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THE BIGGER PICTURE In recent years, machine learning models using brain functional connectivity have
furthered our knowledge of brain-behavior relationships. The trustworthiness of these models has not
yet been explored, and determining the extent to which data can be manipulated to change the results is
a crucial step in understanding their trustworthiness. Here, we showed that only minor manipulations of
the data could lead to drastically different performance. Although this work focuses on machine learning
models using brain functional connectivity data, the concepts investigated here apply to any scientific
research that uses machine learning, especially with high-dimensional data. As machine learning becomes
increasingly popular in many fields of scientific research, data manipulations may become amajor obstacle
to the integrity of scientific machine learning.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Neuroimaging-based predictive models continue to improve in performance, yet a widely overlooked
aspect of these models is ‘‘trustworthiness,’’ or robustness to data manipulations. High trustworthiness
is imperative for researchers to have confidence in their findings and interpretations. In this work, we
used functional connectomes to explore how minor data manipulations influence machine learning predic-
tions. These manipulations included a method to falsely enhance prediction performance and adversarial
noise attacks designed to degrade performance. Although these data manipulations drastically changed
model performance, the original and manipulated data were extremely similar (r = 0.99) and did not affect
other downstream analysis. Essentially, connectome data could be inconspicuously modified to achieve
any desired prediction performance. Overall, our enhancement attacks and evaluation of existing
adversarial noise attacks in connectome-based models highlight the need for counter-measures that
improve the trustworthiness to preserve the integrity of academic research and any potential translational
applications.
INTRODUCTION

Human neuroimaging studies have increasingly used machine

learning approaches to identify brain-behavior associations
This is an open access article under the CC BY-N
that generalize to novel samples.1,2 They do so by aggregating

weak yet informative signals occurring throughout the brain.3,4

Machine learning models for functional connectomes (‘‘con-

nectome-based models’’)5–7 are among the most popular
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methods for establishing brain-behavior relationships, and

they have successfully characterized the neural correlates of

various clinically relevant processes,8 including general cogni-

tive ability,9 psychiatric disorders,7,10 affective states,11 and

abstinence in individuals with substance use disorder.12

Recent work has uncovered bias, or lack of fairness across

groups, in connectome-based models,13–15 including predic-

tion failure in individuals who defy stereotypes.15 Although im-

provements in accuracy6 and fairness (i.e., race, age, or

gender bias)13–15 of connectome-based models are crucial

for improving the quality of academic studies and the potential

for clinical translation, accurate and bias-free models are not

enough. Connectome-based models should also have high

trustworthiness, which we define as robustness to data ma-

nipulations. In other words, the output or performance of

a trustworthy model remains similar despite minor changes

to the input (i.e., X data). Without a high degree of trustworthi-

ness, researchers may not be able to have confidence in their

findings and ensuing interpretations, as even minor modifica-

tions to the data could dramatically alter results.

Although trustworthiness has been explored from various

perspectives in the machine learning literature, including pri-

vacy16 and explainability,17 here we examine trustworthiness

through the lens of robustness to data manipulations.18 A pop-

ular form of data manipulation specific to machine learning is

adversarial noise (i.e., adversarial attacks), where a pattern

(or ‘‘noise’’) deliberately designed to trick a machine learning

model is added to data to cause misclassification.19,20 These

attacks have been investigated in various contexts, including

cybersecurity,21,22 image recognition,20,23 and medical imaging

or recordings.24–26 For neuroimaging, adversarial attacks may

become problematic in the more distant future (e.g., in clinical

applications25,27).

A more immediate concern is the potential for data manipula-

tions to falsely enhance prediction performance in research

studies. Although the majority of scientific researchers seek to

perform ethical research, data manipulations are more common

than onemight expect.28–33 For example, an analysis by Bik et al.

showed that about 2% of biology papers contained a figure with

evidence of intentional data manipulation.31 Furthermore, 2%

of scientists admitted to fabrication/falsification, and 14%

admitted to seeing their colleagues fabricate/falsify in a survey.32

As data manipulation can result in wasted grant money and

misdirection of future research endeavors, determining the

extent to which the prediction performance of connectome-

based models can be falsely enhanced or diminished via data

manipulations is crucial.

In this work, we investigated the trustworthiness of connec-

tome-based predictive models. Specifically, we introduce the

‘‘performance enhancement attack’’ for connectome-based

models, where data are injected with small, inconspicuous

patterns to falsely improve the prediction performance of

a specific phenotype. We also explore the effectiveness of ad-

versarial noise attacks on connectome-based models. Whereas

adversarial noise attacksmanipulate only the test data to change

a particular prediction, enhancement attacks modify the entire

dataset (i.e., training and test data) to falsely improve perfor-

mance. In both cases—enhancement attacks and adversarial

noise attacks—we find that subtle manipulations drastically
2 Patterns 4, 100756, July 14, 2023
change predictions in four large datasets. Overall, our findings

demonstrate that current implementations of connectome-

based models are highly susceptible to data manipulations,

which points toward the need for preventive measures built in

to study designs and data sharing practices.

RESULTS

Functional MRI data were obtained from the Adolescent Brain

Cognitive Development (ABCD) study,34 the Human Connec-

tome Project (HCP),35 the Philadelphia Neurodevelopmental

Cohort (PNC),36 and the Southwest University Longitudinal

Imaging Multimodal (SLIM) study.37 The first three datasets

(ABCD, HCP, and PNC) were used to demonstrate enhance-

ment and adversarial attacks for prediction of IQ and self-re-

ported sex. SLIM was introduced to demonstrate enhance-

ment with a clinically relevant measure (state anxiety). All

analyses were conducted on resting-state data. For SLIM,

we downloaded fully preprocessed functional connectomes.

For ABCD and PNC, raw data were registered to common

space as previously described.38,39 For HCP, we started

with the minimally preprocessed data.40 Next, standard, iden-

tical preprocessing steps were performed across all datasets

using BioImage Suite41 (see experimental procedures). In all

cases, data were parcellated into 268 nodes with the Shen

atlas.42 After excluding participants for excessive motion

(>0.2 mm), missing nodes due to lack of full brain coverage,

or missing task or behavioral data, 3,362 individuals in the

ABCD dataset, 506 individuals in the HCP dataset, 562 indi-

viduals in the PNC dataset, and 445 individuals in the SLIM

dataset remained. In the following sections, we first compre-

hensively characterize the effects of performance enhance-

ment attacks, and then evaluate adversarial noise attacks.

For enhancement attacks, we show that inconspicuous pat-

terns can be added to an entire connectome dataset to falsely

improve performance. For adversarial attacks, we demon-

strate that connectome-based models are particularly vulner-

able to adversarial manipulations at test time, which are de-

signed to degrade performance (Figure 1).

Baseline model performance
To evaluate trust, we trained baseline regression models of

fluid intelligence (IQ) and classification models of self-reported

sex. These models provide a good benchmark for trustworthi-

ness because of their wide availability in datasets and promi-

nence in the literature.5,43–46 For the regression models, we

used ridge regression connectome-based predictive modeling

(rCPM)44 with nested 10-fold cross-validation and 10% feature

selection. Regression models of IQ were evaluated using Pear-

son’s correlation coefficient r and the cross-validated R2, called

q2,47 between the measured and predicted IQ scores. We

found near zero correlations for ABCD, which is consistent

with Li et al.,14 and low correlations for HCP and PNC (see

Table S1).

For classification of self-reported sex, we trained both linear

support vector machine (SVM) and logistic regression models

with all available features using nested 10-fold cross-validation

andL2 regularization.Wealsoevaluated theaccuracyofclassifiers

of self-reported sex and found relatively high success in all three



Figure 1. Summary of the manipulations investigated in this study

The left half shows a typical connectome-based pipeline. The right half

shows where each manipulation can be applied in the pipeline. Red text

indicates attacks that degrade performance, while green text indicates at-

tacks that falsely enhance performance. Enhancement attacks are applied to

all data. These attacks are relevant for false enhancement of academic

studies or open-source data. They can be applied at multiple points in the

processing pipeline (time-series enhancement or connectome enhancement)

to falsely enhance performance or alter neuroscientific interpretations. Ad-

versarial noise attacks are applied to only the test data, on the basis of the

model coefficients. These attacks have implications in potential translational

applications.
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datasets for both SVM and logistic regression, although SVM had

higherpredictionaccuracy (TableS1). In the followingsections,we

will describe how the performance metrics in Table S1 can be

drastically altered through inconspicuous manipulations to

the data.

Performance enhancement attacks are effective and
nearly unnoticeable
To date, most research on data manipulations for machine

learning has focused on corrupting data to decrease model ac-

curacy.48 However, here, we investigated the feasibility of data

manipulations designed to increase the accuracy (which we

label ‘‘enhancement attacks’’) in ways that cannot be readily

detected by the human eye or by changes in downstream

analyses. Current neuroimaging open science standards

would not offer protection against data manipulations that

falsely enhance performance without statistically altering the

connectomes.

First, we trained a model to predict IQ with resting-state con-

nectomes in ABCD (n = 3,262), HCP (first session, n = 506), and

PNC (n = 562) with rCPM,44 using 10-fold cross-validation and

10% feature selection performed using the features most highly
correlated with IQ (Figure 2, top). To enhance the data for IQ

prediction, we randomly selected 20% of all edges across all

participants (i.e., the same exact edges were selected for all par-

ticipants) and then added an individual-specific pattern that was

correlated (or anti-correlated) with each participant’s fluid intelli-

gence score. We varied the magnitude of this pattern and

repeated model training and evaluation with 10-fold cross-vali-

dation, recording changes in the correlation between measured

and predicted IQ (Figure 2). Results were easily manipulated

even with a low-magnitude enhancement pattern, achieving a

near-perfect correlation between measured and predicted IQ

scores (r > 0.9) for corrupted connectomes that still maintained

an extremely high edge-wise correlation (rz 0.99) with their orig-

inal counterparts. For the results in Figures 1 and 2, we selected

among large regularization parameters with nested cross-valida-

tion, but using a smaller regularization parameter made

enhancement attacks even more effective (Figure S1). In addi-

tion, enhancement attacks are effective against not only linear

models but also neural networks (Table S2). These results sug-

gest that minor changes to a functional connectivity matrix can

undermine the trustworthiness of predictive models, even in

the context of open science practices.

Performance enhancement attacks preserve
individuality
Although the enhanced connectomes appeared almost visually

identical to the original connectomes (Figure 2), we also investi-

gated if the enhancement patterns affected other downstream

analyses. If common, downstream analyses were not affected,

this would make it difficult to determine if connectomes have

been manipulated. First, we varied the mean absolute value of

the enhancement pattern and trained rCPM models to predict

IQ scores in ABCD, HCP, and PNC. As we increased the scale

of the enhancement pattern, prediction performance greatly

increased, with correlations between measured and predicted

IQ achieving r > 0.9 (Figures 2 and 3A). Corroborating visual

inspection, the correlations between edges of original

and enhanced connectomes remained very high (r values z
0.99) (Figure 3A, top row). In addition, a participant-wise

Kolmogorov-Smirnov test49 suggested no significant differences

in edge distributions between original and enhanced data

(median p > 0.9999).

Using the enhanced IQ data, we next trained SVM classifiers

for self-reported sex and found that sex classification accuracy

stayed essentially constant (Figure 3A, bottom row), even

when the prediction performance for IQ was drastically different.

Moreover, we compared functional connectome fingerprinting

with the original and enhanced data in HCP. Functional connec-

tomes have previously been used as participant-specific ‘‘finger-

prints’’50,51 that can accurately identify participants across

different fMRI sessions or tasks. To perform fingerprinting we

calculated the edge-wise correlation between the first (Rest1)

and second (Rest2) resting-state connectomes in HCP. The pre-

dicted identity of the participant was the connectome from the

other session with the highest edge-wise correlation.51 We per-

formed this identification process in each fold of our 10-fold

cross-validation, so each identification procedure included

10% of the 506 participants in the HCP dataset. Whether using

the original or the enhanced Rest1 connectomes, the
Patterns 4, 100756, July 14, 2023 3



Figure 2. Main pipeline of performance

enhancement attacks

This example is shown for prediction of IQ in the

HCP dataset with resting-state connectomes and

rCPM. The original dataset results in a predic-

tion performance of r = 0.18 between measured

and predicted IQ. Enhancement patterns (mean

enhancement pattern shown) are added to the

original connectome proportional to each partici-

pant’s Z-scored IQ. For the sake of visualization, we

multiplied the enhancement patterns by 120, 80,

and 40, or else they would be too small to see. The

corresponding enhanced connectomes maintain

average correlations of r z 0.99 with the original

connectomes, but the prediction performance is

greatly enhanced. The networks labeled on the

connectomes are as follows:MF,medial-frontal; FP,

fronto-parietal; DMN, defaultmode;MOT,motor; VI,

visual I; VII, visual II; VAs, visual association; SAL,

salience; SC, subcortical; andCBL, cerebellum.51,52
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identification rate remained the same (p values = 1; Figure 3A,

bottom row, HCP). Furthermore, we performed fingerprinting in

HCP following the procedure used in Figure 3A, except we

only used edges corresponding to various subnetworks, as pre-

viously defined with the Shen 268 atlas51,52 (Figure S2). Even

when only using a single subnetwork to fingerprint, there was

essentially no difference in accuracy for original and enhanced

connectomes (median p value > 0.5 for each subnetwork; me-

dian overall p = 1). The fingerprinting results indicate that

enhancement attacks preserved the individuality of connec-

tomes at both the whole-brain and subnetwork levels, despite

having a large effect on IQ prediction.

Finally, we evaluated several graph properties, including

strength, assortativity, and clustering coefficient, in the original

and enhanced connectomes.53 Despite the sensitivity of graph

theory metrics to minor changes,54 the correlation between

these node-level metrics in the original and enhanced connec-

tomes was very high (r z 0.99) (Figure 3C). As such, enhance-

ment attacks appear to uniquely strengthen brain-behavior as-

sociations with the phenotype of interest, making them difficult

to detect even with other analyses.

Performance enhancement attacks can be used to alter
interpretations
In addition to falsely improving predictive ability, enhancement

manipulations can be leveraged to reinforce a particular brain-

behavior relationship. For this example, we used rCPM with

10-fold cross-validation to predict state anxiety (State-Trait Anx-
4 Patterns 4, 100756, July 14, 2023
iety Inventory)55 in the SLIM dataset, which

is an open-source dataset of prepro-

cessed connectomes. We first explored

the prediction performance in unaltered

connectomes and found essentially no

predictive power (Figure 4, top row). As in

the previous section, we successfully

manipulated random edges to increase

prediction performance to r = 0.93 (Fig-

ure 4, middle row). Then, we altered only

edges involved in the salience network to
enhance prediction to r = 0.9 (Figure 4, bottom row). This influ-

enced model coefficients to be dominated by edges of the

salience network and thus would suggest that the salience

network can predict anxiety scores in this dataset. The same tar-

geted pattern injection could be similarly performed for other

subnetworks to enforce a different interpretation. These results

highlight the potential power and importance of enhancement at-

tacks, which could not only alter performance, but also support

an unfounded neuroscientific interpretation of a clinically rele-

vant phenotype.

Performance enhancement extends beyond
preprocessed connectomes
Because the previous sections demonstrated that perfor-

mance enhancement attacks are highly effective against con-

nectomes, a potential solution would be to always release raw

or time-series data. Therefore, we investigated whether these

attacks could be implemented earlier in the processing pipe-

line, such as on node time-series data. In this example (Fig-

ure 5), we manipulated time-series data from HCP (rest ses-

sion 1, n = 506) that was parcellated into 268 nodes with the

Shen atlas42 to falsely enhance prediction of IQ. We selected

a pattern—in this case we arbitrarily selected a low-frequency

sinusoid—to add to or subtract from each node’s time course,

scaled by a factor proportional to each participant’s IQ,

to increase or decrease correlations between nodes. The re-

sulting time-series data (median r = 0.994) and the calculated

connectomes (mean r = 0.991) were very similar, but the



Figure 3. Performance enhancement attacks

only cause minor changes to connectomes

(A) Data are enhanced to predict IQ measure-

ments in ABCD, HCP, and PNC for 100 iterations

of different enhancement patterns (all 100 itera-

tions are shown as points; there is a lot of overlap

between iterations). The x axis reflects the

mean absolute value of the enhancement pattern

added at the edge level (i.e., the absolute mean of

the enhancement pattern across all participants

for the 20% of edges we altered). At x = 0, there is

no enhancement. As a larger enhancement

pattern is added, the prediction performance

(prediction correlation) increases to r > 0.9,

although the edge-wise correlation between

original and enhanced connectomes is still

r z 0.99. In the second row of (A), enhancement

attacks are shown to not affect downstream an-

alyses, which included a sex classification model

and participant identification (‘‘fingerprinting’’)

for HCP.

(B) Identification rates by subnetwork between

Rest1 original/enhanced and Rest2 connectomes in

HCP.

(C) Several graph metrics, including strength, as-

sortativity, and clustering coefficient, were calcu-

lated for the original connectomes and enhanced

connectomes, using the largest scale of enhancement presented in (A). The correlation between these metrics for original and enhanced connectomes is

presented in (C), with error bars representing the SD of the correlation across participants.
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prediction of IQ drastically increased using the enhanced data

(Figure 5). Additional representative node time-series traces

are shown in the Figure S3. The efficacy of performance

enhancement on node time-series data showed data manipu-

lations are not exclusive to preprocessed connectomes and

that more complex algorithms may be able to manipulate

raw data to achieve desired results.

Adversarial noise degrades connectome-based model
accuracy
In contrast to the previous sections where data were manipu-

lated to falsely enhance performance, other manipulations are

designed to decrease prediction accuracy, most notably adver-

sarial noise attacks.19 Adversarial noise attacks have been effec-

tively implemented in numerous fields,20–26 where only minor

manipulations to the test data (i.e., X data) are required to change

the prediction. We set out to determine the extent to which con-

nectome-basedmodels are susceptible to adversarial attacks as

a measure of trustworthiness.

For a SVM classifier of self-reported sex in ABCD, HCP, and

PNC, we used a gradient-based method21 to create adversarial

noise at the time of model testing on the basis of the model pa-

rameters. Notably, this method required knowledge of the

model parameters. For each fold of our 10-fold cross-valida-

tion, a single sex-specific adversarial pattern was updated

and added to each test connectome until all connectomes

were classified incorrectly (i.e., accuracy = 0; Figure 6). As

the mean absolute value (on the edge level) of the attack

increased, more connectomes were classified incorrectly (Fig-

ure 6). Even when manipulating the data to achieve 0% accu-

racy, the original and adversarial connectomes showed very

strong edge-wise correlations (r � 0.99). We repeated this anal-
ysis for logistic regression and found a similar trend (Figure S4).

Hence, even very subtle adversarial attacks can completely

degrade connectome-based modeling pipelines.

Adversarial noise is small and does not significantly
change a connectome
All analyses in this section were performed using the minimum

adversarial noise magnitude required for 0% accuracy.

Crucially, we found that the mean absolute value of adversarial

noise (whole-connectome level) required to trick connectome-

based classifiers was small (between 0.01 and 0.03 to achieve

0% accuracy). As a result of the small magnitude, addition of

the adversarial noise caused no apparent visual differences

between the real and corrupted connectomes, and the distri-

bution of edge values was nearly identical (Figure 6). More-

over, as adversarial noise was small in magnitude, real and

corrupted connectomes maintained a high edge-wise correla-

tion (r values z 0.99). We also investigated the mean absolute

value of the adversarial noise across 10 canonical resting-state

networks, previously defined with the Shen 268 atlas.51,52 The

scale of the adversarial attacks was small across each subnet-

work (Figure 7A), though notably the within-network noise

values (diagonal elements of matrices in Figure 7A) were signif-

icantly larger than between networks (p < 0.004 for all three

datasets).

Next, we investigated individual differences in both real

and adversarial connectomes through functional connectome

fingerprinting.We performed the fingerprinting identification pro-

cess in each fold of our 10-fold cross-validation, so each identi-

fication procedure included 10% of the 506 participants in the

HCP dataset. The identification rate between Rest1 and Rest2

connectomes was 96.4% when using unmodified Rest1 data
Patterns 4, 100756, July 14, 2023 5



Figure 4. Performance enhancement attacks in the SLIM dataset

This example is shown for prediction of state anxiety in the SLIM dataset with resting-state connectomes and rCPM. In the top row, prediction with the original

dataset shows poor performance (r z 0). In the second row, as in Figure 2, an enhancement pattern proportional to the state anxiety measure can be added to

random edges to enhance performance while maintaining very high correlations between the original and enhanced connectomes (rz 0.99). In the bottom row,

an enhancement pattern can be added to specific subnetworks to alter interpretation. Here, we targeted the enhancement pattern to the salience subnetwork,

and the resulting coefficients reflect that edges in the salience network dominate the prediction outcome.
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and 96.3% when using adversarial Rest1 data. There was no

significant difference in the identification rate for real and adver-

sarial Rest1 scans when using any of the available tasks

to perform fingerprinting (median p value > 0.14 for each

subnetwork; median overall p = 0.5; Figure 7B). Furthermore,

we performed identification between Rest1 original/adversarial

and Rest2 original connectomes using only edges correspond-

ing to each subnetwork and found very similar identification rates

across every subnetwork (median p value > 0.38 for each sub-

network; median overall p = 0.58; Figure 7C). Overall, adversarial

noise attacks preserved the individual uniqueness of connec-

tomes in a fingerprinting paradigm at both the whole-brain level

and the subnetwork level.

DISCUSSION

In this study, we demonstrated that three types of connectome-

based models (rCPM, SVM, logistic regression) were fooled by

small and simple data manipulations, thus suggesting a need

for improvements in trustworthiness. We introduced ‘‘enhance-

ment attacks,’’ which falsely increased prediction performance

from r = 0–0.2 to r > 0.9, and we also applied adversarial noise

attacks to reduce model accuracy from �80% to 0%. Despite

the large differences in performance between the original and

manipulated data, the edges were highly correlated (r z 0.99)
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and downstream analyses (identification rate, sex classification,

graph topology) were unaffected. Overall, nearly any desired

prediction performance could be obtained via minor data manip-

ulations, which presents a concern for a wide range of settings

from scientific integrity to potential down-the-line clinical

applications.

Enhancement attacks falsely increase performance of ma-

chine learningmodels via datamanipulation, and they are distinct

from adversarial noise attacks in both implementation and moti-

vation. Although adversarial noise attacks alter only the test data

to degrade model performance, enhancement attacks alter the

entire dataset (i.e., training and test data) to falsely improve per-

formance. In academic settings, a researcher might use

enhancement attacks to make prediction performance higher

and more publishable, or to support an unfounded neuroscien-

tific claim. Similarly, in a commercial setting, a start-up could

use enhancement attacks to deceive investors and increase the

valuation of its company. In contrast, one might use adversarial

noise to evade a model in a real-world application of machine

learning, such as to bypass computer virus detection software.

With enhancement attacks, we demonstrated that connec-

tome data can be manipulated to falsely enhance performance

or provide evidence for a baseless interpretation. Although

sharing data, especially processed data, hasmany benefits,56–58

data sharing is not a universal safeguard against data



Figure 5. Time series performance enhance-

ment attacks

Node time-series data can be manipulated by

adding a pattern with amplitude proportional to the

IQ of each participant to increase/decrease the

calculated functional connectivity between specific

nodes. In this case, we chose a sinusoid pattern to

add to the time-series data. A representative node is

shown in this figure. The correlations between

original and enhanced time-series (r = 0.988) and

resulting connectome (r = 0.985) data are very high,

despite large differences in prediction performance

(r = 0.15 vs. r = 0.77).

See also Figure S3.
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manipulations. Beyond enhancement attacks affecting individ-

ual studies, if enhanced data are shared on openly available re-

positories, independent researchers could unknowingly publish

results with enhanced data and never be aware of any manipu-

lation. This could potentially set forth a vicious cycle in which

performance benchmarks are overly optimistic, leading to incen-

tives to overfit in other studies or not publish lower performing

models. Overall, an enhanced dataset circulating within the neu-

roimaging community would cause wasted resources and

possibly harmful neuroscientific conclusions. We still advocate

for sharing data,59 including preprocessed data (when appro-

priate) to lower barriers to entry and minimize duplication of

effort. But the potential for sharing datamanipulated in undetect-

able ways should be acknowledged.

Furthermore, adversarial noise attacks degrade the accuracy

of classification models of self-reported sex. These attacks

would primarily occur in clinical applications of fMRI (e.g.,

misclassification of an individual into a diagnostic category),

which are currently limited by other existing roadblocks.60,61 Still,

adversarial noise attacks illustrate the fragility of connectome-

based predictive models by finding the minimum manipulation

required to change classification outcomes.

The underlying factors behind the existence of adversarial

examples have been widely studied in computer science liter-
ature. One proposed driving factor is the

high dimensionality of data.62,63 Similarly,

the high dimensionality of connectome

data is likely contributing to the effective-

ness of enhancement attacks. For

instance, in an extreme case, consider

a dataset with only one feature; the sin-

gle feature would need to be modified

greatly to establish a strong pattern in

the data and thus enhance performance.

However, with thousands to tens of thou-

sands of features, such as in connec-

tome data, each feature can be manipu-

lated in a very minor way so that the

changes to the data are not suspicious

or noticeable. Although each individual

manipulated feature is nearly identical

to the unmodified feature, the effects of

modifying many features are cumulative.

As we showed in this work, minor manip-
ulations via enhancement attacks are small enough to pre-

serve the individuality of each participant’s connectome but

large enough to falsely establish strong multivariate patterns

in high dimensions, thus leading to falsely improved

performance.

An important remaining question is how to make connec-

tome-based pipelines (and general scientific machine learning

pipelines) more trustworthy. In the machine learning literature,

defenses to adversarial attacks, called ‘‘adversarial de-

fenses,’’64–66 have been widely studied. However, the same

strategies for defending against enhancement attacks may

not apply because enhancement attacks alter the entire dataset

(i.e., not just the test data), whichmakes distinguishing between

true signal and false manipulations more difficult. Two ways to

reduce the risk for enhancement attacks are (1) data prove-

nance tracking with a tool such as DataLad67 or blockchains68

and (2) generalization of models to external datasets. Yet

many neuroimaging studies do not include either of these two

methods. In addition, adherence to ethical principles, rigorous

study designs, and awareness of the limitations of connec-

tome-based models are helpful strategies to prevent data

manipulation.

There are several final methodological considerations of our

work. First, trustworthiness has multiple definitions in machine
Patterns 4, 100756, July 14, 2023 7



Figure 6. Adversarial attack accuracy as a

function of magnitude of attack for our three

datasets and SVM classifiers of self-reported

sex

The x axis reflects an increase in the size of the at-

tacks, represented as the mean absolute value

of the added noise pattern, while the y axis shows

accuracy on the manipulated data. The experiment

is repeated for 100 different random seeds and SDs

across the 100 iterations are shown (very small

SDs). At three points for the HCP line, representative

connectomes are shown, as well as histograms with

edge values for the original connectomes, adver-

sarial connectomes, and adversarial noise pattern.

Above each representative connectome is the

edge-wise correlation with the original connectome

See also Figure S4.
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learning, but we define it as robustness to data manipulations.

In addition, enhancement attacks could be applied to corrupt

any statistical analysis or machine learning models with other

modalities, but the high dimensionality of connectome-based

machine learning models makes them a prime target for incon-

spicuous enhancement manipulations. As specific patterns

must be added to the data to cause performance enhance-

ment, enhancement attacks do not extend to cross-dataset

predictions. For adversarial attacks on linear models, the noise

generation method is proportional to model coefficients and

can be directly calculated. The adversarial attack method pre-

sented in this paper also requires knowledge of the model pa-

rameters, but more advanced attacks likely can achieve similar

performance without access to model parameters, such as by

learning a surrogate model on another dataset.21 In addition,

in the present results, SVM is more easily attacked than logis-

tic regression; however, logistic regression suffers from a

lower baseline accuracy (Figure S4). Finally, this study only

examined trust in connectome-based models and is not an

exhaustive test of all neuroimaging modalities and models,

though the methodology in this framework can apply to any

machine learning pipeline, especially those using high-dimen-

sional data.

The neuroimaging community is beginning to recognize and

explore the issues concerning ethics in machine learning, with

a particular focus on bias in datasets and connectome-based

models.13–15 Trust is distinct from bias and represents an

equally important, yet widely overlooked, facet of ethics in

neuroimaging models. Whereas bias describes performance

discrepancies due to a static trait, trust involves manipulating

the data to cause a different outcome. The ability to easily

manipulate data to completely change results underscores

the need for improving trustworthiness of scientific machine
8 Patterns 4, 100756, July 14, 2023
learning, such as connectome-based

models. Although trust is just one aspect

of ethics in machine learning, it can com-

plement ethical benchmarks69–71 that

have been designed to ameliorate other

rampant ethical issues in machine

learning models.72,73 Future efforts to

improve trustworthiness will be neces-
sary to ensure fair and ethical machine learning practices in

neuroimaging.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Requests for further information and resources should be directed to the lead

contact, Matthew Rosenblatt (matthew.rosenblatt@yale.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d All four datasets used in this study are open-source: ABCD (NIMH Data

Archive, https://nda.nih.gov/abcd),34 HCP (ConnectomeDB database,

https://db.humanconnectome.org),35 PNC (dbGaP Study, accession

code: phs000607.v3.p2, https://www.ncbi.nlm.nih.gov/projects/gap/

cgi-bin/study.cgi?study_id=phs000607.v3.p2),36 and SLIM (INDI,

http://fcon_1000.projects.nitrc.org/indi/retro/southwestuni_qiu_index.

html).37 Data collection was approved by the relevant ethics review

board for each of the four datasets.

d BioImage Suite tools used for processing can be accessed at (https://

bioimagesuiteweb.github.io/alphaapp/). MATLAB scripts for trust ana-

lyses are available on GitHub (https://github.com/mattrosenblatt7/

trust_connectomes) and Zenodo74 (https://doi.org/10.5281/zenodo.

7750583).
Datasets

We used classification and regression models in four open-source data-

sets—the ABCD study,34 the HCP,35 the PNC,36 and the SLIM study37—

to evaluate the robustness of connectome-based models to several styles

of adversarial attacks. These datasets were selected because they are

commonly used, relatively large, open-source fMRI datasets. Although

many other fMRI datasets exist, these four datasets are representative of

the field and allow us to evaluate enhancement and adversarial attacks

in various scenarios. The first three datasets (ABCD, HCP, and PNC)

were used to demonstrate the effectiveness of enhancement and

mailto:matthew.rosenblatt@yale.edu
https://nda.nih.gov/abcd
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https://bioimagesuiteweb.github.io/alphaapp/
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Figure 7. Downstream effects of adversarial

noise attacks

(A) Breakdown of SVM adversarial noise into sub-

networks. Brighter colors reflect higher mean ab-

solute value of noise in that subnetwork.

(B) Identification rates in original and adversarial

connectomes in the HCP dataset. The original or

adversarial Rest1 scans were compared to con-

nectomes in another session (Rest2) or task. The

connectome with the highest edge-wise correlation

was selected as the predicted identity. The error

bars represent the SD of identification rate across

100 random seeds.

(C) Using original or adversarial Rest1 scans, we

identified participants on the basis of their correla-

tions with the original Rest2 scans. For this portion,

we used only a specific subset of edges corre-

sponding to each subnetwork to predict the identity.
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adversarial attacks in prediction of IQ and self-reported sex, respectively.

The SLIM dataset was used only to illustrate an example of enhancement

of a clinically relevant prediction (state anxiety).

The ABCD first release consists of 4,524 participants ranging from 9 to 10

years old in the United States from 21 different acquisition sites. The HCP

900 subjects release has imaging data from 897 healthy adults ages 22–35

years in the United States. The PNC dataset first release contains data from

youth ages 8–21 years in the greater Philadelphia area, with multimodal neuro-

imaging data collected in 1,000 participants. The SLIM dataset has 595 healthy

young adults ages 17–27 years in China.

Processing

For the ABCDandPNCdatasets, fMRI dataweremotion corrected and theShen

atlaswaswarped tosingleparticipant spaceaspreviouslydescribed.38,39For the

HCP dataset, we started with the minimally preprocessed HCP data.40 Further

preprocessing steps were performed using BioImage Suite41 and are the same

across studies. Several covariates of no interest were regressed from partici-

pants’ functional data including linear and quadratic drifts, mean cerebrospinal

fluid signal,meanwhitematter signal, andmeanglobal signal. For additional con-

trol of possible motion-related confounds, a 24-parameter motion model

(including six rigid body motion parameters, six temporal derivatives, and these

terms squared) was regressed from the data. The data were temporally

smoothed with a Gaussian filter (approximate cutoff frequency = 0.12 Hz). We

then applied a canonical gray matter mask defined in common space, so only

voxels in the gray matter were used in further calculations. Denoised data were

parcellated into 268 nodes using the Shen atlas.42 Next, the mean time courses

of each nodepairwere correlated, and correlation coefficientswere Fisher trans-

formed,generatingaconnectome foreachparticipant. For theHCPdataset,con-

nectomes for each phase encoding (i.e., RL and LR) were calculated indepen-

dently and then averaged together. For the SLIM dataset, preprocessed

connectomes were downloaded, with preprocessing steps described in.37 After

excluding participants for excessivemotion (>0.2mm) andmissing nodes due to

lack of full brain coverage, 3,362 individuals in the ABCDdataset, 506 in the HCP

dataset, 561 in the PNC dataset, and 445 in the SLIM dataset were retained.

Baseline regression models

For all baseline regression models, we trained ridge-regression connectome-

based predictive models (rCPM)44 in MATLAB (The MathWorks) with 10-fold

cross-validation and a nested 10-fold cross-validation to select the L2 regula-

rization parameter, l. For feature selection, we correlated each edge with
the phenotype of interest and picked the top 10%

of edges with the lowest p values. In the nested

folds, we performed a grid search for l. We used

MATLAB’s default settings for a grid search over l

(detailed description: https://www.mathworks.

com/help/stats/lasso.html). In sum, we searched
over a geometric sequence with the maximum being the largest l that gives

a nonnull model and the minimum being lmax*10
�4. l is then selected as the

largest l for which the mean squared error (MSE) is within 1 standard error

of the minimum MSE. With this method, the l is generally very high, often

l z 100–150 (log[l] z 4.6–5). To explore the effectiveness of enhancement

attacks across a wide variety of l, we also included a parameter sensitivity

analysis (Figure S1).

For Table S2, we compared ridge regression models and neural networks in

HCP resting-state data using 100% of available features in both cases and

enhancing 100% of edges, as opposed to 20% in the analyses in the main

text. We used ridge regression with a regularization parameter of 1,000 and

all default parameters for the neural network (MLPRegressor function in sci-

kit-learn75). These results demonstrate that enhancement attacks at various

scales are still effective in neural networks. Furthermore, in theory, neural net-

works should be able to learn non-linear enhancement patterns, whereas ridge

regression models cannot.

For ABCD, HCP, and PNC, the phenotype of interest was a fluid intelligence

(IQ) measurement. For ABCD, Raven’s progressive matrices76 were used,

scaled by age (mean 6.31, SD 2.56, range 1–17, median 6), and the samemea-

sure, though not scaled by age, was used for HCP (mean 17.54, SD 4.45, range

5–24, median 19). For PNC, IQ was assessed using the PennMatrix Reasoning

test (mean 12.28, SD 4.04, range 0–23, median 12).77 For SLIM, the phenotype

of interest was the state anxiety score, as assessed by the State-Trait Anxiety

Inventory55 (mean 35.66, SD 8.28, range 20–65, median 35).

The main metric we used to determine prediction performance was Pear-

son’s r between original and predicted phenotypes. We also reported the

cross-validation R2, called q2,47 which is defined as

q2 = 1 � MSEðby ; yÞ
MSEðy; yÞ = 1 � NMSE

Baseline classification models

We trained both SVM (linear kernel) and logistic regression models in MATLAB

to predict self-reported sex in ABCD, HCP, and PNC. The self-reported sex

of participants by dataset was: ABCD (1,653 female, 1,609 male), HCP

(270 female, 236 male), and PNC (318 female, 244 male). Models were

trained with 10-fold cross-validation, with nested 5-fold cross-validation

to select an L2 regularization parameter. For the L2 regularization hyperpara-

meter search, we used MATLAB’s default search for the ‘‘fitclinear’’
Patterns 4, 100756, July 14, 2023 9

https://www.mathworks.com/help/stats/lasso.html
https://www.mathworks.com/help/stats/lasso.html


ll
OPEN ACCESS Article
function (https://www.mathworks.com/help/stats/fitclinear.html), which is

Bayesian optimization, as described in (https://www.mathworks.com/help/

stats/bayesianoptimization.html). Essentially, it uses Bayesian optimization

to search within the range of [1e-5/number of training samples, 1e5/number

of training samples]. We used accuracy as our primary evaluation metric,

though we also reported sensitivity and specificity in Table S1.
Connectome enhancement

Weenhanced IQ prediction in ABCD, HCP, and PNC. To enhance connectome

data, we first Z-scored the phenotypic measurements.

yz)
y � y

sy

Then, we randomly selected 20% of all edges e to manipulate. For each of

the selected edges, we added a value with magnitude proportional to each

participant’s Z-scored IQ.

ei;j ) ei;j ± k � yz;j ;

where ei,j represents edge i for participant j, and yz,j is the Z-scored phenotype

for participant j.

Whether we added or subtracted each value was randomly determined for

each edge. The results presented in Figure 3 used k = {0, 0.004, 0.007, 0.01,

0.014, 0.02, 0.03}. k = 0 was used as a reference and means that no enhance-

ment was performed.

After injecting the enhancement pattern into each connectome, rCPM

models were re-trained, as described above, to predict each phenotype.

Because we injected patterns proportional to the phenotype of interest, we

would expect performance to be falsely enhanced.We repeated enhancement

for each value of k for 100 different random seeds and recorded r and q2 at

each iteration.
Enhancement downstream analyses

In addition to r and q2, we evaluated enhanced connectomes in several other

analyses—self-reported sex classification, functional connectome finger-

printing, and investigation of graph properties—to determine their similarity

with original connectomes.

For self-reported sex classification, we used the data that was enhanced for

IQ prediction to train a SVM classifier as described in baseline classification

models. At each different scale of the enhancement k, we compared the sex

classification performance to that of the unaltered dataset, using accuracy

as the main metric.

We also performed functional connectome fingerprinting50,51 following the

method of Finn et al.51 We performed fingerprinting only in the HCP dataset

because it has two resting-state scans. A total of 50 or 51 participants were

used at a time for fingerprinting evaluation, corresponding to all the connec-

tomes in a single fold of the 10-fold cross-validation enhancement pipeline

(10% of 506 HCP participants). With 50 participants, the identification rate of

random guessing is 2%. To predict identity, we first calculated the edge-

wise correlation of each participant’s Rest1 connectome with their Rest2 con-

nectome, and the predicted identity of each participant corresponded to the

Rest2 connectome with the highest edge-wise correlation with their Rest1

connectome. We repeated the fingerprinting process using both original

Rest1 connectomes and Rest1 connectomes that had been enhanced for IQ

prediction.

In a further implementation of fingerprinting, we identified participants using

only edges that are part of selected subnetworks, as previously defined with

the Shen 268 atlas.51,52 10 networks were defined on the basis of nodes (Fig-

ure S2): medial-frontal (MF), fronto-parietal (FP), default mode (DMN), motor

(MOT), visual I (VI), visual II (VII), visual association (VAs), salience (SAL),

subcortical (SC), cerebellum (CBL). On the basis of these 10 networks, we

defined 55 subnetworks, where each subnetwork was defined as edges

belonging to each pair of networks. For example, 10 subnetworks involved

the MF network: MF-MF, MF-FP, MF-DMN, MF-MOT, MF-VI, MF-VII,

MF-VAs, MF-SAL, MF-SC, MF-CBL. The fingerprinting procedure followed

the same process as above, except edge-wise correlations were calculated

only with edges belonging to one of the 55 subnetworks.
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Moreover, we evaluated several graph properties for the positive edges

only, including strength, assortativity, and clustering coefficient, in the original

and enhanced connectomes.53 All three of these properties are node-level

metrics, and we evaluated the similarity between original and enhanced con-

nectomes by correlating the node-level metrics for each of these measures.

Strength is the sum of edge weights for each node. Assortativity measures

how similar the strengths are between connected nodes. The clustering coef-

ficient is the mean weight of triangles for each node.53

Targeted enhancement

In an extension of the above attack, we constrained the injected enhancement

pattern to a specific resting-state network instead of a random subset

of edges. We performed this enhancement in the SLIM37 dataset (n = 445) to

predict state anxiety scores from the State-Trait Anxiety Inventory.55 After

manipulating edges of one network, we repeated model training with rCPM.

We also evaluated the model coefficients (averaged over the 10 folds of

cross-validation) to assess how changing a specific network altered the distri-

bution of coefficients across networks.

Time-series enhancement

We used HCP node time-series data (268-node Shen atlas; 1,200 time points)

and prediction of IQ as an example of time-series enhancement. We arbitrarily

selected an enhancement pattern as a sinusoid with four periods across the

1,200 time points. For each participant, the enhancement pattern (sinusoid)

was scaled by a factor proportional to their IQ score and the original correlation

of that edge with the IQ scores. Then, for each edge, we found the two nodes

corresponding to that particular edge. If the edge was positively correlated

with IQ, we added the participant-specific enhancement pattern to both

node time-series. If the edge was negatively correlated with IQ, we added

the enhancement pattern to one node and subtracted it from the other node.

Afterenhancing the time-seriesdata,wecomputedtheconnectomesbytaking

the correlation between each pair of nodes and applying the Fisher transform.

Then, rCPM models were trained with 10-fold cross-validation to predict IQ.

We recorded the similarity (Pearson’s r) between the original and enhanced

time-seriesdataalongwithsimilaritybetween the resultingoriginal andenhanced

connectomes. Although theremaybe othermore effective strategies to enhance

time-series data, we performed this simple attack as a proof of concept.

Adversarial noise attacks

In both classifiers (SVM, logistic regression), we used a gradient-based attack

following the method of Biggio et al.21 The attacks occurred on the test data

at the time of model testing and are ‘‘white-box’’ attacks, meaning that they

required access to the model parameters. Let our decision function be repre-

sented by g(x) with input features x. A participant was classified as female if

g(x) < 0 andmale ifg(x) > 0. The goal of the adversarial noise attackwas tomanip-

ulate all the true female (male) connectomes such that the adversarial g(x) > 0

(<0). The noise for female and male connectomes were optimized separately.

The loss functions were

Lf = � gðx + nf Þ ðall female connectomesÞ

and

Lm = gðx + nmÞ ðall male connectomesÞ

Adversarial noise was initialized to zeros and iteratively updated on the basis

of the gradient:

nf=m ) nf=m � l
dLf=m

dnf=m

;

where l is the step size.

For linear SVM and logistic regression, the derivative term was given by:

dLf=m

dnf=m

= Hb

for coefficients b. For these linearmodels, this process just simplifies to adding

adversarial noise proportional to the coefficients.

https://www.mathworks.com/help/stats/fitclinear.html
https://www.mathworks.com/help/stats/bayesianoptimization.html
https://www.mathworks.com/help/stats/bayesianoptimization.html
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We also explored how the adversarial noise was distributed across subnet-

works by taking the mean absolute value of the adversarial noise in each

subnetwork.

Adversarial noise downstream analyses

We compared functional connectome fingerprinting rates between original

and adversarial Rest1 connectomes, as previously described. Notably, we

performed fingerprinting with the Rest1 connectomes and each of the eight

other tasks in HCP (Rest2, gambling, language, motor, relational, social, work-

ing memory, emotion). We also performed subnetwork-specific fingerprinting.

Statistics

As previously described, performance of regression models was quantified with

Pearson’s r or cross-validation R2, called q2, between measured and predicted

phenotypes. Classifiers were assessed by prediction accuracy, sensitivity, and

specificity. For comparisons of real and manipulated connectomes, we

computedPearson’s rbetweenoriginalandmanipulatededges, towhichwerefer

to as ‘‘edge-wise correlation’’ throughout thiswork. To assess the significance of

thedifferences in ID rateandaccuracybetweenoriginalandmanipulateddata,we

usedMcNemar’s test78and reported themedianpvalueacross the100 iterations.
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