensive care units (ICU) and pose an economic burden, especially
in low- and middle-income countries [5,6]. Over the years, an increasing number of
pathogens have been reported to be antibiotic resistant as a result of the misuse and overuse
of antibiotics globally [1,7]. ESKAPE pathogens exhibit drug resistance via numerous
mechanisms, such as using enzymes to irreversibly cleave and therefore inactivate the drug,
modifying the drug-binding site, decreasing drug permeability or increasing drug efflux to
decrease drug accumulation, or by the production of biofilms (Table 1) [3,8]. The emergence
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of antibiotic-resistant pathogens renders drugs that were initially used to combat bacteria
to be redundant and ineffective, therefore allowing bacteria to grow in the presence of high
antibiotic concentrations [1,7]. Subsequently, it is important to find alternative targets to
inhibit the growth and spread of pathogens [2,3,9]. One such target is a group of proteins
referred to as caseinolytic proteins, which are found in a number of organisms and play an
important role in maintaining protein homeostasis in the cell [9].

Figure 1. General characteristics ESKAPE pathogens. The ESKAPE group of pathogens consists of
Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas
aeruginosa and Enterobacter [1–3,10–21].

Table 1. Resistance strategies used by ESKAPE pathogens to escape antibiotics.

Resistance Strategy Resistance Mechanism Antibiotics ESKAPE Pathogens References

Drug
inactivation

Production of β-lactamase enzyme, which hydrolyses
β-lactam rings

β-lactam (penicillin,
carbapenems and K. pneumoniae [1,3,22]

cephalosporins) P. aeruginosa,
Enterobacter

Contains chromosomally encoded AAC(6′)-Ii, which is
responsible for enzymatic inactivation and EfmM

ribosomal methylation
Tobramycin E. faecium [23]

Carbapenemases, metallo-β-lactamases 2 and oxacillinase
serine β-lactamases produced to catalyse

antibiotic hydrolysis
Colistin, imipenem A. baumannii [3]
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Table 1. Cont.

Resistance Strategy Resistance Mechanism Antibiotics ESKAPE Pathogens References

Decreased drug influx

Reduce the amount of porin protein OprD, or via loss of
an outer membrane protein (Omp)

β-lactam (Imipenem and
meropenem)

P. aeruginosa, A.
baumannii [3,23]

Expresses enterococcal surface protein (ESP), which
results in the formation of thicker biofilms Vancomycin E. faecium [1]

Thick cell wall traps and reduces antibiotic permeation Vancomycin S. aureus [1]
Mutation of mbrB gene Colistin K. pneumoniae [24]

Outer membrane (OmpF) protein with exclusion limit MDR 1 P. aeruginosa [1]
Developing 4 resistant nodulation division (RND) type
MDR efflux pump to remove toxic compounds from the

periplasm and cytoplasm
MDR 1 P. aeruginosa [3]

Efflux pump system

Nor-like efflux pump Hydrophilic
fluoroquinolones E. faecium [23]

Expression of Penicillin-binding proteins (PBPs)
β-lactam (Penicillin,

Cephalosporins,
Carbapenems)

S. aureus [1,3]

Cephalosporins and
aminoglycosides E. faecium [23]

Upregulation of MexAB-OprM

Sulfonamides,
cephalosporins,

β-lactams,
fluoroquinolones

P. aeruginosa [1]

AcrAB-TolC Tetracyclines (including
tigecycline) K. pneumoniae [25]

Alteration of terminal sequence of cell wall precursors VanA E. faecium [1]

Drug site
modification

Expresses mecA, which encodes a low-affinity
penicillin-binding protein

β-lactam (Penicillin,
Methicillin) S. aureus [1]

Expression of Aminoglycoside-modifying enzymes Aminoglycosides P. aeruginosa [26]
Qnr acts as a DNA homologue to compete for the

DNA-binding site of DNA gyrase and topoisomerase IV Quinolone K. pneumoniae [25]

1 Multidrug resistant: display non-susceptibility to at least one agent in three or more antimicrobial categories [2].
2 Also known as imipenem metallo-β-lactamases (pathogens expressing these lactamases are able to escape the
mechanism of action of imipenems) [3].

Antivirulence drugs that do not necessarily kill the bacterial cells, but prevent bacterial
pathogenesis by targeting virulence traits in bacteria, can be used to combat the emergence
of antibiotic-resistant pathogens [27,28]. The use of antivirulence strategies to kill pathogens
is advantageous as it results in less evolutionary pressure, thus reducing the development of
resistant strains [27]. In this approach, the anti-ESKAPE drug administered would interfere
with bacterial virulence factors instead of growth pathways to cure disease, thus leading to
the development of new strategies for the prevention and control of infections [7,29].

2. Caseinolytic Proteins: Classification, Function and Structure

Caseinolytic (Clp) proteins are found in bacteria, fungi, in the mitochondria of eu-
karyotes and in the chloroplast of plants [9]. Microorganisms use Clp proteins, which
function as a complex of catalytic (ClpP) and regulatory subunits (further referred to as Clp
ATPases), to perform a variety of vital roles in the cell, such as protein homeostasis and
cellular stress response (Table 2). An imbalance in protein quality and quantity control due
to cellular stress, such as heat shock, the presence of antibiotics or a change in pH leads to a
build-up of proteins in the cell, which results in cell death [9]. In such stressful conditions, it
is important for the cell to remove these unfolded proteins for cellular function and growth
to continue [30].
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Table 2. Caseinolytic proteins identified across various species, exhibiting diverse functions.

Clp Catalytic Subunit

Species Functions References

ClpP A number of bacteria including
Escherichia coli, Bacillus subtilis, S. aureus Proteolysis of damaged or misfolded proteins [31]

Clp regulatory subunit 1

ClpA 2 Gram-positive Proteobacteria Protein quality control [32]

ClpB Prokaryotes, yeast, and plants Disaggregation of stress-damaged proteins [33–35]
Porphyromonas gingivalis Intracellular replication and survival [36]

ClpC Gram-positive bacteria (Firmicutes and
Actinobacteria) and Cyanobacteria

Protein quality control, red blood cell lysis, regulate
expression of virulence factors [32,37]

ClpD Chloroplasts of higher plants Molecular chaperone [35]
ClpE Firmicutes Thermotolerance, cell division and virulence [32]
ClpK K. pneumonia Thermotolerance [38]

ClpL Streptococcus pneumoniae Nucleotide phosphohydrolase activity, stabilises
unfolded proteins, prevents protein aggregation [39]

ClpV Gram-negative bacteria Component of the type V1 secrection system [40]
ClpM Mus musculus Protein quality control [35,41]
ClpN Pseudomonas aeruginosa Cell division [35,41]

ClpX Proteobacteria, Firmicutes and
Thermatogae

Protein quality control, cell division, heat tolerance and
virulence [32,36]

ClpY Gram-positive Proteobacteria Cell division, heat shock response and capsule
transcription [32]

1 A number of Clp ATPases have been identified across various species and are named according to the species in
which they have been identified, for example ClpK is from the Klebsiella species and ClpC1 is from Mycobacterium
tuberculosis. 2 ClpA and ClpC are orthologs; bacteria usually contain either one of these [32].

Additionally, it has been found that Clp proteins play an important role in the patho-
genecity and virulence of several pathogens [42–44]. Several studies have linked ClpP to
one of the mechanisms S. aureus uses to evade phagocytosis, which is one of the defence
mechanisms that the host uses to fight S. aureus infection. For example, Frees et al. [42]
established that S. aureus mutants lacking ClpX (Clp ATPase) or ClpP exhibited decreased
virulence in a murine skin abscess model [42,43]. ClpP regulates the agr locus, which is
responsible for the production of effectors, such as the haemolytic factor α-hemolysin.
This effector generates small pores in the phagocytotic cells, enabling the phagocytosed
bacterium to escape from the immune cells into the host system, thus enhancing the bac-
terium’s virulence [42–44]. Furthermore, this model also showed that the activity of ClpX
and ClpP was crucial for the iron-regulated surface determinant system. This system is
important for S. aureus iron uptake, which is essential for the pathogen to survive in the
host [45]. This phenomena of ClpP regulating proteins to escape phagocytosis during an
immune response is also observed in other bacteria, such as Listeria monocytogenes. This
pathogenic bacteria causes listeriosis and it contains both ClpP1 and ClpP2 [46]. Although
the functional significance of ClpP1 is unknown, L. monocytogenes mutants lacking ClpP2
were found to be susceptible to the activity of host macrophages, as these bacteria lacked
their usual haemolytic abilities [47]. Finally, ClpP in Pseudomonas aeruginosa regulates the ex-
pression of alginate, an exopolysaccharide that protects the pathogen [48]. Furthermore, the
importance of Clp proteins in bacterial virulence has also been demostrated in Streptococcus
pneumonia, where strains lacking the clpP gene were found to lose their ability to invade
lung tissues and colonise the nasopharynx [49]. Therefore, considering the importance of
Clp proteins in the survival of pathogens in various environments, these proteins could be
targeted for the development of potential drugs to inhibit their growth.

2.1. Catalytic Subunit—ClpP

Most bacteria contain a single ClpP catalytic subunit with an exception of a few, such
as Mycobacterium tuberculosis, Mycobacterium smegmatis, Listeria monocytogenes, Chlamydia
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trachomatis and Pseudomonas aeruginosa, which have been found to contain two ClpP ho-
mologs that are referred to as ClpP1 and ClpP2 [50–55]. ClpP is a serine protease composed
of two heptameric rings, which forms a barrel-shaped structure referred to as a tetrade-
camer, and this tetradecamer may be formed by just one ClpP or a mixture of ClpP1 and
ClpP2 homo- or hetero-tetradecamers. The ClpP tetradecamer encloses a protease active
site with a catalytic triad consisting of three amino acids, namely serine, histidine and
aspartic acid [56,57]. ClpP can adopt two conformations, that is: the closed/inactive and
open/active conformation (Figure 2). In the closed conformation, the cavity for protein
substrates to enter the proteolysis chamber is closed and the catalytic triad is misaligned.
Therefore, protein hydrolysis is blocked. In this closed conformation, ClpP only functions as
a peptidase, degrading only short peptides [36]. In order for ClpP to adopt an active confor-
mation, it needs to be bound to a Clp ATPase (the regulatory subunit of a Clp protein) [36].
Clp ATPases bind to either one or both ends of ClpP; this binding results in conformational
changes, which leads to the opening of the cavity for substrates to access the active site and
in the alignment of the catalytic triad residues [43]. Subsequently, ClpP degrades damaged
proteins, which are translocated into its chamber via Clp ATPases [36,56].
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Figure 2. ClpP in its unbound and bound state. (A) Top view of the unbound ClpP tetradecamer
(PDB—1YG6). (B) Top view of the active form of ClpP (PDB—5E0S). The Ser97, His122 and Asp171

catalytic residues are shown up-close and coloured orange, pink and blue, respectively. Upon Clp
ATPase binding, ClpP assumes an opened/active conformation resulting in the ordering of the axial
pore (represented by grey dotted lines) and the alignment of the catalytic residues. The structures
were visualised using PyMol [58].

2.2. Regulatory Subunits—Clp ATPases

Clp ATPase proteins belong to a protein superfamily referred to as AAA+ proteins
(ATPases associated with diverse cellular activities) [9]. The AAA+ ATPases have an
AAA+ unfoldase/disaggregase, which recognises specific substrates and uses energy
generated from ATP hydrolysis to contribute to functions, such as protein quality control,
the degradation of transcriptional regulators, DNA replication and repair and cytoskeleton
regulation, among other things [36]. The hallmark of the AAA family is a 200–250 amino
acid ATP-binding domain that contains Walker A and Walker B motifs (Figure 3) [59].
The canonical Walker A forms the floor of the nucleotide-binding pocket (binds the ATP
phosphate) and Walker B forms a loop that overlays the pockets and positions cations
(binds metals and plays a role in ATP catalysis) [30,56]. Additionally, Clp ATPases have
the unique ability to promote the resolubilisation of protein aggregates and are therefore
grouped into the heat shock protein (Hsp) 100 family [9,30].
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Figure 3. Schematic representation of the general structural features of Class I and Class II Clp
ATPases of prokaryotes. (A) Class I Clp ATPases contain two nucleotide-binding domains (NBD)
referred to as domain 1 and domain 2. A middle domain has been identified to be present in certain
Clp ATPases and plays a role in separating the two NBDs. (B) Class II Clp ATPases contain one
NBD. Each domain contains Walker A and Walker B motifs. Certain Clp ATPases contain a P-loop, a
tripeptide (represented in pink) required for interaction with ClpP. n represents the number of amino
acids in the sequence [60,61].

Clp ATPases are grouped into two classes (class I and II) based on the number of
NBDs they contain. ClpA, ClpB, ClpC, ClpD, ClpE, ClpK and ClpL are class I members
and contain two NBDs, whereas ClpM, ClpN, ClpX and ClpY have been identified as being
class II members and contain one NBD (Figure 3) [39,56,62]. The Clp ATPases are further
divided into two subfamilies, namely the ClpA and ClpB/Hsp104 subfamily based on the
presence or absence of the tripeptide sequence [I-G-F/L] required for ClpP interaction,
respectively (Figure 4) [36]. The ClpA subfamily forms hexameric complexes which bind
and unfold proteins before translocating unfolded proteins to the ClpP proteolytic chamber
for final degradation [9,36]. It is believed that the ClpB/Hsp104 subfamily functions as
chaperones under stressful conditions to prevent protein unfolding or to assist in protein
disaggregation as they lack the ClpP-binding motif [62,63]. Aligned with this chaperone
activity, ClpB/Hsp104 have been reported to interact with the DnaK system to mediate
protein unfolding and reactivation [39,62]. Members of both the ClpA and ClpB/Hsp104
subfamily have been identified in ESKAPE pathogens (Table 3).
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Figure 4. Two Clp ATPase subfamilies. A tagged protein is recognised by a Clp ATPase. (a) Members
of the ClpB/Hsp104 subfamily lack the tripeptide for ClpP interaction and function along with the
DnaK system to unfold and refold the protein into its functional conformation. (b) Members of the
ClpA subfamily contain the tripeptide for ClpP interaction and therefore redirect proteins which
cannot be unfolded and reactivated to ClpP for degradation. Adapted from Maurizi and Xia [61].

Table 3. Caseinolytic proteins identified in ESKAPE pathogens.

ESKAPE Pathogens Caseinolytic Proteins References

E. faecium ClpP [64,65]
ClpC [64,66]

S. aureus
ClpP, ClpB, ClpC [36,63]

ClpX [36,63]

K. pneumoniae ClpK [16,38,67]

A. baumannii ClpP [68,69]

P. aeruginosa ClpXP and ClpP2 [48,70]
ClpP [38]
ClpG [71]

Enterobacter None reported

3. Caseinolytic Proteins Targeted in ESKAPE Pathogens

To date, very few Clp proteins from ESKAPE pathogens have been identified (Table 3)
and there are a limited number of drugs which are currently under investigation (Table 4).
The current drugs being studied inhibit Clp proteins in one of three ways: firstly, they
interfere with proteolytic activity by inhibiting ClpP; secondly, they interfere with ATPase
activity by inhibiting or enhancing the activity of Clp ATPases; and lastly, they disrupt the
ClpP and Clp ATPase complex [43,72,73]. Interestingly, of the drugs being studied, only five
target S. aureus, which is a member of the ESKAPE pathogens and most of the other drugs
target mainly M. tuberculosis (Table 4).
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Table 4. Compounds developed as potential targets for Clp ATPases.

Compound Structure 1 Mechanism of Action References

334

Deoligomerization of S. aureus
ClpX, disrupts the ClpXP
complex and blocks ClpX

ATPase activity.
S. aureus produces lower levels
of toxins, such as hemolysins in
the presence of the compound.

[43,74]

D3
Irreversibly inhibits ClpP in

methicillin-resistant S. aureus.
Most potent inhibitor.

[43]

E2 Irreversibly inhibits ClpP in
methicillin-resistant S. aureus [43]

G2 Irreversibly inhibits ClpP in
methicillin-resistant S. aureus [43]

Acyldepsipeptides
(ADEPs)

Prevents complex formation
between ClpP and Clp ATPases
in Gram-positive bacteria, such

as Enterococci and S. aureus

[43,72,73]

Ecumicin

Binds to the N-terminal domain
of ClpC1 of M. tuberculosis.

Stimulates the ATPase
hydrolysis activity of M.

tuberculosis ClpC1 and at the
same time decouples ClpC1 and

ClpP, therefore inhibiting
proteolytic activity and
resulting in cell death.

[43,75]
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Table 4. Cont.

Compound Structure 1 Mechanism of Action References

Cyclomarin A

Binds to the N-terminal domain
of ClpC1 of M. tuberculosis and
prevents the movement of the

N-terminal domain.
Causes excessive proteolysis.

[43,76,77]

Lassomycin

Binds to an acidic N-terminal
pocket on ClpC1.

Stimulates ATPase activity of
ClpC1 from M. tuberculosis,

however it also inhibits
ATP-dependent degradation of

proteins.
Uncouples ClpC1 from ClpP1

and ClpP2, resulting in the
death of the cell as unnecessary

proteins build up.

[16,76]

Rufomycin

Interacts with the N-terminal
domain of ClpC1 of M.

tuberculosis.
Decreases the proteolytic

activity of the ClpC1 and ClpP
complex, therefore resulting in
the build-up of proteins in the

cell.

[77]

Armeiaspirols

Inhibits ClpXP and ClpYQ in
Bacillus subtilis by binding to the
ATPase domains and therefore

inhibits the function of the
complexes.

Inhibits ATP hydrolysis and
proteolysis.

[78]

Hydantoin
analog

Inhibits the ClpXP complex.
Binds to a binding pocket on
ClpP and impairs complex

substrate turnover.

[79]

1 Structures drawn using MarvinJS [80].
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Drugs that have been developed to target the proteolytic subunit (ClpP) of Clp proteins
in S. aureus include D2, E3 and G2 compounds (Table 4) which irreversibly inhibit the
proteolytic activity of ClpP, therefore resulting in the build-up of damaged proteins in
the cell and eventually leading to cell death [43]. Based on the current literature, ClpP
associates with the ClpA subfamily to ultimately degrade proteins that cannot be unfolded
and/or reactivated. Subsequently, targeting ClpP would prevent the formation of the
ClpP-ClpA subfamily complex, thus impairing cell protein homeostasis [9].

According to our knowledge, only one drug candidate, Armeniaspirols, targeting Clp
ATPases belonging to the ClpB subfamily from B. subtilis has been reported. This drug
candidate targets Clp ATPase (ClpY) when complexed to the proteolytic subunit (ClpQ) and
is reported to disrupt the regulation of proteins essential for cell division, such as MreB and
FtsZ [78]. On the other hand, the ClpA subfamily has a number of drug candidates being
investigated, however most of these drug candidates target Mycobacterium tuberculosis,
ClpC1 [Table 4]. The structures of lassomycin, cyclomarin A, rufomycin and ecumicin
are show in Table 4 and these anti-TB peptides target the Clp ATPase subunit of Clp
proteins, specifically the ClpC1 N-terminal domain (ClpC1-NTD) [16,43,74,76]. The three-
dimensional structure of ClpC1-NTD complexed with some of these anti-TB peptides show
that (a) their mode of action varies, (b) some may share a binding pocket (e.g., rufomycin
cannot bind in the presence of ecumicin) and (c) the number of binding site/s on ClpC1-
NTD varies per anti-TB peptide (Figure 5) [77,81,82]. For example, the crystal structure of
ClpC1-NTD complexed with ecumicin or rufomycin showed that one rufomycin molecule
binds to ClpC1-NTD, whereas two ecumicin molecules bind to ClpC1-NTD (Figure 5). The
extent to which these anti-TB peptides impact the Clp ATPase is not similar across all of
them, suggesting a difference in their mode of action. Biochemical studies have shown that
ecumicin and lassomycin increase the ATPase activity of ClpC1, whereas rufomycin has
no significant effect on ClpC1 ATPase activity [76,82–84]. Structural studies suggest that
enhanced ClpC1 ATPase activity stimulated by ecumicin may be due to the conformational
changes on the N-terminal domain and D1 interface, thereby improving ATP access for
ATP hydrolysis in the nucleotide-binding domain [82]. As much as lassomycin binding to
ClpC1 results in the overactivation of ClpC1 ATPase activity and therefore uncontrolled
unfoldase activity [76], in the absence of ClpC1-NTD-lassomycin complex, it is unclear
whether the binding of lassomycin to ClpC1 induces structural changes which are similar
to those seen for ecumicin binding.

Given that lassomycin binds to an essential domain in Clp ATPases, it was interesting
to observe that this compound is species specific, and is inactive against S. aureus, Bacillus
anthracis and K. pneumoniae. One would expect functioning of Clp ATPases across different
species to be impaired given that it targets a conserved region [30,76]. Keeping in mind the
inability of designed compounds, such as lassomycin, to inhibit Clp ATPases across species,
it may be worthwhile to design compounds to target specific motifs on Clp ATPases, ClpP
and the ClpP/Clp–ATPase complex interface. It is unlikely that these compounds will
be species- or class-specific but rather target Clp ATPases across species. This strategy
will be advantageous since pathogens usually contain more than one Clp isoform, thus
ensuring the complete inhibition of Clp activity in the pathogens [85]. There are a number
of conserved motifs that could be targeted in Clp ATPases, these include the N-terminal
domain, the extended N-terminal domain, the middle domain, the nucleotide-binding
domain(s), the zinc-binding motif and the C-terminal domain [16,57]. These domains are
responsible for a variety of functions. For example, the extended N-terminal domain of
ClpB is important for the growth of bacteria at high temperatures in the absence of DnaK,
whereas the extended N- terminal has been found to be important for homodimer formation
in Caenorhabditis elegans ABCB6/HMT-1, suggesting that the N-terminal extension may
be essential for Clp ATPase assembly and stability [86,87]. The primary function of the
N-terminal domain is to stabilise Clp ATPases, therefore targeting the N-terminal domain
would destabilise the Clp ATPases and lead to the loss of protein function [88].
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Figure 5. The binding site of Ecumicin, Cyclomarin-A and Rufomycin in the ClpC1 N-terminal
domain. (A) The crystal structure of ClpC1-NTD-Ecumicin (PDB-6pbs), ClpC1-NTD-Rufomycin (PDB-
6cn8) and ClpC1-NTD-Cyclomarin A (PDB-3wdc) are shown in blue, green and pink, respectively,
and were superimposed to compare the local environment of the three ligands. (B) The binding
of two ecumicin molecules (ecumicin 1-light green, ecumicin 2-dark green) per ClpC1 N-terminal
domain shows that these molecules bind adjacent to each other. The binding stochiometric ratio of
rufomycin (pink) or cyclomarin A (green) to ClpC1 N-terminal domain is 1:1, represented in (C) and
(D), respectively. The binding sites for these anti-TB peptides are predominantly located on residues
in α-helices 1 and 5 and the loop region connecting α-helices 4 and 5. The interacting residues are
coloured light pink on their respective secondary structural elements. The structures and interactions
were visualised using PyMol [58].

The nucleotide-binding domain(s) and subsequently the Walker A and Walker B motifs
are important drug targets, since drug candidates targeting this site would inhibit the ability
of the Clp ATPase to hydrolyse ATP and consequently, the unfoldase activity of Clp ATPases
will be abolished. We have noted a slight difference in the amino acid sequences of the NBDs
between class I and class II, therefore it is important that drug-design studies are cognisant of
this observation to ensure that the designed drugs are not class-specific. Another potential
drug target is the middle domain and zinc-binding motif. The middle domain is implicated
in protein stability and interdomain communication between NBD1 and NBD2. Taking into
account, the importance of this domain in terms of protein stability, it is anticipated that
targeting the middle domain would potentially destabilise the protein [89,90]. However,
compounds developed against this region would need optimisation, given that the length
of the middle domain differs across species and this domain is not observed to be in present
in all Clp ATPases. The zinc-binding domain is present in ClpX and ClpK. The role of this
domain in unknown in ClpK, however it is positioned in the N-terminal domain of ClpX and
plays a role in substrate recognition [16,57,61]. Therefore, essentially compounds targeting the
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zinc-binding domain could inhibit substrate recognition and would theoretically lead to the
build-up of damaged proteins in the cell.

4. Conclusions

ESKAPE pathogens are resistant to a number of antibiotics and pose a major threat to
patients in the nosocomial environment, therefore it is important to develop alternative
methods to target and control their spread. Clp proteins, which are essential for both
virulence and survival of the pathogen, are emerging as potential drug targets. Therefore,
these proteins have been studied in various organisms and a number of drug candidates
are being investigated to target these proteins. As much as bioinformatic studies have
shown that Clp proteins evolve to diversify their response to stressful environmental
factors, certain key motifs and domains remain conserved. These conserved domains
and motifs provide a potential site for the development of drug candidates to target Clp
ATPases across species. Further studies could investigate the distribution of Clp proteins
in ESKAPE pathogens and develop drug candidates that could reduce the impact of
ESKAPE pathogens.
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