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Abstract

The role of ribosomal protein S6 (rpS6) phosphorylation in mRNA translation remains poorly

understood. Here, we reveal a potential role in modulating the translation rate of chemokine

(C-X-C motif) ligand 8 (CXCL8 or Interleukin 8, IL8). We observed that more CXCL8 protein

was being secreted from less CXCL8 mRNA in primary macrophages and macrophage-like

HL-60 cells relative to other cell types. This correlated with an increase in CXCL8 polyribo-

some association, suggesting an increase in the rate of CXCL8 translation in macrophages.

The cell type-specific expression levels were replicated by a CXCL8- UTR-reporter (Nano-

luc reporter flanked by the 5’ and 3’ UTR of CXCL8). Mutations of the CXCL8-UTR-reporter

revealed that cell type-specific expression required: 1) a 3’ UTR of at least three hundred

bases; and 2) an AU base content that exceeds fifty percent in the first hundred bases of the

3’ UTR immediately after the stop codon, which we dub AU-rich proximal UTR sequences

(APS). The 5’ UTR of CXCL8 enhanced expression at the protein level and conferred cell

type-specific expression when paired with a 3’ UTR. A search for other APS-positive

mRNAs uncovered TNF alpha induced protein 6 (TNFAIP6), another mRNA that was trans-

lationally upregulated in macrophages. The elevated translation of APS-positive mRNAs in

macrophages coincided with elevated rpS6 S235/236 phosphorylation. Both were attenu-

ated by the ERK1/2 signaling inhibitors, U0126 and AZD6244. In A549 cells, rpS6 S235/236

phosphorylation was induced by TAK1, Akt or PKA signaling. This enhanced the translation

of the CXCL8-UTR-reporters. Thus, we propose that the induction of rpS6 S235/236 phos-

phorylation enhances the translation of mRNAs that contain APS motifs, such as CXCL8

and TNFAIP6. This may contribute to the role of macrophages as the primary producer of

CXCL8, a cytokine that is essential for immune cell recruitment and activation.

Author summary

Ribosomal protein S6 (rpS6) is a component of the cell translation system. This system

produces proteins based on the instructions found on messenger ribonucleic acids or
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mRNAs. The activity of rpS6 is modified via the attachment of phosphate groups. This

rpS6 “phosphorylation” regulates cell size, cell proliferation, glucose homeostasis and can-

cer defense. However, the molecular mechanism remains poorly understood. Here, we

propose that rpS6 phosphorylation may affect the rate of translation of certain mRNAs.

These mRNAs contain a high frequency of adenine and uracil bases in the first hundred

or so bases of their 3’ UTR sequences, which we dub AU-rich proximal UTR sequences

(APS). APS-modulated mRNAs include the immune signaling proteins, CXCL8 and

TNFAIP6. This novel mechanism allows macrophages to secrete sufficient CXCL8 protein

to attract and activate other immune cells such as neutrophils during injury or disease. It

may also be aberrantly upregulated in a subset of tumors, leading to the overexpression of

APS-positive genes such as CXCL8. Indeed, both rpS6 phosphorylation and CXCL8
expression are consistently found, by separate studies, to be tumor-promoting and upre-

gulated in cancers. Modulating these APS-positive mRNAs may be a novel strategy to

treat diseases.

Introduction

Translation is an essential step in protein synthesis. Mechanisms that regulate the rate of trans-

lation determine the expression levels of a large fraction of the genome. This was revealed by

metabolic pulse labeling of global cellular mRNA and protein synthesis rates [1]. Consistently,

multiple large-scale transcriptomic and proteomic studies have revealed a lack of correlation

between mRNA and protein abundance across different mammalian cell-types and tissues

[2,3]. Translational control is mRNA-specific and the specificity is sometimes dependent on

sequence motifs within the 5’ untranslated region (UTRs), such as 50 terminal oligopyrimidine

(TOP) [4], which lead to selective protein synthesis during increased activity of eukaryotic

translation initiation factor 4E (eIF4E). More recent studies have tentatively proposed that

cytosine enriched regulator of translation (CERT) [4] and pyrimidine-rich translational ele-

ment (PRTE) [5] may also regulate translation. Besides the 5’ UTR, the involvement of the 3’

UTR in conferring translational control has also been hinted [6].

While the translational control mediated by eIF4E is well-studied [5–10], the translational

control mediated by phosphorylation of ribosomal protein S6 (rpS6) is still the subject of ongo-

ing investigations. Physiologically, phosphorylation-deficient rpS6 knock-in mice display

abnormalities in cell size, cell proliferation, and glucose homeostasis [11]. Aberrant rpS6 phos-

phorylation has also been implicated in pancreatic tumorigenesis in mice [12,13]. The molecu-

lar mechanisms responsible for these physiological effects remain elusive, as rpS6

phosphorylation does not appear to affect global protein synthesis. More recently, rpS6 phos-

phorylation-deficient transgenic mice [14] were found with impaired translation in a subset of

mitochondria-related mRNAs present in neurons [15]. Thus, it appears that rpS6 phosphoryla-

tion may alter the translation of a subset of mRNAs, although the exact mechanism and RNA

cis-regulatory motifs responsible for the action are unknown.

A possible target for rpS6-mediated translational control is chemokine (C-X-C motif)

ligand 8 [CXCL8 or Interleukin 8, IL8]. Studies on CXCL8 have been complicated by the

absence of the CXCL8 and CXCR1 gene homologs from the muroid lineage due to a deletion

event [16]. The role of CXCL8 in mice appears to have been largely replaced by murine MIP-2

and the murine keratinocyte-derived protein chemokine KC, which activates murine CXCR2

[17,18]. To study CXCL8, researchers have typically relied on clinical observations, ex vivo cul-

tures of primary human cells and cell line models. Such methods have revealed a critical role

RpS6 phosphorylation enhances CXCL8 translation via novel APS cis-elements

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008077 April 10, 2019 2 / 28

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pgen.1008077


for CXCL8 in the chemotactic recruitment, phagocytosis and degranulation of neutrophils [19];

and in the recruitment and activation of monocytes and lymphocytes during inflammation

[20]. CXCL8 induces these functions by activating cell surface receptors, namely CXCR1 and

CXCR2 [19]. CXCL8 signaling has also been implicated in a number of diseases including ath-

erosclerosis [21], asthma [22], allergic rhinitis [23] and various cancers [24–26]. In light of the

importance of CXCL8, elucidating the mechanism of CXCL8 translational control may prompt

more effective treatments that target these pathways to alleviate CXCL8-mediated diseases.

Here, we investigate if CXCL8 undergoes translational regulation. While the 5’ UTR of CXCL8
does not appear to contain TOP [4], CERT [5] or PRTE [6] motifs, certain observations hint at a

cell type-specific translation rate. For example, macrophages secrete 70-fold more CXCL8 protein

relative to neutrophils despite elevated CXCL8mRNA being detected in both cell types [27,28].

This makes macrophages the undisputed primary producer of CXCL8 in the human system. This

difference in expression is noteworthy as macrophages and neutrophils are descended from a

common myeloid progenitor [29]. These observations suggest that macrophages and neutrophils

are prime targets for the study of CXCL8 translation. To facilitate the acquisition of a large num-

ber of cells for in vitro studies, our initial experiments were performed with the HL-60 promyelo-

blast cell line. HL-60 is an established model to study myeloid progenitor cell development [30].

Similar to primary myeloid progenitors [29], HL-60 promyeloblasts can be differentiated into

either a macrophage-like (HL-60 macrophage /HL-60 Mac) or polymorphonuclear neutrophil-

like (HL-60 PMN) phenotype via PMA or DMSO treatment, respectively [30]. CXCL8 translation

was also studied in KHYG-1, which is an established model of natural killer (NK) cells, and the

A549 and NCI-H1299 lung epithelial carcinoma (EC) cells, [31–33]. Using a combination of pri-

mary cells and their corresponding cell line models, we elucidated the pathway and cis-regulatory

RNA motif responsible for the cell type-specific expression of CXCL8.

Results

CXCL8 protein secretion and polysome association is increased in HL-60

macrophages

First, we compared the expression levels of CXCL8 between HL-60 macrophage (HL-60 Mac),

HL-60 neutrophils (HL-60 PMN), A549 EC and KHYG-1 NK cells. We found that HL-60 Mac

cells secreted more CXCL8 protein from less CXCL8 mRNA at the basal level and after stimu-

lation with LPS or TNF (Fig 1A). An increase in secreted CXCL8 protein was also observed

from H1299 cells relative to A549 cells despite lower CXCL8 mRNA levels in H1299 cells (Fig

1B). This increase was not observed for IL6 protein secretion, which mirrored IL6 mRNA lev-

els and was reduced in H1299 cells relative to A549 cells. We also observed an increase in the

percentage of CXCL8 mRNAs associated with the larger polysomes (towards the right of the

graph) in HL-60 Mac relative to A549 EC and KHYG-1 NK cells (Fig 1C). The same increase

was not observed for the control mRNAs, RPL27 and ACTB. Since a polysome (or polyribo-

some) is formed when an mRNA molecule complexes with two or more ribosomes during the

translation process, the increased polysome association of CXCL8 in Hl-60 Mac may be due to

an increased rate of translation. Altogether, these observations suggest that the rate of CXCL8
translation is cell type-specific, leading to elevated CXCL8 protein secretion in macrophages.

The elevated CXCL8 expression in HL-60 macrophages required the

untranslated regions (UTRs)

We hypothesized that the increased CXCL8 expression observed in HL-60 Mac (Fig 1A) may

involve the 5’ and 3’ UTR sequences. To investigate the role of the UTRs, we generated
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Fig 1. CXCL8 translation and expression is elevated in HL-60 macrophages. (A and B) CXCL8 and IL6 expression

levels in HL-60 macrophages (HL-60 Mac), neutrophil-like HL-60 polymorphonuclear leukocytes (HL-60 PMNs),

A549 and H1299 lung epithelial carcinoma cells (A549 ECs), and KHYG-1 NK cells. Expression was measured at

resting state (not treated, NT) or after overnight activation with 100 ng/mL LPS or 10 ng/mL TNF. Protein levels were

determined via ELISA. The mRNA levels were determined via real-time PCR and presented as the ratio of IL6 or

CXCL8 divided by the internal control genes, RPL27. (C) Polysome profiles of HL-60 Mac, A549 EC and KHYG-1 NK

cells were obtained from a continuous sucrose density gradient (left to right: 10–50% sucrose). Compared to A549 EC

and KHYG-1 NK cells, a lower proportion of the global mRNA (detected at A260) of HL-60 Mac was detected (at

A260) in the high sucrose density fractions associated with polysomes. This is indicative of a low translation rate which

may be due to the tendency of HL-60 cells to clump upon differentiation into macrophage (S1B Fig). From 14 fractions

spanning the entire sucrose gradient, the levels of specific mRNAs (CXCL8, RPL27 and ACTB) were quantified via

real-time PCR and presented as a percentage of the sum of all fractions. (A to C) Each graph symbol (squares,

inverted-triangles or circles) is the result of a replicate experiment. Replicate experiments were performed on different

days. ND: Not detected.

https://doi.org/10.1371/journal.pgen.1008077.g001
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expression vectors containing the CXCL8 coding sequence alone (CXCL8-CDS) and the full

CXCL8 mRNA sequence which includes the 5’ and 3’ UTRs (CXCL8-full) (Fig 2A). These con-

structs were transfected into the HL-60 Mac, A549 EC and KHYG-1 NK cells. These cell lines

could be efficiently transfected (S1A Fig) and upon transfection with the CXCL8-full plasmid

displayed an increase in CXCL8 mRNA levels relative to the empty plasmid controls (Fig 2A).

A proportional increase in CXCL8 protein was also observed. This suggests that vector-derived

“CXCL8-full” was being expressed at the same rate as the endogenous CXCL8 found in the

controls.

We then determined the effect of the UTRs on CXCL8 expression by calculating the fold

change of CXCL8 mRNA and CXCL8 protein in CXCL8-full transfected cells relative to

CXCL8-CDS. The 3’ UTR of CXCL8 reportedly contains adenylate-uridylate-rich elements

(AREs) which accelerated mRNA degradation [34–36]. These AREs are present in CXCL8-full

but absent from the UTR-deficient CXCL8-CDS construct. This may explain why CXCL8-full

transfections displayed CXCL8 mRNA that were 4- to 16-fold lower than CXCL8-CDS in all

the cell types tested (Fig 2B). For A549 EC and KHYG-1 NK cells, this coincided with 8- to

16-fold reductions in CXCL8 protein. For HL-60 Mac by contrast, a 4-fold increase in CXCL8

protein levels was observed. This suggests that more CXCL8 protein was being produced and

secreted from less CXCL8 mRNA in HL-60 Mac relative to A549 and KHYG-1 cells. Overall,

these findings suggest that the elevated CXCL8 expression in macrophages (Fig 1) is repro-

duced by vector-derived CXCL8 mRNA and requires the UTRs (Fig 2A and 2B).

The 3’ UTR of CXCL8 conferred cell type-specific expression

To determine if the CXCL8 UTR sequences alone were sufficient to confer enhanced expres-

sion in HL-60 Mac, we generated Nluc reporters with UTR fusions (UTR-Nluc) (Fig 2C). The

Nluc reporter allowed us to study a much wider range of hard-to-transfect cells including pri-

mary macrophages, NK cells and HL-60 PMNs, since even low levels of vector-derived Nluc

can be accurately quantified due to a lack of endogenous Nluc expression. The effect of the

fused UTRs on Nluc expression in different cell types was calculated as the fold change of

UTR-Nluc relative to Cntrl-Nluc (Nluc reporter with no UTR fusions) (Fig 2D).

CXCL8-5’+3’ (Nluc reporter with CXCL8 5’ and 3’ UTR sequences) expression was com-

pared between HL-60 Mac, HL-60 PMNs, A549 ECs, KHYG-1 NK and H1299 ECs (Fig 2D).

CXCL8-5’+3’ protein levels were elevated in HL-60 Mac and H1299 ECs. This was not due to

differences in expression at the mRNA level, which remained largely unchanged among all cell

types. This is consistent with an elevated rate of CXCL8-5’+3’ translation in HL-60 Mac and

H1299 EC cells. The cell type-specific expression of CXCL8-5’+3’ was not noticeably altered by

LPS or TNF treatments (Fig 2E) or by halving the amount of UTR- and Cntrl-Nluc plasmid

transfected and replacing the other half with empty pcDNA3.1 plasmid (Fig 2F). We also

deleted the Nluc secretory signal from CXCL8-5’+3’ and Cntrl-Nluc, resulting in cytoplasmic

expression of Nluc. CXCL8-5’+3’(-Sec) protein levels remained elevated in HL-60 mac relative

to A549 ECs (Fig 2G). This suggests that the cell type-specific differences were not due to dif-

ferences in protein secretion. Overall, these findings suggest that the CXCL8 UTR sequences

contribute to its elevated expression in HL-60 Mac and H1299 cells.

The cell type-specific Nluc protein fold changes observed for CXCL8-5’+3’ was also distinct

from that observed for TNF-5’+3’, IL6-5’+3’ and TIMP1-5’+3’ (Fig 2C and 2D). Relative to

Cntrl-Nluc, both TNF-5’+3’ and IL6-5’+3’ reduced Nluc protein expression across all cell lines.

This is consistent with previous reports that the 3’ UTR sequences of TNF and IL6 contain

AREs that reduce expression [37,38]. By contrast, the protein and mRNA levels of TIMP1-

5’+3’ were not substantially different from Cntrl-Nluc, since the TIMP1 UTRs are not known

RpS6 phosphorylation enhances CXCL8 translation via novel APS cis-elements
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Fig 2. The elevated expression of CXCL8 in macrophages is mediated by its 3’ UTR. (A) CXCL8 expression in cells

transfected with the pcDNA control, CXCL8-full or CXCL8-CDS plasmids. CXCL8-full expresses the full CXCL8 transcript

while CXCL8-CDS expresses a mutant with the 5’ and 3’ UTRs deleted. CXCL8 protein levels were determined via ELISA.

RpS6 phosphorylation enhances CXCL8 translation via novel APS cis-elements
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to contain any AREs or other functional sequences. Altogether, these results suggest that the

CXCL8 UTRs mediate a cell type-specific expression pattern, at the protein level, that is not

observed for TNF, IL6 and TIMP-1.

The UTR-Nluc reporter constructs tested thus far contained both the 5’ and 3’ UTRs. We

also tested constructs containing either the 5’ or 3’ UTR alone (CXCL8-5’ and CXCL8-3’) to

determine their individual contributions (Fig 2C and 2D). The Nluc protein and mRNA fold

changes of CXCL8-3’ largely followed the pattern observed for CXCL8-5’+3’. This suggests that

the cell type-specific expression of CXCL8 is largely mediated by its 3’ UTR.

A conserved motif within the 5’ UTR of CXCL8 enhanced protein

expression

CXCL8-5’ protein levels were increased relative to Cntrl-Nluc in all cell lines (positive log2 fold

change values) (Fig 2D). By multiple sequence alignment, we found a conserved 37-bp motif

within the 5’ UTR of CXCL8 (Fig 3A), and hypothesized that it was involved in the enhance-

ment. Indeed, the enhanced expression was retained when the 5’ UTR was shortened into a

75-bp fragment [CXCL8-5’(79–153)] containing the conserved 37-bp motif; and was abolished

upon further shortening to the CXCL8-5’(96–125) and CXCL8-5’(121–153) fragments (Fig

3B). The CXCL8 5’ UTR fragment also successfully enhanced mCherry [CXCL8-5’-mCherry]

(Fig 3C) and firefly luciferase (pNFAT-5’-Fluc) expression (Fig 3D), confirming that the

enhanced expression was applicable to other genes and was not specific to Nluc. The expres-

sion enhancement also occurred when driven by the NFAT promoter (i.e. in pNFAT-5’-

Fluc”), which is a weaker promoter relative to the constitutive CMV promoter used for

CXCL8-5’(79–153) and CXCL8-5’-mCherry. In summary, our findings demonstrate that a

conserved 75-bp sequence motif within the 5’ UTR of CXCL8 enhances expression.

The cell type-specific expression is independent of known ARE motifs

The reduced mRNA levels of CXCL8-full relative to CXCL8-CDS (Fig 2A and 2B) are consis-

tent with previous reports of increased CXCL8 mRNA degradation due to AREs within its 3’

UTR [34–36]. Surprisingly, this reduction was not observed for CXCL8-5’+3’ relative to Cntrl-

Nluc (Fig 2B), which may be due to the much higher rate of mRNA transcription masking the

reduction from mRNA degradation. Accordingly, when the rate of CXCL8-5’+3’ transcription

was presumably reduced (by halving the amount of UTR- and control-Nluc vector transfected

and replacing the other half with empty pcDNA vector), we observed a reduction in CXCL8-

5’+3’ mRNA levels relative to Cntrl-Nluc mRNA in A549 ECs and KHYG-1 NK cells (Fig 2F).

CXCL8 mRNA levels were determined via real-time PCR (with primers that prime within the coding sequences) and presented

as the ratio of CXCL8 divided by the internal control gene, RPL27. (B) Cells transfected with the control plasmid were assumed

to only express endogenous CXCL8. The CXCL8 expression observed for these control cells were subtracted from CXCL8-full

and CXCL8-CDS to obtain the expression level of plasmid-derived CXCL8, as represented by [CXCL8-full] and [CXCL8-CDS].

These values were used to calculate the “CXCL8 fold change” in expression based on the mathematical expression shown. (C, D,

E and F) Schematic representations of the coding sequence (CDS) of secreted Nanoluc (Nluc) fused to the 5’ and 3’ UTRs of

CXCL8, TNF, IL6 and TIMP1.The expression plasmids for these UTR-Nluc reporters were transfected into parallel cell cultures.

The resulting Nluc protein and mRNA expression levels were quantified via luciferase assay and real-time PCR, respectively,

after overnight incubation. The ratio of UTR-Nluc over Cntrl-Nluc expression was then determined and presented as the log2

fold change in Nluc expression. Nluc mRNA levels were standardized to the NeoR gene expressed from the pcDNA3.1(+),

which is the expression plasmid for the UTR- and Cntrl-Nluc constructs. Cells were treated with 100 ng/mL LPS or 10 ng/mL

TNF, 3 h after transfection in panel E. The amount of UTR- and Cntrl-Nluc plasmid transfected was halved and replaced with

empty pcDNA3.1 plasmid in panel E. (G) Mutant variants of the CXCL8-5’+3’ UTR-Nluc reporter and Cntrl-Nluc mRNAs,

with deletions in the secretory peptide signals resulting in cytoplasmic expression of Nluc. (A to G) Each graph symbol (squares,

triangles, inverted-triangles or circles) is the result of a replicate experiment. Replicate experiments were performed on different

days.

https://doi.org/10.1371/journal.pgen.1008077.g002
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The ARE motifs reportedly also reduced CXCL8 expression [34–36]. However, when we

deleted two AREs (predicted by RegRNA2.0 [39]) within the 3’ UTR of CXCL8, the resulting

CXCL8-5’+3’ΔARE mutant construct retained the cell type-specific expression observed for

CXCL8-5’+3’, albeit with increased expression across all cell types (Fig 4A). This suggests that

the ARE motifs reduce CXCL8 expression equally across all cell-types and are not responsible

for the cell type-specific expression.

CXCL8 3’ UTR fragments of at least 300 bp conferred cell type-specific

expression

To identify the CXCL8 3’ UTR sequences that are involved in the cell type-specific expression,

we split the 3’ UTR and cloned the halves into the CXCL8-3’(1–627) and CXCL8-3’(628–1252)

UTR-Nluc reporters (Fig 4B). Both reporters retained increased Nluc protein levels in HL-60

Mac relative to HL-60 PMN, A549 ECs and KHYG-1 NK cells. The 3’ UTR was split further

Fig 3. A 37-bp conserved sequence within the 5’ UTR of CXCL8 enhances expression. (A) A 37-bp sequence found

within the 5’ UTR of CXCL8 is conserved across the homologs of multiple species. (B) Schematic representations of

UTR-Nluc reporters with CXCL8 5’ UTR deletions are shown. The expression plasmids for the UTR-Nluc reporters

were transfected into parallel cell cultures. The resulting Nluc protein expression levels were quantified via luciferase

assay after overnight incubation. The ratio of UTR-Nluc over Cntrl-Nluc expression was then determined and

presented as a log2 value. (C and D) The truncated 5’ UTR of CXCL8 containing the conserved 37 bp sequence was also

fused mCherry red fluorescent protein and firefly lucifease Fluc to form the CXCL8-5’-mCherry and pNFAT-5’-Fluc

reporters. Both reporter proteins were expressed into the cytoplasm. Fluc is additionally under the control of a NFAT

promoter, which is weaker compared to the CMV promoter upstream of the Nluc and mCherry reporters.

Fluorescence micrographs of Cntrl-mCherry and CXCL8-5’-mCherry expression in A549 ECs and the corresponding

phase contrast images displayed at the bottom right corner of each fluorescence micrograph are shown in panel C. The

ratio of pNFAT-5’-Fluc over pNFAT-Fluc expression, presented as a log2 value, is shown in panel D. Each graph

symbol (squares) is the result of a replicate experiment. Replicate experiments were performed on different days.

https://doi.org/10.1371/journal.pgen.1008077.g003
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into fragments of around 300 bp in length, generating the CXCL8-3’(628–969) and CXCL8-

3’(970–1252) reporters. These UTR-Nluc reporters continued to display increased Nluc pro-

tein levels in HL-60 Mac relative to A549 ECs. The cell type-specific protein levels were even-

tually lost upon further deletion into a 141-bp and 70-bp fragment [CXCL8-3’(1112–1252’)

and CXCL8-3’(1183–1252) respectively]. Taken together, these findings suggest that all the

CXCL8 UTR fragments of at least 300 bp confer cell type-specific expression.

All 3’ UTRs that mediate cell type-specific expression also contain AU-rich

proximal UTR sequences (APS)

All the CXCL8 3’ UTR fragments that have conferred increased Nluc protein levels in HL-60

Mac relative to A549 ECs, have a high adenylate-uridylate or AU content in their 3’ UTR

Fig 4. The 3’ UTRs of CXCL8 contains AU-rich proximal sequences (APSs). (A and B) Schematic representations of UTR-Nluc reporters

with CXCL8 3’ UTR deletions are shown. The CXCL8-5’+3’ΔARE mutant was generated by deleting known AU-rich elements (AREs) from

CXCL8-5’+3’, as shown with red “strikeouts”. The expression plasmids for the UTR-Nluc reporter mRNAs were transfected into parallel cell

cultures. The resulting Nluc protein and mRNA expression levels were quantified via luciferase assay and real-time PCR, respectively, after

overnight incubation. The ratio of UTR-Nluc over Cntrl-Nluc expression was then determined and presented as log2 values. Each graph

symbol (squares, triangles, or circles) is the result of a replicate experiment. Replicate experiments were performed on different days. (C)

Elevated adenine and uracil base content (AU content) in the 3’ UTR of the UTR-Nluc reporters with CXCL8 3’ UTR deletions. (D) The

elevated AU content of the CXCL8 3’ UTR is conserved in mammals. (E) Elevated AU content in the first 100 bases (proximal end) of the

CXCL8 3’ UTR relative to the ACTB, TNF, IL6 and TIMP1 3’UTRs.

https://doi.org/10.1371/journal.pgen.1008077.g004
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sequences (Fig 4C). Accordingly, this AU-rich sequence feature is also observed in the full-

length CXCL8 3’ UTR. A high AU content in the first hundred or so bases of the CXCL8 3’

UTR, appears to be conserved among the known mammalian homologs of CXCL8 (Fig 4D).

This may indicate a functional role that was maintained by natural selection. A relatively high

AU content in the first hundred or so bases of the 3’ UTR also distinguishes CXCL8 from TNF,

IL6 and TIMP1 (Fig 4E). This may explain why TNF-5’+3’, IL6-5’+3’ and TIMP1-5’+3’ dis-

played cell type-specific expression that were distinct from CXCL8-5’+3’ (Fig 2D). Based on

these observations, we hypothesized that a high AU content in the first hundred or so bases of

the CXCL8 3’ UTR may be the sequence feature responsible for mediating increased protein

synthesis in HL-60 Mac. Henceforth, we dub these AU-rich proximal UTR sequences (APS).

The deletion or insertion the APS modified cell type-specific expression

To investigate the role of the APS, we inserted short sequences into the 3’ UTR to disrupt or

introduce the APS-motif. Performing insertions instead of substitutions ensured that the full

3’ UTRs sequences were retained. This ensured that any differences in expression observed

were not due to deletions of functional motifs within the 3’ UTR sequences. The presence of

the APS was determined by calculating the AU-content of the first 100 bp of the mutated 3’

UTR. We then determined if the protein levels of the mutant UTR reporter was elevated in

HL-60 Mac relative to A549 ECs, which is indicative of the cell type-specific expression of

CXCL8. The insertion of 8 bases immediately upstream of the 3’ UTR sequence of the CXCL8-

3’ reporter, did not disrupt the APS and cell type-specific expression (Fig 5A). Only the inser-

tion of a longer sequence, namely the first 91 bp of TNF 3’ UTR, resulted in an APS-deficient

CXCL8-3’::TNF-3’(1–91) reporter (Fig 5B). This coincided with the disruption of cell type-spe-

cific expression as a much smaller difference in CXCL8-3’::TNF-3’(1–91) reporter protein lev-

els was observed between HL-60 Mac and A549 ECs. As a control, the first 91 bp of the TNF 3’

UTR was also inserted in between positions 285 and 286 of the 3’ UTR of “CXCL8 3’” (Fig 5B).

The resulting “CXCL8 Δ3’-dis” mutant remained APS-positive and displayed elevated protein

levels in HL-60 Mac. Inversely, we also inserted the first 100 bp of the CXCL8 3’ UTR sequence

immediately before the TNF 3’ UTR of the APS-deficient TNF-3’ reporter (Fig 5B). This gener-

ated an APS-positive mutant, TNF-3’::CXCL8-3’(1–100) which displayed elevated protein lev-

els in HL-60 Mac relative to A549 ECs. Altogether, these data are consistent with the APS-

motif conferring cell type-specific expression.

The CXCL8 5’ UTR conferred cell type-specific expression when paired

with a 3’ UTR

We had deduced that the cell type-specific expression of CXCL8 was largely mediated by its 3’

UTR. This was based on the observation that the cell type-specific Nluc protein and mRNA

fold changes of CXCL8-5’+3’ was largely replicated by CXCL8-3’ but not CXCL8-5’ (Fig 2C

and 2D). Indeed, the ability of the CXCL8 3’ UTR to mediate enhanced expression in HL-60

Mac relative to A549 ECs occurred even in the presence of the TNF 5’ UTR sequence, as was

observed for the TNF-5’+CXCL8-3’ reporter (Fig 5B). However, our subsequent assays

revealed that the 5’ UTR of CXCL8 may not be entirely benign. We observed that the protein

levels of CXCL8-5’+3’::TNF-3’(1–91) and CXCL8-5’+TNF-3’ were elevated in HL-60 Mac rela-

tive to A549 EC, despite being APS-deficient (Fig 5C). This may have been mediated by the

presence of the 5’ UTR of CXCL8. The lack of this cell type-specific expression in the CXCL8-

5’ reporter may have been due to the absence of a 3’ UTR sequence (Fig 2D). Thus, these find-

ings suggest that the 5’ UTR of CXCL8 may confer cell type-specific expression when paired

with a 3’ UTR.
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Fig 5. APSs conferred elevated expression in HL-60 macrophages. (A, B and C) Schematic representations of UTR-Nluc

reporters with UTR mutations are shown. The AU content in the first 100 bases of the 3’ UTR of these UTR-Nluc reporter

mutants are shown in line charts. Positions 1 to 91 of the 3’ UTR of TNF was inserted in between positions 285 and 286 of the

CXCL8-3’ reporter to generate the CXCL8-3’::disTNF-3’(1–91) mutant. The expression plasmids for these UTR-Nluc reporter

mRNAs were transfected into parallel cell cultures. The resulting Nluc protein and mRNA expression levels were quantified via

luciferase assay and real-time PCR, respectively, after overnight incubation. The ratio of UTR-Nluc over Cntrl-Nluc expression

was then determined and presented as log2 values. Each graph symbol (squares or triangles) is the result of a replicate

experiment. Replicate experiments were performed on different days. (D) The 3’ UTR of TNFAIP6, IFNG and IL2 contain

putative APSs. (E) From 14 fractions spanning the entire sucrose gradients displayed in Fig 1C, the levels of specific TNFAIP6
mRNA were quantified via real-time PCR and presented as a percentage of the sum of all fractions. Replicate experiments were

performed on different days and the data from 2 replicates are shown.

https://doi.org/10.1371/journal.pgen.1008077.g005
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The polysome association of TNFAIP6, a putative APS-positive mRNA, was

elevated in HL-60 macrophages

With the elucidation of the novel APS-motif, we then investigated if the presence of APS could

be used to predict elevated translation in macrophages. An analysis of proximal AU content in

the 3’ UTR of common cytokine signaling genes revealed that the TNFAIP6, IFNG and IL2
genes possess high AU-contents in the first hundred or so bases of their 3’ UTRs (Fig 5D),

which is indicative of the presence of APS. Amongst these genes, only the TNFAIP6 mRNA

was expressed at a detectable level in HL-60 Mac. In agreement with our prediction, the poly-

some association of TNFAIP6 was elevated in HL-60 Mac relative to A549 EC and KHYG-1

NK cells. This was indicated by an increase in the percentage of TNFAIP6 mRNA found in the

larger polysomes fractions, towards the right of the graph, in HL-60 Mac (Fig 5E). Thus, our

results suggest that TNFAIP6 may also contain a functional APS-motif.

The inhibition of ERK1/2 signaling reduced the expression of APS-positive

mRNAs

Next, we elucidated the signaling pathways involved in the elevated expression of CXCL8-5’+3’

reporter protein in HL-60 Mac relative to HL-60 PMN, A549 EC and KHYG-1 NK. This cell

type-specific expression remained largely unaffected by treatment with the inhibitors of

mTOR (Torin-1) (S1C Fig), p38 (SB203580) and JNK (SP600125) (S1D Fig). As controls, the

SP600125 treatment used was sufficient to inhibit JNK-mediated phosphorylation of JUN in

HL-60 Mac [40] while the SB203580 treatment used was also sufficient to inhibit the transcrip-

tion of CXCL8 in LPS-activated neutrophils (S1D Fig) [41]. By contrast, the elevated expres-

sion of CXCL8-5’+3’ protein in HL-60 Mac cells was attenuated when ERK1/2 signaling was

inhibited by treatment with U0126 (which inhibits the upstream kinase, MAP2K1/2) or

AZD6244 (which directly inhibits ERK1/2) (Fig 6A). The same U0126 treatment also reduced

CXCL8-3’ reporter protein levels in HL-60 Mac; but did not reduce the expression of the APS-

deficient reporters: CXCL8-5’, TNF-5’+3’ and IL6-5’+3’ (Fig 6A).

The inhibition of ERK1/2 signaling in HL-60 Mac cells also reduced the polysome associa-

tion of endogenous CXCL8 and TNFAIP6 relative to control untreated HL-60 Mac cells. This

was indicated by a reduction in the percentage of CXCL8 and TNFAIP6 mRNA found in the

larger polysome fractions (towards the right of the graph) (Fig 6B). The same pattern was not

observed for the control mRNA, ACTB. These findings suggest that ERK1/2 target proteins

may be involved in the cell type-specific expression of APS-positive mRNAs.

The phosphorylation of rpS6 S235/236 was elevated in HL-60 macrophages

and attenuated by ERK1/2 signaling inhibitors

To identify the ERK1/2 target proteins involved, we examined known downstream targets of

ERK1/2 such as rpS6, 4E-BP1 and eIF4E (Fig 7A). Since the protein activities were modulated

by their phosphorylation states, the ratios of phosphorylated protein over total protein expres-

sion (i.e.: [rpS6 S235/236+phos] / [rpS6]) between different cell types were compared.

Amongst the ERK1/2 target proteins, the phosphorylation ratio of rpS6 (at S235/236 and S240/

244) was elevated in HL-60 Mac relative to HL-60 PMN, A549 EC, KHYG-1 NK and H1299

EC (Fig 7A). The expression of eIF4E was also elevated in HL-60 Mac relative to A549 EC and

KHYG-1 NK (Fig 7A).

Next, we determined if these proteins were affected by the inhibition of ERK1/2 signaling

(via U0126 and AZD6244) or mTOR signaling (via Torin-1). Previous studies have found that

ERK1/2 signaling induces the phosphorylation of rpS6 at S235/236 [42] while Akt-mTOR
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signaling induces the phosphorylation of rpS6 at S235/236 and S240/244 [11,43]. Here, the

inhibition of ERK1/2 signaling via U0126 or AZD6244 treatment led to 8- to 16-fold reduc-

tions in rpS6 S235/236 phosphorylation. The inhibition of mTOR signaling inhibition via

Torin-1 treatment led to a much smaller 2- to 4-fold reduction. The smaller effect of Torin-1

on rpS6 S235/236 phosphorylation was unlikely to be due to a lack of Torin-1 activity since the

inhibitor almost completely abolished the phosphorylation of 4E-BP1 at T37/46, an effect that

was previously described [44]. The phosphorylation at S240/244 on the other hand, was equally

sensitive to U0126, AZD6244 and Torin-1 treatment, with a 4-fold reduction across all inhibi-

tors. From these observations, we made three inferences. First, rpS6 S235/236 phosphorylation

in HL-60 Mac was predominantly mediated by ERK1/2 signaling. Second, ERK1/2 signaling

inhibition may attenuate the expression of APS-positive mRNAs by blocking the phosphoryla-

tion of rpS6 at S235/236. Third, ERK1/2 signaling inhibition did not act via the blocking of

Fig 6. The inhibition of ERK1/2 signaling reduced CXCL8 UTR reporter expression in HL-60 macrophages. (A) Graphical representations

of the plasmid-derived UTR-Nluc reporter mRNAs are shown. These plasmids were transfected into parallel cell cultures. Treatments with

DMSO solvent control or ERK1/2 signaling inhibitors (10 μM U0126 or 1 μM AZD6244) were performed three hours after UTR-Nluc reporter

transfection. The resulting Nluc protein and mRNA expression levels were quantified via luciferase assay and real-time PCR, respectively, after

overnight incubation. The ratio of UTR-Nluc over Cntrl-Nluc expression was then determined and presented as log2 values. Each graph

symbol (squares or circles) is the result of a replicate experiment. Replicate experiments were performed on a different days. (B) Polysome

profiles of HL-60 Mac after treatment with 10 μM U0126 or 1 μM AZD6244 for 8 hours. The fractionation was performed on a continuous

sucrose density gradient (10–50% sucrose). From 14 fractions spanning the entire sucrose gradient, the levels of specific mRNAs (CXCL8,

TNFAIP6 and ACTB) were quantified via real-time PCR and presented as a percentage of the sum of all fractions. The data for the HL-60 Mac

controls were previously shown in Fig 1C. Replicate experiments were performed on different days and the data from 2 replicates are shown.

https://doi.org/10.1371/journal.pgen.1008077.g006
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rpS6 S240/244 phosphorylation since mTOR signaling inhibition also blocked rpS6 S240/244

phosphorylation to a similar degree but did not attenuate CXCL8+5’+3’ expression.

Increasing the availability of eIF4E did not enhance APS-modulated

expression

Unlike rpS6, the expression and phosphorylation of eIF4E was not affected by treatment with

U0126, AZD6244 or Torin-1 (Fig 7B). This suggests that ERK1/2 inhibitors do not act via

Fig 7. The phosphorylation of rpS6 is elevated in HL-60 macrophages and is sensitive to ERK1/2 signaling

inhibition. (A and B) Western blots displaying the expression levels of rpS6 S235/236+phos, rpS6 S240/244+phos,

total rpS6, 4E-BP1 T37/46+phos, total 4E-BP1, eIF4E S209+phos, total eIF4E and β-Tubulin. The expression levels of

these proteins were compared between HL-60 Mac, HL-60 PMN, A549 EC, KHYG-1 NK and H1299 EC cells, in panel

A. Comparisons were also made between HL-60 cells treated with the solvent control, ERK1/2 signaling inhibitors

(10 μM U0126 or 1 μM AZD6244), and mTOR inhibitor (100 nM Torin-1); in panel B. The band signal intensities

were quantified and used to calculate the normalized band intensity ratios as described in the mathematical

expressions. In panel B, “rpS6+phos fold change” was calculated based on the mathematical expression shown.

[Control] and [Inhibitor] are defined as the rpS6+phos/rpS6 ratios of the control and inhibitor (Torin-1, U0126 and

AZD6244) treatment cells, respectively, Experimental replicates were repeated over different days and the data from

two repeats are shown.

https://doi.org/10.1371/journal.pgen.1008077.g007
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eIF4E to attenuate the cell type-specific expression observed. Since the availability of eIF4E to

form the translation initiation complex has also been found to modulate the rate of mRNA

translation [7–10], further investigations were performed to either confirm or rule out its role.

We expressed the 4E-BP1-4A mutant–a phosphorylation deficient mutant of 4E-BP1 which

constitutively binds to and inhibits eIF4E activity [4] (S1E Fig). At first glance, this appeared to

have reduced CXCL8-5’+3’ protein synthesis in HL-60 Mac. However upon closer inspection,

it was revealed that multiple proteins (including rpS6 S235/236+phos, rpS6 240/244+phos,

total rpS6, eIF4E and μ-tubulin) were up-regulated in HL-60 Mac upon 4E-BP1-4A expres-

sion. This made it difficult to narrow down the cause of the reduced CXCL8-5’+3’ protein lev-

els. To investigate further, we expressed exogenous eIF4E to alleviate any potential shortage of

eIF4E in A549 ECs. However, this did not enhance CXCL8-5’+3’ protein synthesis (S1F Fig).

This suggests that eIF4E shortage was not a factor at play, which is consistent with our findings

on Torin-1 treatment. Treatment with Torin-1 almost completely abolished the phosphoryla-

tion of 4E-BP1 at T37/46 in HL-60 Mac cells (Fig 7B) but did not inhibit the expression of

CXCL8-5’+3’ (S1C Fig). Since the phosphorylation of 4E-BP1 at T37/46 is required for the sub-

sequent “hyper” phosphorylation at S65/T70 which inhibits 4E-BP1 binding to eIF4E [45], this

suggests that eIF4E availability was not being reduced by interaction with unphosphorylated

4E-BP1 [46]. Thus, our assays suggest that increasing the availability of eIF4E did not enhance

APS-modulated expression.

The induction of rpS6 S235/236 phosphorylation enhanced the expression

of CXCL8 UTR reporters

To further investigate the role of rpS6, we activated pathways leading to the induction of rpS6

phosphorylation in A549 ECs. There are three known rpS6 kinases that directly phosphorylate

rpS6 [11]. The first is p90 ribosomal S6 kinase (Rsk) which is activated by ERK1/2 signaling

[42]. We activated this pathway, as indicated by increased ERK1/2 T202/204 phosphorylation,

through the co-expression of TAK1 and TAB1 [47] (Fig 8A). The second is p70 S6 protein

kinase (S6K1) which is activated by Akt-mTOR signaling [11]. We activated of this pathway,

as indicated by increased Akt S473 phosphorylation, through the expression of myristoylated

Akt or myrAkt (Fig 8A). Finally, the third known rpS6 kinase is protein kinase A (PKA) [48].

We activated this pathway through the expression of constitutively active PKA (caPKA) (Fig

8B). In A549 EC cells, all three rpS6 kinase pathways induced rpS6 S235/236 phosphorylation

and increased CXCL8-5’+3’ protein levels (Fig 8A and 8B). The TAK1-ERK1/2 pathway pro-

duced a greater degree of rpS6 S235/236 phosphorylation and this coincided with increased

CXCL8-5’+3’ expression relative to the myrAkt-mTOR pathway. This is consistent with our

observations in HL-60 Mac where rpS6 S235/236 phosphorylation was found to be predomi-

nantly mediated by ERK1/2 signaling and not Akt-mTOR signaling (Figs 6 and 7). By contrast,

CXCL8-5’+3’ protein synthesis was not increased when rpS6 S235/236 phosphorylation was

not induced, such as during the expression of constitutively active MKK7-JNK (Fig 8A). This

is consistent with our earlier findings where the inhibition of JNK activity (via SP600125) did

not attenuate CXCL8-5’+3’ expression in HL-60 Mac (Fig 6B). In summary, these findings

demonstrate that the induction of rpS6 S235/236 phosphorylation enhances CXCL8-5’+3’

expression.

Primary macrophages displayed elevated rpS6 phosphorylation and CXCL8
translation which were both attenuated by ERK1/2 inhibitors

Our work on cell lines suggested that CXCL8 expression was elevated in macrophages via a

UTR and ERK1/2-dependent mechanism (Figs 1 to 8). Next, we determined if this mechanism
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was active in primary macrophages. We found that relative to primary neutrophils and NK

cells, primary macrophages secrete disproportionately more CXCL8 protein from less CXCL8
mRNA (Fig 9A). This matched the trend observed in the cell line counterparts (Fig 1A). Pri-

mary macrophages also displayed high levels of CXCL8 and TNFAIP mRNA polysome associa-

tion, which were comparable to HL-60 Mac (Fig 9B). This occurred despite a reduction in

Fig 8. CXCL8 UTR reporter expression is sensitive to the (rpS6 S235/236+phos)/rpS6 ratio. (A and B) Graphical

representations of the CXCL8-5’+3’ Nluc and Cntrl-Nluc mRNAs are shown. These Nluc reporter plasmids were

transfected into parallel cell cultures along with plasmids for the expression of TAK1+TAB1, myrAKT, MKK7-JNK2,

caPKA or the control empty pcDNA plasmid. In each of these co-transfection experiments, an equimolar ratio of each

plasmid species was used. After overnight incubation, the resulting Nluc protein and mRNA expression levels were

quantified via luciferase assay and real-time PCR, respectively. The ratio of UTR-Nluc over Cntrl-Nluc expression was

then determined and presented as log2 values. Western blots display the expression levels of ERK1/2 T202/204+phos,

total ERK1/2, Akt S473+phos, total Akt, rpS6 S235/236+phos, rpS6 S240/244+phos, total rpS6, 4E-BP1 T37/46+phos,

total 4E-BP1, eIF4E S209+phos, total eIF4E and β-Tubulin. The band signal intensities were quantified and used to

calculate the normalized band intensity ratios as described in the mathematical expressions. The mRNA levels were

determined via real-time PCR. Nluc mRNA levels were standardized to the NeoR gene expressed from the pcDNA3.1

(+), which is the expression plasmid for the UTR- and Cntrl-Nluc constructs. Each graph symbol (squares or circles) is

the result of a replicate experiment. Replicate experiments were performed on different days. For the western blots, two

replicates are shown.

https://doi.org/10.1371/journal.pgen.1008077.g008
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ACTB and RPL27 mRNA polysome association relative to HL-60 Mac. Reduced ACTB poly-

some association was also reported for primary mouse macrophages relative to immortalized

mouse macrophage cell lines [49]. Like their HL-60 Mac and KHYG-1 NK cell line counter-

parts (Fig 2D), CXCL8-5’+3’ protein synthesis was elevated in primary macrophages relative

to NK cells (Fig 9C). This suggests that the UTR of CXCL8 confers elevated translation in pri-

mary macrophages relative to NK cells. Additionally, the ratio of phosphorylated rpS6 over

total rpS6 was also increased in primary macrophages relative to NK cells (Fig 9D). The ele-

vated rpS6 phosphorylation was attenuated by ERK1/2 inhibitor (AZD6244) treatment (Fig

9E). These results matched their cell line counterparts (Fig 7A and 7B). Finally, primary mac-

rophages treated with the ERK1/2 signaling inhibitors (U0126 and AZD6244) displayed atten-

uated expression of CXCL8 at the protein level but not at the mRNA level (Fig 9F). The same

inhibitors did not attenuate CXCL8 expression in primary neutrophils. Taken together, these

findings suggest that ERK1/2 signaling induces the phosphorylation of rpS6 in primary macro-

phages, leading to the elevated expression of CXCL8 and TNFAIP6 in these cells.

Discussion

Hitherto, the role of rpS6 phosphorylation has remained unclear as it did not appear to affect

global mRNA translation rates [15]. Here, we demonstrate that the induction of rpS6 phos-

phorylation (at S235/236) selectively enhances the translation of certain mRNA transcripts

that contain novel AU-rich proximal cis-regulatory UTR sequences (APS) [Summarized in Fig

10]. In primary macrophages, ERK1/2 signaling induces the phosphorylation of rpS6 leading

to the elevated translation of CXCL8 and TNFAIP6. The location of the APS-motif, on the 3’

UTR, is distinct from known motifs found exclusively in the 5’ UTR [4–6,8,9].

Like previous work on CXCL8 [19–26], our studies were conducted on primary human

cells and cell line models. Studies on CXCL8 expression could not use the mouse model since

the homolog of CXCL8 is deleted in mice [16]. This also meant that we could not use phospho-

deficient rpS6 transgenic mice [14], although it would have been a powerful tool to investigate

the role of rpS6 phosphorylation. To study the effect of rpS6 phosphorylation, we inhibited

multiple pathways upstream of rpS6 phosphorylation. The mTOR inhibitor (Torin-1) only

partially attenuated rpS6 S235/236 phosphorylation (Fig 7B) and did not reduce the translation

of APS-positive CXCL8-5’+3’ in HL-60 macrophages (S1C Fig). By contrast, when rpS6 S235/

236 phosphorylation was more completely attenuated by the ERK1/2 signaling inhibitors

(AZD6244 and U0126) (Figs 7B and 9E); the translation of APS-positive CXCL8-5’+3’,
CXCL8-3’, CXCL8 and TNFAIP6 reporters in macrophages was reduced (Figs 6 and 9F). The

effect of ERK1/2 signaling inhibition was cross-validated by two different inhibitors since both

inhibitors are unlikely to share the same off-target effects, such as the activation of AMPK by

U0126 [50]. All three inhibitors–Torin1, U0126 and AZD6244–also reduced rpS6 S240/244

phosphorylation to a similar degree (Fig 7B). This suggests that the U0126 and AZD6244 treat-

ments did not act via the inhibition of rpS6 S240/244 phosphorylation to attenuate CXCL8-

5’+3’ expression in HL-60 Mac (Fig 6A). If that were the case, the Torin-1 treatment should

have been just as potent in attenuating reporter expression (S1C Fig). From these findings, we

deduced that the elevated rpS6 S235/236 phosphorylation observed in HL-60 Mac was pre-

dominantly mediated by ERK1/2 signaling and that ERK1/2 inhibitors may attenuate the

expression of APS-positive mRNAs by blocking this pathway.

In addition to kinase inhibitors, the expression of exogenous wildtype and mutant proteins

was also employed to study the role of rpS6 phosphorylation. The expression of constitutively

active TAK1, Akt or PKA led to increased expression of the APS-positive reporter, CXCL8-

5’+3’. This was likely due to the increased rpS6 S235/236 phosphorylation observed (Fig 8A
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Fig 9. Primary macrophages display an elevated rate CXCL8 translation that is attenuated by ERK1/2 signaling

inhibitors. (A) CXCL8 protein and mRNA expression levels in primary macrophages, neutrophils and NK cells. Expression

was measured at resting state (not treated, NT) or after overnight activation with 100 ng/mL LPS or 10 ng/mL TNF. (B)

Polysome profiles of primary macrophages and HL-60 Mac were obtained from a continuous sucrose density gradient (10–

50% sucrose). From 14 fractions spanning the entire sucrose gradient, the levels of specific mRNAs (CXCL8, TNFAIP6,

ACTB and RPL27) in each fraction from the sucrose gradients were quantified via real-time PCR and presented as a
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and 8B). To the best of our knowledge, rpS6 is the only known common downstream target of

the TAK1, Akt and PKA pathways. TAK1 signaling activates Rsk while Akt signaling activates

S6K1. PKA, Rsk and S6K1 are the three currently known rpS6 kinases that directly phosphory-

late rpS6 at S235/236 [11]. Even though PKA is not known to phosphorylate rpS6 at S240/244,

a small increase was observed in the caPKA transfected cells (Fig 8B). The increase was how-

ever, still at least 5-fold lower than that observed for 235/236. Taken together, these findings

support the hypothesis that the induction of rpS6 S235/236 phosphorylation enhances the

translation of APS-positive mRNAs.

Multiple mechanisms may contribute to the elevated level of CXCL8 protein secreted from

macrophages. The 3’ UTR sequences have also been found to modulate the rate of mRNA tran-

scription, mRNA stability and pre-recruitment of the signal recognition particle to the ribo-

some for secreted proteins [51–53]. Alterations in the rate of secretion could also occur as a

result of changes in the activity of the eIF4E kinase, MNK1 [54]. Nevertheless, the rate of secre-

tion is unlikely to be involved in the elevated cytoplasmic expression of CXCL8-5’+3’(-Sec)

protein observed in HL-60 Mac relative to A549 EC (Fig 2G). Another possible mechanism

percentage of the sum of all fractions. The data for the HL-60 Mac repeats were as previously shown in Figs 1C and 5E. (C)

Graphical representations of the CXCL8-5’+3’ UTR-Nluc and Cntrl-Nluc reporter mRNAs are shown. The expression

plasmids for these Nluc reporters were transfected into parallel cell cultures. After overnight incubation, the resulting Nluc

protein and mRNA expression levels were quantified via luciferase assay and real-time PCR, respectively. The ratio of

UTR-Nluc over Cntrl-Nluc expression was then determined and presented as log2 value. (D and E) Western blots displaying

the expression levels of rpS6 S235/236+phos, rpS6 S240/244+phos, total rpS6, 4E-BP1 T37/46+phos, total 4E-BP1, eIF4E

S209+phos, total eIF4E and β-Tubulin. The expression levels of these proteins were compared between primary

macrophages and NK cells. Comparisons were also made between primary macrophages treated with the solvent control and

the ERK1/2 inhibitor, 1 μM AZD6244, The band signal intensities were quantified and used to calculate the normalized band

intensity ratios as described in the mathematical expressions. (F) The expression ratio of CXCL8 protein and mRNA

expression in primary macrophages and neutrophils upon overnight treatment with ERK1/2 signaling inhibitors (10 μM

U0126 or 1 μM AZD6244) relative to solvent control cells. (A to F) Each graph symbol (squares, triangles or circles) is the

result of a replicate experiment. Replicate experiments were performed on different days. Cells from different donors were

used for each replicate. For the western blots, two replicates are shown. For panels A and F, CXCL8 protein and mRNA

levels were determined via ELISA and real-time PCR, respectively. CXCL8 mRNA levels are standardized to RPL27 as the

internal control genes and are relative to the control NT samples.

https://doi.org/10.1371/journal.pgen.1008077.g009

Fig 10. A schematic summary of findings. Ribosomal protein S6 (rpS6) is directly phosphorylated by the kinases Rsk,

S6K1 and PKA [11]. Rsk and S6K1 are activated by ERK1/2 and Akt-mTOR signaling respectively. These signaling

pathways induce of rpS6 phosphorylation at S235/236 and enhance the translation of CXCL8 mRNA. The

enhancement requires: 1) a 3’ UTR that is at least 300 bases; and 2) an AU base content exceeding fifty percent in the

first hundred or so bases of the 3’ UTR immediately after the coding sequence, which we refer to as AU-rich proximal

RNA cis-regulatory sequences (APS). This translational control mechanism contributes to the elevated CXCL8 protein

expression in macrophages. On its own, the 5’ UTR of CXCL8 is a potent translation enhancer.

https://doi.org/10.1371/journal.pgen.1008077.g010
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may involve the ARE-motifs on the 3’ UTR of CXCL8which reportedly accelerate mRNA degra-

dation [34–36]. This may explain the reduced expression levels of CXCL8-full mRNA relative to

CXCL8-CDS mRNA (Fig 2A and 2B). However, the elevated expression of CXCL8-5’+3’ in mac-

rophages was retained even after the deletion of these ARE motifs (Fig 4A), which suggests that

these ARE motifs were not responsible for the cell type-specific expression. Additionally, increased

transcription or mRNA stability would lead to increased mRNA levels which, in this case, did not

account for the level of secreted CXCL8 protein observed in macrophages that was elevated rela-

tive to CXCL8mRNA levels (Figs 1A, 2 and 9A). Thus, the elevated CXCL8 protein secretion in

macrophages is most simply explained by an increase in the rate of CXCL8 translation, which was

corroborated by the polysome profiles of CXCL8 in macrophages (Figs 1C and 9B).

Further studies are required to fully elucidate this novel mechanism of translational regula-

tion. While it is clear that the mechanism involves: 1) a 3’ UTR that is at least a few hundred

bases; and 2) an APS element; there may be other subtle requirements that await further dis-

covery. The sequence feature in the CXCL8 5’ UTR that is responsible for its ability to enhance

translation in macrophages when paired with a 3’ UTR (Fig 5C) also warrants further investi-

gation. The 3’ UTR of CXCL8 in particular, is also known to be recognized by miRNA-93,

leading to the downregulation of CXCL8 mRNA and protein levels [55]. However, since vari-

ous deletion mutants of the CXCL8 3’ UTR retained the same pattern of elevated expression in

macrophages (Fig 4B), it is highly unlikely that the same level of miRNA activity was exerted

across all these deletion mutations. Additionally, it is likely that other pathways besides rpS6

phosphorylation are involved in the regulation of APS-positive mRNA expression. Certain

observations point to this. For example, while the inhibition of ERK1/2 (via U0126) attenuated

rpS6 S235/236 phosphorylation (Fig 7B), it did not reduce CXCL8-5’+3’ protein levels in HL-

60 Mac to the levels observed in KHYG-1 NK cells (Fig 6A).

The APS-motif was elucidated in mutation assays with heterologous vector-derived CXCL8

and UTR-Nluc reporter transcripts. Vector-derived transcripts are widely employed to evalu-

ate UTR activity and have so far been consistent with native mRNAs [5,6,8–10,51]. For exam-

ple, both the endogenous mRNAs and vector-derived reporters that contain 5’ UTR CERT

domains display selective translational repression in eIF4E haplo-insufficient mouse cells [5].

In another study, the deletion of the 3’ UTRs of endogenous CXCL1, CXCL6 and CXCL8; led

to increased mRNA stability which confirmed earlier findings based on heterologous reporter

assays [51]. The deletion also led to an unexpected reduction in mRNA transcription leading

to a decrease in mRNA levels despite increased mRNA stability. Thus, while the deletion of

endogenous UTR sequences may lead to unintended effects on transcription, vector-derived

transcripts have consistently replicated native UTR activity. Indeed, for this study, we found

that the cell type-specific translation rate of endogenous CXCL8 matched that of vector-

derived CXCL8-full mRNAs (Fig 2A) and CXCL8-5’+3’ UTR-Nluc reporters (Fig 2D)

Future research to establish the significance of APS in regulating gene expression and its

evolutionary conservation is warranted. In addition to CXCL8 and TNFAIP6, other APS-posi-

tive mRNAs may exist. An analysis of the proximal AU content in the 3’ UTR of common

cytokine signaling genes revealed the presence of potential APS in the mRNAs of TNFAIP6,

IFNG and IL2 (Fig 5D) but only the TNFAIP6 mRNA was expressed at sufficiently high levels

for polysome profilling (Figs 5E, 6B and 9B). APS-positive mRNAs may form a highly selective

subset of genes as the distribution of 3’ UTR AU content in human genes appears to be skewed

towards a low AU content [56]. The identification and characterization of genes that contain

APS motifs may be an important area for future studies as this novel mechanism of transla-

tional control may regulate other genes that impact disease processes.

In conclusion, we propose that rpS6 phosphorylation at S235/236 selectively enhances the

translation of mRNAs that contain APS, a potentially novel RNA cis-regulatory element. These
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mRNAs possess: 1) a 3’ UTR of at least three hundred bases; and 2) an AU base content that

exceeds fifty percent in the first hundred or so bases of the 3’ UTR immediately after the stop

codon. In primary macrophages, the ERK1/2 pathway induces the phosphorylation of rpS6

leading to the elevated expression of CXCL8 and TNFAIP6. This novel translational control

mechanism allows macrophages to act as the primary producer of CXCL8 protein despite

expressing less CXCL8 mRNA than cells such as neutrophils (Fig 9A). Through the secretion

of CXCL8, macrophages recruit and activate other immune cells such as neutrophils [19],

monocytes and lymphocytes [20] to respond to infection, disease or injury. APS-modulated

translation may also be aberrantly upregulated in a subset of tumour cells, leading to the over-

expression of pro-oncogenic genes such as CXCL8. Modulating the rate of APS-positive

mRNA translation, such as CXCL8, may be a novel strategy to treat diseases [57].On its own,

the 5’ UTR of CXCL8 is a potent translation enhancer. The truncated 5’ UTR sequence (75 bp)

could potentially be used to enhance the expression of therapeutic proteins.

Materials and methods

Ethics statement

This work was approved by the Institutional Review Board (IRB), NUS-IRB B-14-063E,

National University of Singapore (NUS).

Expression vectors

The CXCL8, Nluc and mCherry reporter vectors were generated as described in S1 Table.

Positions 79 to 153 of NM_000584 was inserted immediately upstream of pNFAT Fluc

(Addgene plasmid #10959 [58]) to form pNFAT 53’ Fluc. PCW57.1-4EBP1_4xAla (from Prof

David Sabatini, Addgene plasmid # 38240 [4]); NFAT luciferase reporter (from Toren Finkel,

Addgene plasmid #10959 [58]); pCNA-TAK1-WT, pCMV5-TAB1-FLAG, pCDNA-myr-AKT,

pCDNA JNK/SAPK-MKK7 and pCMV-PKAca.

Primary cell isolation

Human peripheral blood monocytes, neutrophils and NK cells were isolated from healthy

male adult donor aphaeresis cones (National University Hospital, Blood Donation Centre, Sin-

gapore). This work was approved by the Institutional Review Board (IRB), NUS-IRB B-14-

063E, National University of Singapore (NUS). Monocytes and NK cells were isolated as

described previously [59]. Briefly, the buffy coat, which contained citrate-phosphate-dextrose

(CPD) as anticoagulant, was diluted four times with PBS containing 2% FBS and 1 mM EDTA,

and the mononuclear fraction was obtained via density gradient centrifugation with Ficoll-

Paque Premium 1.073 (GE Healthcare). From the mononuclear fraction, the monocyte and

NK cell populations were enriched with the Human Monocyte Enrichment Kit and Human

NK Cell Enrichment Kit (Stemcell), respectively. For neutrophil isolations, buffy coats were

diluted using Hank’s Balanced Salt Solution (HBSS; Life Technologies). Red blood cells were

sedimented by gravity using Hetasep solution (Stemcell). Leukocytes were harvested and neu-

trophils were isolated using Human Neutrophil Enrichment kit (Stemcell).

Cell culture

Human macrophages, peripheral blood monocytes, neutrophils, NK cells, HL-60 cells, A549

cells, NCI-H1299 and KHYG-1 cells were cultured in RPMI (with 10% FBS and 1% v/v penicil-

lin and streptomycin) at 37 oC. KHYG-1 cell media was supplemented with 10 ng/mL IL-2. All

cell lines were routinely tested to ensure mycoplasma-free cultures.
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Cell differentiation

Enriched human peripheral blood monocytes, at a cell density of 2 × 106/ml, were differenti-

ated into macrophages by culture at 37 oC for 7 days in RPMI media containing 10% FBS and

1% v/v penicillin and streptomycin, and supplemented with 50 ng/ml M-CSF. HL-60 cells

were differentiated into a macrophage-like phenotype (HL-60 macrophage) by plating the cells

at a density of 2 x 106 cells/mL and culturing in media supplemented with 50 nM phorbol

12-myristate 13-acetate (PMA) for a day followed by another day in PMA-free media. HL-60

cells were differentiated into a polymorphonuclear neutrophil-like phenotype (HL-60 PMN)

by plating the cells at a density of 1 x 106 cells/mL and culturing in media supplemented with

1.2% (v/v) dimethyl sulfoxide (DMSO) for 5 days.

Flow cytometry analysis of enriched leukocyte preparations

Primary cell isolations were routinely analyzed by flow cytometry, with mouse monoclonal

antibodies from eBioscience. Preparations were typically more than: 85% CD14+CD16- for

monocytes; 99% CD11b+CD14+ for macrophages; 95% CD66b+CD16+ for neutrophils; and

85% CD3+CD56+ for NK cells.

Polysome profiling

Cells were treated at a final concentration of 10 μM U0126 (Cell Signaling) or 1 μM AZD6244

(Selleckchem) for 8 hours before samples were collected. Polysome profiling was performed as

described previously [60]. Briefly, cells were preincubated with cycloheximide (100 μg/mL,

Sigma) for 15 min, and cytoplasmic lysates were prepared and fractionated by ultracentrifuga-

tion through 15%–50% linear sucrose gradients; 14 fractions were collected, and RNA

extracted from each fraction was used for quantitative real-time PCR analysis.

Cell treatments, Nluc and ELISA assays

Immediately prior to transfection or treatment, cells were plated at a density of: 5 x 106 cells/

ml for neutrophils; 2 x 106 cells/ml for NK cells and HL-60 PMN; and 1 x 106 cells/ml for mac-

rophages and KHYG-1 cells. A549 cells were plated the day before at a density of 106 cells/mL.

For HL-60 macrophages, undifferentiated HL-60 cells were plated at a density of 2 x 106 cells/

mL in media supplemented with 50 nM PMA for two days. Treatments and transfections were

performed in PMA-free media. Macrophage, HL-60 macrophages, NK cell, HL-60 PMN and

KHYG-1 transfections were performed with the Neon Transfection System (Invitrogen); while

A549 and H1299 transfections were performed with ViaFect Transfection Reagent (Promega).

Two hours after transfection or in non-transfection controls, cells were treated at a final con-

centration of 100 ng/mL Escherichia coli 055:B5 LPS (Sigma), 10 ng/mL TNF (Gibco), 10 μM

U0126 (Cell Signaling), 1 μM AZD6244 (Selleckchem), 10 μM SB203580 (Cell Signaling),

50 μM SP600125 (Cell Signaling) or 200 nM Torin-1 (MedChem Express) overnight before

samples were collected. Secreted cytokines were measured using Human CXCL8 and IL6 ELI-

SAs (BD OptEIA). Nluc was assayed with Nano-Glo Luciferase Assay System (Promega). Fire-

fly luciferase (Fluc) was assayed with Luciferase Assay System (Promega) using. Luminescence

was measured with GLOMAX 20/20 luminometer (Promega).

Real-time quantitative PCR analysis

Real-time PCR was performed as previously described [61]. RNA was extracted in the presence

of 4 μg glycogen (Ambion) using two rounds of Trizol Reagent (Ambion) to obtain a DNA-

free sample. Purified RNAs were stored at -80 oC for less than a week before reverse
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transcription. RNA (0.5 μg via nanodrop) was primed with random hexamers and reverse

transcribed with the SuperScript III First-Strand Synthesis System (Invitrogen). The resulting

cDNA was stored in TE buffer at -20 oC. The cDNA was analyzed by real-time qPCR using the

GoTaq qPCR Master Mix (Promega) and a LightCycler 480 (Roche). qPCR experiments

including primer design and efficiency tests was carried out according to the Minimum Infor-

mation for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines [62].

With RPL27 [63] (123 bp amplicon on NM_000988; forward primer:ATCGCCAAGAGATCA

AAGATAA; reverse primer:TCTGAAGACATCCTTATTGACG) and NeoR (84 bp amplicon

on NeoR marker of pcDNA3.1; forward primer: CAAGATGGATTGCACGCAGG; reverse

primer: GCAGCCGATTGTCTGTTGTG) as the reference genes, we calculated the mean fold

change of CXCL8 (132 bp amplicon on NM_000594.2; forward primer: TGT GAAGGTG-

CAGT TTTGCCAAGG; reverse primer: GTTGGCGCAGTGTGGTCCACTC) and Nluc (117

bp amplicon on CDS of secNluc (Promega); forward primer: GTGTCCGTAACTCCGATC

CA; reverse primer: TTCGATCTGGCCCATTTGGT). The expression levels relative to the

control was calculated using the 2-ΔΔCT method. RPL27 has been previously validated to be sta-

bly expressed across a multitude of different cell types and experimental conditions [63]. Poly-

some profiling used the same RPL27 and CXCL8 primers and included the TNFAIP6 (212 bp

amplicon on NM_007115.3; forward primer: TGCTGGATGGATGGCTAAGG; reverse

primer: ACTCATTTGGGAAGCCTGGAG) and ACTB (121 bp amplicon on NM_001101.5;

forward primer: GTCATTCCAAATATGAGATGCGT; reverse primer: GCTAT-

CACCTCCCCTGTGTG) primers. DNA contamination was routinely assessed via qPCR of

negative control reverse transcription reactions which lacked reverse transcriptase (cycle

thresholds above 35).

Western blot analysis

Total cell lysates were resolved on a denaturing SDS PAGE gel (12%) and transferred onto

PVDF membranes via the Trans-Blot Turbo Transfer System (Biorad). These were then

probed with antibodies (all from Cell Signaling) against rpS6 S235/236+phos (#4858), rpS6

S240/244+phos (#5364), total rpS6 (#2217), 4E-BP1 T37/46+phos (#2855), total 4E-BP1

(#9644), eIF4E S209+phos (#9741), total eIF4E (#2067), JUN S73+phos (#3270), total JUN

(#9165), ERK1/2 T202/204+phos (#4370), total ERK1/2 (#4695), Akt S473+phos (#4060), total

Akt (#9272), and β-Tubulin (#2067). These primary antibodies were then probed with the

respective HRP-conjugated secondary antibodies. Western blot chemiluminescent signals

were captured with an ImageQuant LAS 4000 mini (GE Healthcare). Using ImageQuant TL

7.0 (GE Healthcare), the band signal intensities of each sample were background subtracted

(minimum profile) and normalized to control samples for the inhibitor treatments or the high-

est intensity cell sample between different cell types.

Bioinformatics analysis

The RefSeg mRNA sequences for human (NM_000594.2), horse (NM_001083951.2), pig

(NM_213867.1), cattle (NM_173925.2) and sheep (NM_001009401.2). RNA sequence motifs

were predicted with RegRNA2.0 [39].

Supporting information

S1 Table. Generation of expression vectors for CXCL8, Nluc and mCherry coding

sequences with and without UTR fusions.

(TIF)
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S1 Fig. (A) Fluorescence micrographs showing GFP expression in HL-60 Mac, A549 EC and

KHYG-1 NK a day after transfection. (B) Phase contrast micrograph of HL-60 Mac morphol-

ogy. (C, D, E and F) UTR-Nluc reporter plasmids were transfected into parallel cell cultures.

Graphical representations of the plasmid-derived UTR-Nluc reporter mRNAs are shown in

Fig 6A. The resulting Nluc protein and mRNA expression levels were quantified via luciferase

assay and real-time PCR, respectively, after overnight incubation. The ratio of UTR-Nluc over

Cntrl-Nluc expression was then determined and presented as log2 values. Each graph symbol

(squares or circles) is the result of a replicate experiment. Replicate experiments were per-

formed on different days. For the western blots, the data for two replicates are shown. In panels

C and D, treatments with DMSO solvent control, p38 (10 μM SB203580), JNK (50 μM

SP600125) and mTOR inhibitor (100 nM Torin-1) were performed three hours after UTR-N-

luc reporter transfection. In panel D, the positive controls for SB203980 and SP600125 activity

are shown to the right of their respective Nluc fold change graphs. CXCL8 mRNA levels in

neutrophils after overnight treatment with 100 ng/mL LPS or 10 μM SB203580 or both.

CXCL8 mRNA levels were determined via real-time PCR and presented as the ratio of CXCL8
divided by the internal control gene, RPL27. Western blots of total JUN and JUN S73+Phos

protein expression in HL-60 Mac that were treated with 50 μM SP600125 or a solvent control

for 8 hours. In panels E and F, UTR- Nluc reporter plasmids were transfected into parallel cell

cultures along with plasmids for the expression of 4E-BP1 4A, eIF4E or the control empty

pcDNA plasmid. In each of these co-transfection experiments, an equimolar ratio of each plas-

mid species was used. Western blots display the expression levels of rpS6 S235/236+phos, rpS6

S240/244+phos, total rpS6, total 4E-BP1, total eIF4E and μ-Tubulin.

(TIF)

S1 File. Underlying numerical data for all graphs found in Fig 1 to Fig 10.

(XLS)
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