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Rheumatoid arthritis (RA), a chronic autoimmune disorder, imposes a
substantial global health burden through elevated disability rates, systemic
complications, and socioeconomic consequences. Chronic synovitis and
progressive joint destruction characterize this disease, driven by
dysregulated innate and adaptive immune responses that amplify synovial
inflammation, osteoclastogenesis, and irreversible tissue damage. Aberrant
activation of interleukin (IL) -1 family cytokines critically contributes to RA
pathogenesis. These cytokines mediate dual mechanisms: pro-inflammatory
agonists like IL-1β, IL-18, and IL-36 accelerate disease progression, whereas
insufficient levels of anti-inflammatory antagonists such as IL-1Ra and IL-37
disrupt the balance required to suppress pathogenic cascades. Clinical trials
evaluating IL-1-targeting biologics—including anakinra and
canakinumab—have demonstrated robust early efficacy. However, late-stage
interventions exhibit diminished therapeutic returns, largely due to irreversible
joint damage and compensatory activation of redundant cytokine networks.
These findings emphasize the need for precise patient stratification. Single-
pathway IL-1 inhibition faces inherent limitations, driving the development of
multi-target strategies to counteract cytokine redundancy and reduce
therapeutic resistance. This review systematically analyzes the mechanistic
roles of IL-1 family cytokines in RA, evaluates clinical outcomes and safety
profiles of IL-1-targeted therapies, and proposes innovative strategies to
advance RA treatment.
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1 Introduction

Rheumatoid arthritis (RA) is a multifactorial chronic autoimmune disease primarily
characterized by joint involvement in the hands, wrists, feet, ankles, knees, shoulders, and
elbows. Common symptoms include chronic joint pain, stiffness, tenderness, fever, and
swelling, leading to limitations in daily activities and low quality of life (Long et al., 2022).
According to statistics, 18 million people worldwide were affected by RA in 2019
(Collaborators, 2020). Approximately 70% of RA patients are female, 55% are over the
age of 55, and 13 million RA patients can achieve improvement through treatment (Cieza
et al., 2021).
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The pathogenesis of RA involves a multistep cascade of immune
dysregulation, stemming from aberrant interactions between innate
and adaptive immunity. This process is mediated by genetic
polymorphisms, epigenetic modifications, and environmental
triggers, which collectively induce synovial inflammation,
hyperplasia, angiogenesis, and cartilage degradation, ultimately
leading to irreversible bone destruction (Jang et al., 2022).
Cytokines, particularly pro-inflammatory mediators, such as
tumor necrosis factor-alpha (TNF-α), interleukin (IL) -1, IL-6,
and IL-17 are central to RA progression by amplifying
inflammatory responses and tissue damage (Kugler et al., 2023).
Targeted therapies, including TNF-α inhibitors and IL-6 receptor
antagonists, effectively reduce inflammation and improve outcomes
through cytokine blockade (Smolen, 2020). However, treatment
resistance persists in part of patients despite these advances.
Notably, IL-1 has emerged as a critical driver of bone erosion via
nucleotide- binding oligomerization domain 3 (NLRP3)
inflammasome activation, underscoring its therapeutic potential
for refractory RA and structural damage mitigation.

Cytokines of the IL-1 family are crucial factors in regulating
immune responses (Broderick and Hoffman, 2022). This family
comprises both pro-inflammatory mediators—including IL-1α, IL-
1β, IL-18 and IL-33—and anti-inflammatory counterparts, such as
IL-37 and IL-38 (Vincent, 2019). The intricate interplay between
these cytokines and their contributions, relative to the well-
established actions of TNF-α and IL-6, highlights a unique
pathogenic axis that may not be fully addressed by current
therapeutic strategies. The IL-1 family cytokines have
mechanisms that are not covered by TNF and IL-6 (for example,
IL-1β drives synovial inflammation and bone erosion by activating
NLRP3 inflammasomes, while IL-37 exerts its anti-inflammatory
effects by inhibiting NLRP3 activity) (Tseng et al., 2022). Research
on IL-1 antagonists fills the gap left by TNF-α/IL-6 inhibitors,
especially in controlling structural damage, treating refractory
cases, and managing comorbidities, offering unique value.
Consequently, targeting IL-1 family members offers a
complementary approach that could mitigate the inflammatory
cascade in RA more comprehensively.

This review provides a detailed overview of recent investigations
into the roles of IL-1 family cytokines in RA pathogenesis and
critically examines the current status of drugs targeting these
cytokines in clinical trials, thereby offering novel perspectives on
the treatment of rheumatoid diseases.

2 Etiological factors of RA

2.1 Genetic factors

Genetic factors are important risk factors. Over 100 genetic loci
have been identified to influence the development of RA through
regulating immunity and other pathways (Padyukov, 2022). The
genetic predisposition to RA is strongly linked toHLA-DRB1 alleles,
particularly in anti-citrullinated protein antibody (ACPA)-positive
subtypes.HLA-DRB1*04 andHLA-DRB1*10, the primary risk alleles
for ACPA-positive RA, encode valine (Val) at position 11, forming
the “shared epitope” (SE) (Raychaudhuri et al., 2012). These alleles
confer a markedly elevated risk (odds ratio, OR = 3.88–10) by

binding citrullinated peptides to activate T cells and initiate
autoimmune cascades (Irigoyen et al., 2005; van der Woude
et al., 2010). Smoking interacts synergistically with HLA genes,
amplifying genetic risk in SE allele carriers (Stolt et al., 2003).
Conversely, HLA-DRB1*13 (encoding glutamic acid [Glu] at
position 71) demonstrates a protective effect against ACPA-
positive RA (Terao et al., 2019). In contrast, ACPA-negative RA
exhibits weaker genetic associations, primarily linked to the presence
of leucine (Leu) or serine (Ser) at position 11 of HLA-DRB1
(Bossini-Castillo et al., 2015). Secondary HLA loci also
contribute: HLA-B (Asp at position 9; OR = 2.12), HLA-DPB1
(Phe at position 9; OR = 1.40), and HLA-A (Asn at position 77;
OR = 0.85) showmodest effects, withHLA-A suggesting a protective
trend (Regueiro et al., 2021).

What’s more, the genetic risk of RA shows heterogeneity across
different populations.HLA-DRB1 alleles exhibit distinct risk profiles
across ethnic groups. European ACPA-positive RA predominantly
associates with HLA-DRB104 and HLA-DRB110 (OR = 3.88),
whereas Japanese populations show HLA-DRB109 (Asp at
position 11) as the primary risk allele, with independent
contributions from HLA-DQ loci (Raychaudhuri et al., 2012;
Okada et al., 2016). In Han Chinese, HLA-DQA1 (Asp at
position 160) independently correlates with ACPA-positive RA,
underscoring HLA-II molecules’ role in antigen presentation
(Guo et al., 2019). The HLA-DQB103:02 allele reduces ACPA-
positive RA risk in Malaysians (OR = 0.85), likely via T-cell
receptor signaling modulation (Tan et al., 2021). Among African
Americans, HLA-DRB104 demonstrates strong RA risk association
(OR = 2.12), though its population frequency and epistatic
interactions require validation (Danila et al., 2017). These
findings collectively highlight HLA-driven RA pathogenesis
through antigen presentation and immune dysregulation. Future
cross-population multi-omics studies should clarify genetic
heterogeneity’s implications for precision medicine.

The genetic architecture of RA extends beyond HLA genes to
encompass over 150 non-HLA loci that orchestrate immune
regulation, inflammatory signaling, and cellular activation
pathways (Padyukov, 2022). Rong et al. demonstrated that
specific IL1B polymorphisms differentially modulate RA risk in
Han Chinese populations: the rs1143643 variant confers protection,
whereas rs16944 elevates susceptibility (Rong et al., 2020). Zhu et al.
further identified significant associations between IL-1A +4845G/T
polymorphisms and RA susceptibility across populations (dominant
model: p = 0.02; recessive model: p = 0.05; allelic model: p = 0.04),
while IL-1B +3954C/T polymorphisms showed population-specific
effects, demonstrating global significance in general populations
(recessive model: p = 0.03; allelic model: p = 0.01) and enhanced
association in Asian cohorts (recessive model: p = 0.007; allelic
model: p = 0.002) (Braga et al., 2024). Beyond these loci, multiple
genes critically contribute to RA pathogenesis. The PTPN22
rs2476601 variant (OR = 1.81, as reflected in pooled meta-
analyses) in European populations augments autoreactive T-cell
activation through impaired T-cell receptor signaling via
lymphocyte tyrosine phosphatase (Begovich et al., 2004). CTLA4
mitigates autoimmune risk (OR = 0.88) by suppressing T-cell co-
stimulation, particularly in ACPA-positive subtypes (Stahl et al.,
2010). STAT4 rs7574865 potentiates pro-inflammatory cytokine
signaling (IL-12/IL-23) with risk alleles (OR = 1.16) showing
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trans-ethnic associations (Okada et al., 2012). TNFAIP3 rs10499194
(OR = 1.33) drives inflammation through dysregulated NF-κB
inhibition, strongly correlating with ACPA-positive RA (Eyre
et al., 2012). PADI4 rs2240336 facilitates protein citrullination
and subsequent ACPA production (OR = 0.88), exhibiting
heightened significance in Asian populations (Eyre et al., 2012).
The IL6R rs2228145 protective variant (OR = 0.93) modulates
inflammatory cascades through IL-6 receptor regulation (Okada
et al., 2014). Additional contributors include TRAF1-C5
(inflammatory signaling), CCR6 (T-cell chemotaxis), and IRF5
(interferon response), collectively underscoring the polygenic
nature of RA susceptibility (Stahl et al., 2010).

2.2 Environmental factors

The pathogenesis of RA is closely related to genetic factors and
involves the participation of various environmental factors. Among
these environmental factors, smoking is central, significantly
interacting with genetic susceptibility (especially HLA genes)
(Wouters et al., 2022). Other factors, such as infections,
hormones, and occupational exposures, contribute to disease
onset through different mechanisms.

Tobacco smoking remains the most well-characterized
environmental risk factor for RA, demonstrating particular
association with APCA-positive subtypes. Cigarette smoking
synergistically interacts with HLA-DRB1 SE alleles (*04, *10) to
promote RA risk, with smokers carrying a single SE allele exhibiting
an OR of approximately 3.8 (Padyukov et al., 2004). Tobacco-
derived chemicals including nicotine and tar induce protein
citrullination through enzymatic modification, thereby initiating
ACPA production and subsequent autoimmune cascades. These
compounds directly stimulate immune cell activation, enhancing
TNF-α and IL-17 secretion while impairing Treg cell functionality,
ultimately disrupting immune homeostasis. Occupational hazards,
notably chronic silica dust and formaldehyde exposure, exert pro-
inflammatory effects through alveolar macrophage activation
(Klareskog et al., 2020). This process triggers IL-1β and TNF-α
release, propagating systemic inflammatory responses that elevate
RA susceptibility. Environmental pollutants such as PM2.5 and
NOx compounds demonstrate dose-dependent RA risk
enhancement, particularly in genetically predisposed
populations (Zhang et al., 2023). These particulates primarily
activate the NF-κB signaling pathway, stimulating synovial cells
to secrete inflammatory mediators including IL-1β and TNF-α,
which accelerate joint inflammation and potentiate
osteodestructive processes.

Dietary modifications alter gut microbiota composition and
dynamics, inducing dysbiosis that sustains systemic pro-
inflammatory states (Lin et al., 2023). Vitamin D deficiency
impairs immune tolerance through disrupted Treg cell regulation,
elevating autoimmune disease susceptibility (Charoenngam, 2021).
Elevated sodium chloride intake drives the polarization of
pathogenic TH17 cells, particularly under conditions mimicking
interstitial sodium concentrations, which amplifies IL-17A and GM-
CSF production to exacerbate inflammatory cascades. Adipose
tissue dysfunction elevates reactive oxygen species (ROS)
generation while stimulating adipocyte-derived pro-inflammatory

cytokines including TNF-α and IL-6, thereby accelerating systemic
inflammation and RA progression (Braga et al., 2024).

Pathogen-induced RA manifests through gene-environment
interactions, where PTPN22 or STAT4 genetic variants lower
infection response thresholds to specific microbes (Jang et al.,
2022). Periodontal pathogens like Porphyromonas gingivalis
induce protein citrullination via peptidylarginine deiminase
enzymes, generating autoantigens that cross-react with ACPA
(Kobayashi and Bartold, 2023). While Epstein-Barr virus (EBV)
exhibits epidemiological associations with RA, mechanistic evidence
remains limited; proposed pathways include EBV nuclear antigen-1
molecular mimicry of citrullinated fibrinogen, which may activate
autoreactive T-cell clones and synovial antibody production
(Costenbader and Karlson, 2006).

2.3 Immune factors

The aberrant activation of the immune system plays a central
role in the pathological progression of RA. Immune dysregulation is
predominantly characterized by an imbalance in CD4+/CD8+ T-cell
subset ratios and disruption of the cytokine network. In most
patients, CD4+ T cells predominate over CD8+ T cells and secrete
cytokines that influence the differentiation and activation of other
immune cells, including CD8+ T and B cells. While CD8+ T cells
contribute to the inflammatory milieu, their role is generally
considered secondary to that of CD4+ T cells in driving immune
dysregulation in RA (Jang et al., 2022). Within the synovial
membrane in RA, CD4+ T cells serve as the primary drivers of
inflammatory responses and disease relapse, while CD8+ T cells play
a secondary role in disease pathogenesis. CD4+ T cells can produce
IL-17, activate Th17 cells and inhibit Treg cells. CD8+ T cells secrete
IFN-γ, CCL5 and other cytokines that enhance the inflammatory
microenvironment (Jonsson et al., 2022). These cytokines act on
CD14 mononuclear precursor cells of osteoclasts, influencing the
differentiation or maturation of osteoclasts via the receptor activator
of nuclear factor κB (RANK)/ receptor activator of nuclear factor κB
ligand (RANKL)/osteoprotegerin (OPG) signaling pathway
(Aletaha and Smolen, 2018). Under inflammatory conditions,
myeloid lineage cells such as macrophages release substantial
TNF-α upon stimulation by IL-17 and IFN-γ, a pivotal cytokine
driving bone erosion through direct activation of osteoclast
differentiation and concurrent suppression of osteoblast
functionality (Wang and He, 2020). Clinically employed anti-
TNF-α biologics like infliximab demonstrate efficacy in
mitigating osteoclast-mediated joint destruction and attenuating
inflammatory responses in RA. However, persistent impairment
of osteoblast-driven bone formation remains unresolved (Malviya
et al., 2009; Kwon et al., 2017). This therapeutic limitation
underscores the necessity to explore complementary pathways.
Notably, IL-1 family cytokines (IL-1α/IL-1β) exhibit potent
osteoclastogenic effects via the RANK/RANKL/OPG signaling
axis, operating independently of TNF-α-mediated pathways (Son
et al., 2020). Mechanistically, IL-1 enhances RANKL expression in
osteoblasts and stromal cells, amplifying osteoclast precursor
differentiation through NF-κB and MAPK activation. IL-1Ra
inhibits osteoclastogenesis (Izawa et al., 2014; Zou et al., 2021).
While TNF-α inhibitors primarily address inflammatory osteolysis,
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IL-1 blockade concurrently enhances osteoanabolic processes and
suppresses bone resorption. This multi-target strategy could
overcome the limitations of monotherapy by simultaneously
protecting against structural joint damage and facilitating bone
repair in RA.

B cells play a pivotal role in the pathogenesis and progression of
RA. Antigen presenting cells (APCs) can recognize and present
immune complexes, activating CD4+ T helper cells and B cells via
co-stimulation. Activated B cells secrete both inflammatory and
regulatory cytokines, form ectopic germinal centers and activate
T cells via antigen presentation and co-stimulatory molecules (Wu
et al., 2021). In parallel, B cells produce various antibodies, including
rheumatoid factor (RF) antibodies targeting the Fc portion of
immunoglobulin G (IgG), and anti-citrullinated protein
antibodies (ACPA) targeting citrullinated proteins (Xiao et al.,
2021). Immune complexes formed through antigen-antibody
binding accumulate in the synovial fluid, activating osteoclasts to
cause bone damage. They also release cytokines such as tumor TNF-
α and IL-8, inducing immune cell infiltration and exacerbating
chronic inflammation in the joints (Maeda et al., 2022). The IL-1
family modulates B-cell activity and antibody production (Boraschi
et al., 2018). Pro-inflammatory cytokines within the IL-1 family,
such as IL-1 and IL-18, directly stimulate B-cell activation and
promote the production of antibodies like RF and ACPA (Mateen
et al., 2016). Current Phase III clinical trial results indicate that IL-1
blockade therapy significantly reduces ACPA and RF levels in
patients’ serum and is positively correlated with the
normalization of B-cell subset ratios, suggesting that targeting the
IL-1 family may be a strategy for regulating abnormal B-cell
activation and improving the course of RA (Winkler et al., 2021).

RA extends beyond localized joint pathology to manifest as a
systemic autoimmune disorder. RA patients exhibit immune system
dysregulation characterized by self-reactive tissue destruction.
While hallmark rheumatic features including joint swelling, pain,
and stiffness dominate clinical presentation, multi-organ
involvement frequently develops. Cutaneous manifestations range
from subcutaneous rheumatoid nodules to vasculitic lesions;
pulmonary complications include progressive interstitial lung
disease; cardiovascular risks escalate through accelerated
atherosclerosis. Secondary Sjögren’s syndrome, characterized by
xerophthalmia and xerostomia, develops in approximately 19.5%
of RA patients (Alani et al., 2018). Additionally, hematologic
disturbances (e.g., anemia of chronic disease) and peripheral
neuropathies frequently accompany advanced disease (Conforti
et al., 2021). This multi-system pathophysiology necessitates
comprehensive management strategies targeting both synovial
inflammation and extra-articular sequelae. Modern therapeutic
paradigms combine immunomodulatory biologics/JAK inhibitors
with proactive monitoring for cardiopulmonary and ocular
complications to optimize long-term outcomes.

3 The role of IL-1 family cytokines in RA

The IL-1 family of cytokines may have overlapping and
complementary effects in promoting or inhibiting the
development of RA. Within the IL-1 family, IL-1α, IL-1β, IL-18,
IL-33, IL-36α, IL-36β, and IL-36γ can promote the occurrence and

development of RA, while IL-1Ra, IL-36Ra, IL-37, and IL-38 can
suppress inflammatory responses. The specific mechanisms of each
cytokine in the IL-1 family in RA are as follows:

3.1 IL-1

The IL-1 cytokine family features three principal subtypes: IL-
1α, IL-1β, and the endogenous antagonist IL-1Ra. Membrane-bound
IL-1α drives early localized inflammation through paracrine
activation of RANKL expression in adjacent stromal cells,
inducing osteoclastogenesis via RANK/RANKL/OPG-independent
mechanisms (Kim et al., 2009). In contrast, caspase-1-activated IL-
1β exerts systemic effects by disrupting RANKL/OPG equilibrium
through dual pathways - directly upregulating osteoclast RANKL
production while suppressing osteoblast OPG secretion. IL-1Ra
competitively blocks IL-1 receptor binding, effectively inhibiting
NF-κB and MAPK signaling cascades. Chronic TLR-mediated NF-
κB activation in RA synovium induces NLRP3 and pro-IL-1β co-
expression. Potassium efflux, ROS overproduction, or lysosomal
damage triggers NLRP3 inflammasome assembly, enabling caspase-
1-mediated proteolytic cleavage and extracellular release of mature
IL-1β. This bioactive cytokine binds IL-1R to amplify NF-κB/MAPK
signaling in osteoclast precursors, driving NFATc1-dependent
differentiation and bone resorption (Kong et al., 1999; Roux and
Orcel, 2000). IL-1β simultaneously reprograms Tregs into
osteoclastogenic O-Tregs through RANKL induction, effectively
converting immunosuppressive cells into bone-destructive
effectors (Nasi et al., 2017; Levescot et al., 2021). IL-1α and IL-1β
can stimulate the proliferation of synovial fibroblasts and the release
of matrix metalloproteinases (MMPs), leading to the breakdown of
collagen in the cartilage matrix (Reboul et al., 1996).

IL-1β triggers inflammatory responses in fibroblast-like
synoviocytes, including MH7A cells, while upregulating
GATA4 expression. GATA4 directly binds to gene promoters to
enhance transcriptional activation of angiogenic factors VEGFA and
VEGFC (Jia et al., 2018). Through activation of the VEGFR2/PI3K/
AKT pathway, VEGF stimulates synovial fibroblast proliferation
and invasion, exemplified by MH7A cells, ultimately driving
pathological synovial tissue thickening. Newly formed vasculature
combines with hyperplastic synovium to generate an erosive pannus
that progressively degrades articular cartilage and subchondral bone,
culminating in irreversible joint damage (Chen et al., 2024).
Furthermore, IL-1α and IL-1β can also induce articular
chondrocytes to produce nitric oxide (NO) and prostaglandin E2
(PGE2), inhibiting the synthesis of matrix proteins and contributing
to cartilage destruction (Pelletier et al., 1996). Additionally, IL-1β,
through its ability to activate signaling pathways such as MAPK
upon binding to cellular receptors, can trigger the release of other
cytokines and drive the polarization of Th17 cells. This, in turn,
promotes the release of IL-17 from CD4+ T cells, ultimately
enhancing the inflammatory response (Iwahashi et al., 2004).

3.2 IL-18

IL-18, a pro-inflammatory cytokine of the IL-1 superfamily,
predominantly exists as an inactive precursor (pro-IL-18) in
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macrophages, dendritic cells, and epithelial lineages. Canonical
activation requires caspase-1-mediated proteolytic cleavage
within the NLRP3 inflammasome, enabling secretion of
mature IL-18 via gasdermin D (GSDMD) pores. During
Gram-negative bacterial infections, non-immune cells bypass
this pathway by directly activating caspase-4/5 to process pro-
IL-18, expanding its functional repertoire in innate immunity
(Landy et al., 2024).

Upon binding to its heterodimeric receptor (IL-18Rα/β), IL-18
triggers MyD88-dependent signaling cascades that activate NF-κB
and MAPK pathways. These pathways drive transcriptional
upregulation of IL-6, IL-8, and CXCL10 while promoting
Th17 differentiation and IL-17 production (Rex et al., 2020).
Synergy with IL-12 amplifies IFN-γ secretion in Th1 and NK
cells, establishing a feedforward loop that sustains synovial
inflammation through TNF-α, IL-1β, and MMP-mediated
cartilage degradation (Baggio et al., 2023).

In RA, IL-18 exacerbates bone erosion through dual
mechanisms. First, it directly modulates osteoclastogenesis by
skewing the RANKL/OPG balance toward bone resorption
(Zhang et al., 2013). Second, IL-18 synergizes with TNF-α and
IL-6 to activate fibroblast-like synoviocytes (FLS), which secrete
matrix metalloproteinases (MMPs) that degrade cartilage and
subchondral bone (Puren et al., 1998; Morel et al., 2001). T cells
in RA synovium further amplify osteoclast formation by
increasing RANKL production under IL-18 stimulation.
Preliminary evidence indicates that IL-18 bypasses RANKL
dependence in certain contexts, directly inducing osteoclast
differentiation and bone destruction (Kim et al., 2015). The
cytokine also recruits inflammatory cells to joints via
CCL2 upregulation, creating a self-perpetuating cycle of
inflammation. Concurrently, IL-18 enhances Th17-mediated
IL-17 and IL-22 release, accelerating synovitis and osteoclast
activation (Vasilev et al., 2021).

3.3 IL-33

IL-33 has dual pro-inflammatory and anti-inflammatory
regulatory roles in RA (Chen et al., 2019). In the early acute
injury phase, it exerts protective effects by activating Tregs and
type II immune responses, while in the chronic phase, pro-
inflammatory signals dominate and exacerbate
pathological damage.

During the acute phase, IL-33 primarily exhibits anti-
inflammatory effects. Early low-dose IL-33 intervention can
inhibit the progression of collagen-induced arthritis models. IL-
33 enhances the proliferation and immune suppressive function of
Treg cells via the STAT6 pathway, inhibits Th17 differentiation and
osteoclast generation, reduces the RANKL/OPG ratio, and
participates in the restoration of immune tolerance mediated by
Breg cells (Biton et al., 2016). IL-33 can also induce ILC2 cells to
secrete IL-4/IL-13, promoting M2 macrophage polarization to
inhibit NF-κB activity (Lott et al., 2015).

In the chronic phase, IL-33 binds dimers of ST2 receptor and
Interleukin 1 receptor-associated protein (IL-1RacP), which recruits
IL-1RacP, MyD88, Interleukin 1 receptor associated kinase (IRAK)
1, IRAK4, and TNF receptor associated factor (TRAF) 6. This

complex activates NF-κB and MAPK signaling pathways, leading
to the phosphorylation and activation of extracellular signal-
regulated kinase (ERK) 1/2, c-Jun N-terminal kinase (JNK), p38,
and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/
AKT) signaling modules. Consequently, the expression of pro-
inflammatory cytokines is enhanced (Cayrol and Girard, 2009;
Yuan et al., 2011). In Th2 cells, IL-33 promotes the transcription
of IL-4, IL-5, and IL-13 (Schmitz et al., 2005; Verri et al., 2010). IL-33
upregulates the expression of CXC motif chemokine ligand
1(CXCL1), C-C Motif Chemokine Ligand 3(CCL3), TNF-α, and
IL-1β in macrophages, as well as IL-6, IL-13, IL-1β, GM-CSF,
Monocyte chemoattractant protein-1 (MCP-1), and Macrophage
inflammatory protein-1alpha (MIP-1α) in mast cells (Xu et al., 2008;
Yuan et al., 2011). It also increases the expression of IL-6, IL-8,
MCP-1, MMP-1, and MMP-3 in synovial fibroblasts, thereby
promoting synovial inflammation and cartilage destruction
(Kunisch et al., 2012).

Therefore, targeting the IL-33/ST2 axis in therapy requires a
precise balance of its dual functions, such as developing
sST2 antagonists to block pro-inflammatory signals while
retaining the activation of membrane-bound ST2 on Tregs,
providing a new direction for personalized treatment of RA.

3.4 IL-36

IL-36 has multiple subtypes, including IL-36α, IL-36β, and
IL-36γ, which bind to the receptor comprising specific chain IL-
36R (IL-1Rrp2) and co-receptor IL-1R accessory protein (IL-
1RAcP). IL-36 can activate a cascade of downstream effectors,
including IκB, NF-κB, PI3K/AKT, and ERK, leading to the
regulation of inflammatory cytokine, chemokine, and growth
factor production through transcription factors mTORC and
Wnt5a in the cell nucleus (Zhou et al., 2018). This promotes
neutrophil infiltration, dendritic cell activation, and the
polarization of Th1 cells and IL-17-producing T cells (αβ
T cells and γδ T cells), ultimately exacerbating the
development of RA inflammation (Vigne et al., 2012; Gabay
and Towne, 2015). Furthermore, IL-36 stimulates fibroblasts
to produce pro-inflammatory factors (Boutet et al., 2016), and
targets autophagy to regulate the proliferation, migration, and
invasion of RA synovial cells (Hao and Liu, 2021). In contrast, IL-
36RA antagonizes IL-36α, IL-36β, and IL-36γ by binding to IL-
1Rrp2 (Towne et al., 2011; Vigne et al., 2011). IL-36RA blocks IL-
1RAcP recruitment and reduces the downstream activation of
NF-κB or MAPK pathways (Towne et al., 2004).

3.5 IL-37

The binding of IL-37 to its receptors, IL-1R8 and IL-18Rα,
triggers a cascade of signaling pathways, including PI3K/AKT, ERK,
JNK, and p38. This, in turn, modulates the activation of Notch1 and
Nuclear factor erythroid 2-related factor 2 (NRF2) through signal
transducer and activator of transcription 3 (STAT3) and single
immunoglobulin interleukin-1-related receptor (SIGIRR), thereby
conferring anti-inflammatory properties (Zhou et al., 2020).
Furthermore, IL-37 has been shown to attenuate TNF-α-induced
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FIGURE 1
The IL-1 receptor family comprises IL-1R1, IL-1R2, IL-1RAcP, ST2, IL-18Rα, IL-1Rrp2, IL-18Rβ. Different cytokines bind to distinct receptors, and they
all activate the TIR pathway. And then, MyD88 recruits IRAK to TIRs through the interaction of their death domains. IRAK is activated by phosphorylation
and then associates with TRAF6, leading to the activation of two distinct signaling pathways, and finally to the activation of JNK and NF-κB. Finally they
eventually have the influence on the expression of IL-1, IL-6, IL-8, IL-12, TNF, RANKL, MMP, iNOS, VEGF, PGHS-2, and adhesion molecules,
exacerbating joint inflammation.
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apoptosis of synovial fibroblasts by suppressing the NF-κB/
Gasdermin-D (GSDMD) signaling axis (Ren et al., 2023).

The anti-inflammatory effects of IL-37 are attributed to its
ability to modulate immune cell function. IL-37 can suppress the
expression of inducible nitric oxide synthase (iNOS), IL-6, MCP-1
and reactive oxygen species (ROS) in macrophages, improve the
expression of IL-10, glutathione peroxidase 4 (GPX4), NRF2, and
CD206 (Qi et al., 2019; Zhao et al., 2022). Additionally, IL-37 can
impede dendritic cell maturation by down-regulating the expression
of MHC class II (MHCII), CD40, CD86, and CD80 (Liu et al., 2019).
Notably, IL-37 can also inhibit IgG production in B cells, eosinophil
infiltration, Th17 and Tfh cell differentiation and proliferation,
while fostering Th1 and Treg cell differentiation (Liu et al., 2020;
Li et al., 2021).

3.6 IL-38

IL-38 shares receptors with IL-36 and antagonizing IL-36.
Binding to IL-36R or IL-1RAPL1 receptors, IL-38 triggers a
signaling cascade involving Toll and interleukin-1 receptor (TIR),
RohA, ERK, JNK, and p38, which in turn activates transcription
factors AP-1 and the silent information regulator sirtuin 1 (SIRT1),
ultimately resulting in anti-inflammatory effects in RA (Boutet et al.,
2017). Notably, low levels of IL-38 can form an IL-38/36R axis,
either by binding to IL-36R and blocking IL-1RAcP recruitment or
by recruiting inhibitory receptors to prevent MyD88 recruitment,

thereby inhibiting NF-κB or MAPK and eliciting anti-inflammatory
effects (Mora et al., 2016). The IL-38/IL-1RAPL1 axis, comprising
IL-38 and IL-1RAPL1, can exert anti-inflammatory or pro-
inflammatory effects depending on the length of IL-38 acting on
JNK/AP-1 (Mora et al., 2016; Xie et al., 2019). Additionally, IL-33
can modulate the SIRT1/HIF-1α signaling pathway to suppress
inflammatory responses (Pei et al., 2020).

4 The receptor of IL-1 family

The IL-1 receptor family comprises IL-1R1 (IL-1RI), IL-1R2 (IL-
1RII), IL-1R3 (IL-1RAcP), IL-1R4 (the suppression of tumorigenicity
2 receptor, ST2), IL-1R5 (IL-18Rα), IL-1R6 (IL-1Rrp2, IL-36R), IL-
1R7 (IL-18Rβ), IL-1R8 (TIR8, also known as SIGIRR), IL-1R9
(TIGIRR-2), and IL-1R10 (TIGIRR-1) (Kim and Lee, 2024).
Although different cytokines bind to distinct receptors, these
receptors can activate the TIR pathway upon stimulation
(Dinarello, 2018). Following TIR stimulation, MyD88 recruits
IRAK to TIRs through the interaction of their death domains.
IRAK is activated by phosphorylation and then associates with
TRAF6, leading to the activation of two distinct signaling
pathways, and finally to the activation of JNK and NF-κB (Zhou
et al., 2022). This cascade of events culminates in the upregulation of
IL-1, IL-6, IL-8, IL-12, TNF, RANKL, MMP, iNOS, VEGF, PGHS-2,
and adhesion molecules, exacerbating joint inflammation (Narayanan
and Park, 2015). Details are shown in Figure 1 and Table 1.

TABLE 1 Classification and characteristics of IL-1 family cytokines.

Subfamily Cytokine Function Specific
receptor

Coreceptor Signaling pathway Cellular source Regulatory
mechanism

IL-1 Subfamily IL-1α Pro-
inflammatory

IL-1R1 IL-1RAcP
(IL-1R3)

MyD88/NF-κB Macrophages, epithelial
cells (alarmin release)

Damage-induced
release (alarmin)

IL-1β Pro-
inflammatory

IL-1R1/IL-1R2 IL-1RAcP
(IL-1R3)

NLRP3 inflammasome →
Caspase-1 activation

Monocytes, dendritic
cells (LPS/
NLRP3 activation)

PAMP-triggered
precursor cleavage

IL-1Ra Anti-
inflammatory

IL-1R1 — Blocking IL-1R1
dimerization

Lymphocytes, stromal
cells (feedback
inhibition)

IL-4/IL-
13 upregulation

IL-33 Dual-phase
regulation

ST2 (IL-1R4) IL-1RAcP
(IL-1R3)

ST2-MyD88 →
Th2 polarization

Fibroblasts, endothelial
cells (tissue damage)

Necrotic cell release
(DAMP signaling)

IL-36 Subfamily IL-36α/β/γ Pro-
inflammatory

IL-36R
(IL-1R6)

IL-1RAcP
(IL-1R3)

mTORC1/Wnt5a pathway Keratinocytes,
monocytes (TLR-
mediated activation)

Keratinocyte TLR
activation

IL-36Ra Anti-
inflammatory

IL-36R
(IL-1R6)

IL-1RAcP
(IL-1R3)

Inhibiting IL-36R
dimerization

Keratinocytes (psoriasis
suppression)

TGF-β-dependent
expression

IL-38 Anti-
inflammatory

IL-36R/IL-
1RAPL1
(IL-1R6)

IL-1R9 AP-1/SIRT1 pathway
inhibition

Monocytes, Tregs,
keratinocytes,
adipocytes, synoviocytes

Antagonizing IL-36R
signaling

IL-18 Subfamily IL-18 Pro-
inflammatory

IL-18Rα
(IL-1R5)

IL-18Rβ (IL-1R7) ASC inflammasome →
IFN-γ synergy

Kupffer cells,
macrophages (pathogen-
induced)

Caspase-1-
dependent
maturation

IL-37 Anti-
inflammatory

IL-18Rα
(IL-1R5)

IL-1R8 STAT3/Nrf2 activation Tregs, epithelial cells
(STAT3/Nrf2 pathway)

Epigenetic
modification
(HDAC regulation)
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TABLE 2 Clinical trials of biological agents targeting IL-1 family cytokines.

Drug Mechanism Efficacy Adverse events Phase Source Citation

PF-06650833 Inhibits IRAK4 Efficacy indicators: reduction in
expression of interferon gene
markers in whole blood.
Inflammatory response:
inhibition of inflammatory
response induced by plasma
from RA and SLE patients.

No serious adverse events
reported; well-tolerated with
no dose-limiting toxicity.

Phase I NCT02485769 Winkler et al.
(2021)

Efficacy indicators: continuous
reduction of high-sensitivity
CRP in serum (≥250 mg dose).
Inflammatory response:
inhibition of expression of
inflammatory factors.

Headache (frequent),
gastrointestinal discomfort,
and acneiform rash were
reported.
No severe events or fatalities
occurred.

Phase I Danto et al.
(2019)

Anakinra Glycosylated recombinant IL-
1Ra binds to IL-1R1 and
competitively inhibits the

binding of both IL-1α and IL-1β
to IL-1R1.

Efficacy indicators: HbA1c%
significantly decreased in the
anakinra group.
Inflammatory response:
DAS28 score improved, and the
use of corticosteroids decreased.

Minor side effects (e.g.,
infections, injection site
reactions) were observed,
with no serious adverse
events.

Phase IV NCT02224651 Ruscitti et al.
(2019)

Efficacy indicators: HbA1c%
significantly decreased in the
anakinra group.
Inflammatory response:
DAS28 score decreased, CRP
decreased.
Metabolic improvement: The
anakinra group reduced the use
of antidiabetic drugs.

Only mild adverse events
(e.g., injection site reactions)
were documented, and no
severe adverse events
occurred.

Phase IV NCT02485769 Ruscitti et al.
(2021)

Efficacy indicators: no
significant difference in Larsen
scores between anakinra and
placebo (2.50 vs. 4.16), lower
improvement in DAS28/HAQ.
Inflammatory response: lower
improvement in DAS28.

A higher incidence of severe
adverse events was noted in
the treatment group (11 vs.
6).
Severe infections were
reported.

Phase II Scott et al.
(2016)

Efficacy indicators: higher
remission rate (57% in anakinra
group at 8 weeks vs. 50% in
DMARD group).
Joint erosion: DKK-1 is
positively correlated with the
Sharp score (bone erosion).
Mechanism: TNF-α inhibitors
and IL-1Ra significantly reduce
DKK-1 levels, inhibiting the
dysregulation of the Wnt
pathway.
Inflammatory response:
significant improvement in SF-
36 scores.

Not applicable NCT02236481 Wang et al.
(2011)

Efficacy indicators: 43% ACR
response rate;
Inflammatory response: CRP,
ESR significantly decreased;

Injection site reactions were
prominent.
No Serious Adverse Events.

Phase II Nordström
et al. (2012)

Efficacy indicators: ACR20 46%
(1.0 mg/kg group) vs. 19%
(placebo);
Joint erosion: significant
slowing of Larsen score and
erosion joint count;

Injection site reactions were
prominent, with
discontinuation rates of 5%.
No Serious Adverse Events.

Phase II NCT02236481 Bresnihan
et al. (1998)

Efficacy indicators: ACR20 46%
(48 weeks); ACR50 18%, ACR70
3%;

Injection site reactions (7%–
10%);
Slightly higher rate of severe

Phase II ISRCTN15819795 Cohen et al.
(2002)

(Continued on following page)
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TABLE 2 (Continued) Clinical trials of biological agents targeting IL-1 family cytokines.

Drug Mechanism Efficacy Adverse events Phase Source Citation

Inflammatory response: ESR
improvement;

infection (no opportunistic
infection or death).

Efficacy indicators: ACR20 46%;
ACR50 18%, ACR70 3%
(48 weeks).
Joint erosion: long-term delay in
radiographic progression;

Injection site reaction;
No new safety concerns
reported with long-term use.

Phase II ChiCTR-CCC-
10001054

Nuki et al.
(2002)

Efficacy indicators: HAQ-DI
significantly improved (rapid
onset in high-dose group)

Injection site reactions;
No significant increase in
infection rate.

Phase II NCT01033656 Cohen et al.
(2003)

Efficacy indicators:
improvement of symptoms and
radiographic progression

Severe infection (2.1% vs.
0.4%);
Overall well-tolerated;
Injection site reactions are
common.

Phase III Fleischmann
et al. (2003)

Efficacy indicators: ACR20 38%
vs. 22% (placebo); significant
improvement in ACR50 and
ACR70;
Inflammatory response:
decrease in CRP, ESR;

Injection site reactions (65%
vs. 24% placebo)
The rate of severe infections
is similar to placebo.

Phase III ISRCTN15819795 Cohen et al.
(2004)

Safety analysis was the main
focus, no specific efficacy
indicators were clearly defined.

Injection site reactions
(72.6% vs. 32.9%)
Severe infection (2.1%
vs. 0.4%).

Phase III Tesser et al.
(2004)

Efficacy Indicators:
ACR50 response rate (31% vs.
41%);

Severe infection (0% vs.
3.7%–7.4%).
Injection site reaction.
Neutropenia.

Phase II The European Group
of Clinical
Investigators

Genovese
et al. (2004)

Efficacy indicators: total Sharp
score significantly decreased (at
48 weeks).
Inflammatory response: CRP
decreased.
Efficacy indicators: maintain
disease activity.
Joint erosion: slowing
progression.

Not Applicable. Phase III The Anakinra
960180 Study Group

Bresnihan
et al. (2004)

Not applicable. Severe infection.
Injection site reactions.
Malignant tumors.

Phase III The 990757 Study
Group

Fleischmann
et al. (2006)

Efficacy indicators: ACR20
(64%), ACR50 (38%), ACR70
(17%).
Inflammatory response: CRP,
ESR improved.

Secondary failure (21.4%)
Other adverse reactions were
not detailed.

Phase II The 990145 Study
Group

Bao et al.
(2011)

Efficacy indicators: ACR20,
laboratory parameters
improved.
Inflammatory response: IL-17,
IFN-γ, IL-1β decreased.

Not Applicable. Phase II The 990757 Study
Group

Niu et al.
(2011)

Rilonacept IL-1β soluble receptor Efficacy indicators:
ACR30 response rate higher
(57% in rilonocept group vs.
27% in placebo group).
Inflammatory response:
shortened fever relief time.

Elevated liver enzymes
(common), sJIA
deterioration (4 severe
events).

Phase II The 20000223 Study
Group

Ilowite et al.
(2014)

Canakinumab High-affinity IgG1 monoclonal
antibody against IL-1β inhibits

IL-1β binding to IL-1R1.

Efficacy indicators:
ACR50 response rate
significantly improved (26.5%
vs. 11.4%).

Low infection risk, rare
injection site reactions.

Phase II The European Group
of Clinical
Investigators

Alten et al.
(2011)

(Continued on following page)
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5 Clinical pre-study of monoclonal
antibody targeting IL-1 family cytokines
for the treatment of RA

There are numerous therapeutic interventions that target the IL-
1 family, with a significant number having advanced into clinical
research stages. The details are shown in Tables 2, 3.

5.1 IL-1

Early administration of specific anti-IL-1β antibodies blocks IL-
1β, thus inhibiting the expression of RANKL on regulatory T cells
and suppressing osteoclast differentiation. This improves joint
swelling and bone erosion in arthritis (Levescot et al., 2021).
siRNA that binds to IL-1βsilences pro-inflammatory genes, which
alleviate ankle joint swelling, bone erosion and cartilage destruction
(Song et al., 2019).

hIL-1RA-Fc is an IL-1 receptor antagonist (IL-1Ra) analog that
inhibits Th17 cell differentiation through blocking the
STAT3 signaling pathway and induces Treg cell differentiation
through the STAT5 signaling pathway, exerting anti-rheumatic
arthritis effects. hIL-1RA-Fc can reduce the expression of IL-17,
TNF-α, RANKL and VEGF, increase forkhead box P3 (Foxp3) gene
expression, and thus suppress osteoclast genesis and angiogenesis
(Lee S. Y. et al., 2016).

In a collagen-induced RA model, the soluble IL-1 receptor
2 receptor blocks IL-1α and IL-1β and significantly inhibits IL-1
signaling transduction in macrophages (Shimizu et al., 2015).
Moreover, IL-1R2 inhibits Th17 cell activation by blocking IL-1β
signaling transduction (Kim et al., 2021).

IgG26AW has high affinity, high neutralization ability and
occupies a new binding epitope that binds both to IL-1RI and
IL-1RAcP, which has been validated in tumors and may be a
potential drug for RA in the future (Kuo et al., 2021).

5.2 IL-18

Currently, in research treating RA by targeting IL-18,
inhibitors of IL-18 such as IL-18 binding protein (IL-18BP)
are a major focus. IL-18BP can correct the imbalance of Th17/
Treg cells in peripheral blood mononuclear cells from RA
patients and reduce osteoclast genesis induced by IL-17 (Min
et al., 2021). Consequently, IL-18BP promotes apoptosis of
fibroblast-like synoviocytes while reducing apoptosis of
chondrocytes, which is beneficial for the treatment of RA
(Min et al., 2023).

Soluble IL-18 receptor beta (sIL-18Rβ) modulates Treg cells and
Th17 cells similarly to IL-18BP, which suppresses collagen-induced
arthritis (Veenbergen et al., 2010). This potential reduction in IL-18
expression has been associated with alleviation of RA symptoms in
experimental models, though further investigation is needed to fully
establish this pathway (Guo et al., 2022).

5.3 IL-33

Treatment with IL-33 neutralizing antibodies decreases levels of
IFN-γ, IL-6, IL-12, IL-33, and TNF-α. This decrease significantly
reduces the severity of joint damage (Li et al., 2020). The IL-33
specific receptor ST2 is also a therapeutic target. Blocking the
ST2 receptor while raising IL-37 levels cooperatively dampens
inflammation. This cooperation involves lowering expression of
IL-6, TNF-α, toll-like receptors, and MMPs. It also inhibits
M1 phenotypic polarization. Use of ST2 inhibitors to oppose IL-
33 suppresses the stimulation of synoviocytes (Rai et al., 2022). It
also decreases mRNA expression of RANKL and IP-10.
Concurrently, ST2 inhibition elevates proinflammatory factor and
MMP levels. It further boosts NF-κB activity, thereby inhibiting
bone resorption (Lee E. J. et al., 2016).

5.4 IL-36 and IL-38

In an STIAmouse model, injection of IL-38 encoding was able to
reduce the production of proinflammatory factors (including IL-17,
IL-23, IL-22, TNF-α) by macrophages and synovial fibroblasts,
lowering the inflammatory response in arthritic mice (Boutet
et al., 2017). In rat models, overexpression of IL-38 and injection
of IL-36 was able to target autophagy, regulating the proliferation,
migration and invasion of synovial cells in RA (Hao and Liu, 2021).

However, some studies have also found that prophylactic
treatment of mice with an IL-36R blocking antibody did not
change clinical onset or disease patterns. Additionally, blocking
IL-36 signal transduction did not alter the histopathological features
of arthritis induced by TNF (Derer et al., 2014).

5.5 IL-37

IL-37 has intrinsic anti-inflammatory effects. IL-37 alleviates RA
by inhibiting the production of IL-17 and IL-17-induced cytokines,
and restricting the proliferation of Th17 cells (Ye et al., 2015). In an
arthritis mouse model, low doses of recombinant IL-37 were able to
inhibit 51.7% of arthritic inflammation, promote IL-1R expression,

TABLE 2 (Continued) Clinical trials of biological agents targeting IL-1 family cytokines.

Drug Mechanism Efficacy Adverse events Phase Source Citation

Inflammatory response: DAS28,
HAQ score improved.

Tadekinig alfa
(IL-18BP)

IL-18 binding agents Efficacy indicators: 50% of
patients experienced a ≥50%
decrease in CRP and fever
subsided.

Mild injection reactions.
1 severe event (toxic optic
neuropathy).

Phase II Gabay et al.
(2018)
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TABLE 3 Targeting IL-1 family cytokines with monoclonal antibodies for the treatment of autoimmune diseases in clinical trials.

Target Medicine Mechanism Disease Clinical
trial

Effect NCT References

IL-1α Bermekimab The monoclonal antibody Hidradenitis
suppurativa

II The drug could achieve a
HiSCR of 61%, and could
effectively reduce
inflammatory response (60%,
46%) and pain (64%, 54%) in
patients with and without anti-
TNF treatment, respectively.

NCT03512275 Gottlieb et al.
(2020)

Rilonacept The IL-1 soluble receptor Recurrent
Pericarditis

III This can rapidly relieve
recurrent pericarditis attacks
and significantly reduce the
risk of recurrent peric arditis.

NCT03737110 Klein et al.
(2021)

IL-1β Canakinumab The monoclonal antibody Chronic
Spontaneous
Urticaria

II Canakinumab lacks efficacy in
the treatment of moderate to
severe chronic spontaneous
urticaria in adults.

NCT01635127 Maul et al.
(2021)

IL-1Ra Anakinra An IL-1Ra analog,the IL-1
receptor antagonist

Gout Flares II It effectively relieves pain and
has a good safety profile.

NCT03002974 Saag et al. (2021)

IL-18 Tadekinig alfa IL-18BP AOSD II Tadekinig alfa has a good
safety profile and is beneficial
for the early treatment of
arthritis in patients with
AOSD.

NCT02398435 Gabay et al.
(2018)

IL-33 Astegolimab A human IgG2 monoclonal
antibody that selectively inhibits

the IL-33 receptor ST2.

Severe asthma IIb It effectively lowers the
annualized asthma
exacerbation rate (AER) in
patient populations, including
those with low eosinophil
levels and poor asthma control,
with a good safety and
tolerability profile.

NCT02918019 Kelsen et al.
(2021)

CNTO 7160 A monoclonal antibody against
the IL-33 receptor

Asthma or
atopic

dermatitis

I The drug has a safety and dose-
dependent profile, but has no
therapeutic effect in mild
asthma and specific eczema.

NCT02345928 Nnane et al.
(2020)

Itepekimab A monoclonal antibody targeting
IL-33.

Asthma II Compared to placebo,
itepekimab effectively reduced
the occurrence of loss of
asthma control, lowered
eosinophil counts in the blood,
and improved lung function in
patients with moderate to
severe asthma.

NCT03387852 Wechsler et al.
(2021)

Tozorakimab A high-affinity humanized
immunoglobulin G1 monoclonal
antibody that can effectively

neutralize IL-33.

COPD I The study was terminated due
to lack of efficacy based on an
interim analysis.

NCT03096795 Reid et al. (2024)

IL-36 Spesolimab An anti-IL-36 receptor antibody. Generalized
Pustular
Psoriasis

II The drug has a rapid onset of
action within 24 h and
sustained efficacy for 12 weeks,
with a safety profile similar to
placebo. Some patients may
require dose increases for
treatment, but there are
currently no clear identifiable
markers.

NCT03886246 Elewski et al.
(2023)

Imsidolimab A high-affinity humanized
IgG4 monoclonal antibody (mAb)
that can specifically bind to IL-

36R and antagonize IL-36
signaling.

Generalized
Pustular
Psoriasis

II The drug is efficacious with
rapid and sustained effects, and
has good tolerability and
safety.

NCT03619902 Warren et al.
(2023)
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and reduce the synovial levels of IL-1β, IL-6, TNF-α, CXCL1,
CXCR3, macrophage inflammatory protein 1-alpha (MIP-1α), IL-
1α, and myeloperoxidase (MPO), thereby decreasing the
recruitment of neutrophils to the joints (Cavalli et al., 2016).

5.6 Cytokine redundancy and therapeutic
strategies targeting IL-1RAcP

Cytokine redundancy refers to the phenomenon where distinct
cytokines bind to identical or structurally similar receptors,
activating overlapping signaling pathways to elicit analogous
biological functions. This redundancy enhances the adaptability
and robustness of the immune system during pathogen invasion
or tissue damage, ensuring core immune responses are maintained
even if one cytokine pathway is blocked. Within the IL-1 family,
proinflammatory cytokines (e.g., IL-1α, IL-1β, IL-18, IL-33, IL-36α/
β/γ) rely on IL-1RAcP as a shared co-receptor to form a signal-
transducing complex, thereby mediating common
downstream pathways.

Studies in atherosclerosis highlight the functional overlap
between IL-1α and IL-1β, which jointly regulate extracellular
matrix-remodeling enzymes. Single-target inhibition of either

cytokine has shown limited efficacy in this context (Beltrami-
Moreira et al., 2016). Similarly, cytokine redundancy complicates
therapeutic outcomes in sepsis, where IL-1 and IL-6 both activate
STAT3, and TNF-α synergizes with IL-1 via the NF-κB pathway
(Cooney and Yumet, 2002). These observations suggest that
monotherapies targeting individual cytokines may yield
suboptimal results in diseases like RA, necessitating strategies to
disrupt shared receptor signaling.

Addressing this challenge, Fields et al. demonstrated the
feasibility of targeting IL-1RAcP to broadly block signaling by
all IL-1 family cytokines (Figure 2) (Fields et al., 2024).
Antibodies CAN10 and 3G5 specifically bind distinct epitopes
(the c2d2 loop of the D2 domain and the D3 domain) on IL-
1RAcP, effectively inhibiting cytokines dependent on this co-
receptor, including IL-1α, IL-1β, IL-33, and IL-36α/β/γ. In acute
peritonitis models, IL-1RAcP-targeted antibodies markedly
reduced inflammatory cell infiltration and proinflammatory
mediators (e.g., IL-6, G-CSF) compared to IL-1Ra, a natural
antagonist of IL-1 signaling. Notably, CAN10 exhibited >10-
fold higher inhibitory potency than IL-1Ra in suppressing IL-1α/
β pathways. These findings underscore the therapeutic potential
of targeting IL-1RAcP for IL-1-driven inflammatory disorders,
particularly RA.

FIGURE 2
CAN10 and 3G5, two anti-IL-1RAcP antibodies, target distinct epitopes on this shared receptor and potently block IL-1α, IL-1β, IL-33, IL-36α, IL-36β,
and IL-36γ signaling (Fields et al., 2024).
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FIGURE 3
Therapeutic Strategies Targeting the IL-1 Family in RA. Currently, FDA-approved therapies primarily target the IL-1 pathway (annotated in green in
the figure, with specific reference to RA clinical trial phases). Approved agents include: Anakinra (IL-1R1 antagonist), Canakinumab (IL-1β specific
monoclonal antibody), Rilonacept (IL-1β trapping fusion protein), and Spesolimab (IL-36 receptor targetingmonoclonal antibody approved for psoriasis).
Investigational drugs in clinical trials address broader inflammatory targets: Bermekimab (IL-1α neutralization), PF-06650833 (IRAK4 inhibitor
blocking downstream signaling), Tadekinig alfa (Th17 balance modulation via IL-18BP), Astegolimab and Tozorakimab (targeting IL-33 receptor ST2 and
IL-33, respectively), Imsidolimab (IL-36R antagonism, analogous to Spesolimab). Preclinical studies (highlighted in red in the figure) explore novel
mechanisms: hIL-1RA-Fc fusion protein enhances Treg/Th17 balance; CAN10 and 3G5 inhibit IL-1RAcP, a shared receptor subunit for IL-1 family
cytokines; IL-38 gene therapy suppresses inflammation by inhibiting the AP-1/SIRT1 pathway; Recombinant IL-37 activates the Nrf2-mediated anti-
inflammatory cascade; IgG26AW blocks IL-1α activity.
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6 Clinical efficacy and adverse effects
of IL-1 inhibitors

6.1 Current clinical trial results of IL-1
inhibitors

As previously established, IL-1 family cytokines play a central
role in inflammatory responses and joint destruction in RA by
activating synovial cells, promoting osteoclast activity, and
inhibiting cartilage repair. Based on these mechanisms, multiple
IL-1 inhibitors have been developed and tested in clinical trials.
Table 1 summarizes the current biologics targeting IL-1 family
cytokines. Figure 3 illustrates the therapeutic strategies for RA
treatment using these agents.

To date, the IL-1 inhibitors approved for RA treatment include
PF-06650833, Anakinra, Rilonacept, and Canakinumab. Among
these, Anakinra—a recombinant IL-1 receptor
antagonist—remains the first and only IL-1 inhibitor specifically
approved for RA. Clinical trials since 1998 have yielded mixed
results regarding its efficacy and safety. For instance, Scott et al.
reported that short-term Anakinra therapy (12 months) only
improved ACR20 and ACR50 response rates compared to
placebo, with no significant differences in other efficacy
endpoints (Scott et al., 2016). However, multiple studies
demonstrated that Anakinra reduces DAS28 scores and lowers
CRP/ESR levels (Nordström et al., 2012; Ruscitti et al., 2019;
Ruscitti et al., 2021). Long-term use of Anakinra also slows joint
erosion, as evidenced by decreased Sharp scores, though it shows no
significant improvement in Larsen scores (Bresnihan et al., 2004).
These findings collectively suggest that Anakinra exhibits moderate
anti-inflammatory effects with long-term joint protection, making it
a viable option for patients with inadequate responses to TNF-α
inhibitors or those requiring infection-safe therapies (Scott
et al., 2016).

The primary limitation of Anakinra is its high injection
frequency (100 mg/day), leading to frequent injection-site
reactions and poor patient compliance. Nevertheless, its infection
risk remains low, with no reports of severe opportunistic infections,
offering a safety advantage over TNF-α inhibitors (Fleischmann
et al., 2006). Future directions include developing sustained-release
formulations to reduce dosing frequency and identifying biomarkers
(e.g., IL-1β levels or genetic polymorphisms) to predict treatment
responses and optimize patient selection (Akash et al., 2013; Hong
et al., 2024). Prolonged IL-1 blockade disrupts innate immune
defenses, increasing bacterial infection susceptibility through
impaired neutrophil homeostasis. Clinical surveillance data from
long-term anakinra therapy demonstrate cancer incidence rates
comparable to age-matched general population estimates, with no
causative association identified between anakinra exposure and
malignancy development (Fleischmann et al., 2006).

Canakinumab, a monoclonal antibody targeting IL-1β, has
shown superior efficacy in early trials, with an ACR50 response
rate of 26.5% and rapid improvements in DAS28 and HAQ scores
(Alten et al., 2011). Its dosing regimen (every 4–8 weeks) and low
incidence of injection-site reactions make it suitable for long-term
maintenance therapy. However, clinical data on Canakinumab in
RA remain limited, warranting further investigation. Other agents
like Rilonacept and Tadekinig alfa lack robust RA-specific data but

show potential in systemic inflammatory diseases and animal
models, necessitating additional human trials.

Long-term administration of IL-1 inhibitors in RA clinical trials
primarily manifests as injection site reactions and elevated infection
risks. Emerging evidence from other immune-mediated conditions
suggests additional class-related adverse effects that warrant
consideration in RA treatment paradigms. Hepatotoxicity
represents a notable concern, with 3%–8% of anakinra recipients
developing transient liver enzyme elevations that typically resolve
spontaneously (Ruperto et al., 2012). The lower incidence of hepatic
dysfunction observed with canakinumab and rilonacept may reflect
reduced metabolic stress from their prolonged half-lives (Grevich
and Shenoi, 2017). Hematologic monitoring proves crucial as 2%–
5% of anakinra-treated patients develop reversible leukopenia,
potentially mediated by bone marrow suppression mechanisms
(Minoia et al., 2018). While rare, macrophage activation
syndrome (MAS) requires particular vigilance given its
association with all three IL-1 blockers (Ravelli et al., 2016). This
life-threatening complication, though inherent to AOSD
pathophysiology, may be precipitated by therapeutic immune
modulation (Junge et al., 2017). Serious infections including
sepsis and pneumonia necessitate immediate drug cessation and
antimicrobial therapy (Shimizu et al., 2013). Immunogenicity
profiles vary significantly among agents. Anakinra’s recombinant
structure predisposes to neutralizing antibody formation with
consequent efficacy loss (Wikén et al., 2018), whereas the fully
human canakinumab demonstrates no such immunogenic
propensity (Pascual et al., 2005). Current literature remains
inconclusive regarding long-term immunosuppression risks such
as opportunistic infections or malignancy development.
Nevertheless, cumulative biological effects mandate sustained
surveillance to ensure therapeutic safety.

6.2 Comparative analysis of IL-1 inhibitors
with other biologics

To evaluate the efficacy and safety of IL-1 receptor antagonists
(e.g., Anakinra) (Vasconcelos et al., 2020; Kazmi et al., 2024), TNF-α
inhibitors (Hu et al., 2023), and JAK inhibitors (Ho Lee and Gyu
Song, 2020), we conducted a meta-analysis comparing outcomes
such as ACR20/50/70 response rates and adverse drug reactions
(ADRs, serious ADRs, and treatment discontinuation due to adverse
events). Key findings are summarized in Figures 4–8.

The ACR criteria response rates were utilized for efficacy
evaluation. Overall, IL-1 inhibitors, TNF-α inhibitors, and JAK
inhibitors demonstrated therapeutic benefits in reducing RA
activity, showing associations with higher ACR20, ACR50, and
ACR70 response rates. Among all treatment groups, JAK
inhibitors exhibited the highest ACR20 response rate (RR 2.23;
95% CI 1.57–3.15; P < 0.004), with moderate heterogeneity (I2 =
68.4%; P = 0.004). IL-1 inhibitors followed, showing an
ACR20 response rate (RR 1.43; 95% CI 1.08–1.88; P = 0.271)
with low heterogeneity (I2 = 22.5%; P = 0.271). TNF-α inhibitors
displayed the lowest ACR20 response rate (RR 0.98; 95% CI
0.86–1.12; P = 0.896) and minimal heterogeneity (I2 = 0.00%;
P = 0.896) (Figure 4). In the analysis of ACR50 response rates,
the RR values were 2.75 for IL-1 inhibitors, 2.45 for TNF-α

Frontiers in Pharmacology frontiersin.org14

Wang et al. 10.3389/fphar.2025.1577628

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1577628


inhibitors, and 1.08 for JAK inhibitors (Figure 5). Similarly, for
ACR70 response rates, the RR values were 1.85 for IL-1 inhibitors,
1.03 for TNF-α inhibitors, and 4.01 for JAK inhibitors (Figure 6).
These patterns aligned with the ACR20 response rate trends. The
findings suggest that JAK inhibitors demonstrate superior
therapeutic efficacy, followed by IL-1 inhibitors, with TNF-α
inhibitors showing the least effectiveness.

In the assessment of adverse events, the outcomes of adverse
drug reactions (ADRs), serious adverse drug reactions (SADRs), and
withdrawal due to adverse events were analyzed. For ADRs, the
highest incidence was observed with IL-1 inhibitors (RR = 1.02; 95%
confidence interval CI, 0.89–1.18; P = 0.759; I2 = 0.00%), followed
by TNF-α antagonists (RR = 0.98; 95% CI, 0.84–1.15; P = 0.923;
I2 = 0.00%) (Figure 7). Both drug classes showed numerically
higher ADR rates compared with the placebo group. For SADRs,
IL-1 inhibitors demonstrated the highest incidence (RR = 2.08;
95% CI, 0.37–11.69; P = 0.029; I2 = 79.1%), with substantial
heterogeneity across studies. In contrast, TNF-α inhibitors (RR =
1.17; 95% CI, 0.81–1.68; P = 0.411; I2 = 0.00%) and JAK inhibitors
(RR = 0.82; 95% CI, 0.39–1.75; P = 0.178; I2 = 32.8%) exhibited
lower SADR rates (Figure 8). The withdrawal outcomes followed
a similar trend. IL-1 inhibitors again showed the highest

withdrawal rates (RR = 1.26; 95% CI, 0.80–1.98; P = 0.068;
I2 = 54.2%), while TNF-α antagonists (RR = 0.77; 95% CI,
0.50–1.19; P = 0.654; I2 = 0.00%) and JAK inhibitors (RR =
0.87; 95% CI, 0.42–1.79; P = 0.174; I2 = 33.2%) had lower
withdrawal rates (Figure 9). In summary, IL-1 inhibitors were
associated with a higher incidence of adverse drug reactions
compared with JAK inhibitors and TNF-α antagonists.

IL-1 inhibitors exhibit unique advantages in RA subtypes with
autoinflammatory features. Their superior ACR50/70 response rates
compared to TNF-α inhibitors may stem from selective blockade of
innate immune pathways (e.g., IL-1β), particularly benefiting
subgroups with periodic fever or NLRP3 mutations. However,
their overall efficacy lags behind JAK inhibitors (notably in
ACR20/70 responses), and safety concerns—including higher
rates of severe adverse events and treatment
discontinuation—may relate to suppression of IL-1β’s broad
physiological roles (e.g., infection defense). Future strategies
should focus on biomarker-guided patient selection, optimized
combination therapies, and targeted drug design. Integration of
real-world data and AI-driven models will advance personalized
treatment paradigms, enabling high-efficacy, low-toxicity outcomes
in specific RA populations.

FIGURE 4
Results of a meta-analysis of ACR20 after 24 weeks of drug therapy.
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6.3 Therapeutic potential of IL-1 inhibitors

While IL-1-targeted therapies have limitations, they remain a
critical component of RA treatment. For some patients, IL-1
inhibitors are used as adjunctive therapy after inadequate
responses to methotrexate (MTX) or TNF-α inhibitors, or as part
of combination regimens. However, IL-1 inhibitors may be
prioritized as first-line therapy in the following patient subgroups:

6.3.1 Early intervention treatment for RA
Current evidence demonstrates superior clinical efficacy of IL-1

inhibitors when administered during early-stage RA. In treatment-
naïve patients with active disease, IL-1 receptor antagonists like
anakinra achieve substantial symptom improvement, with 43% of
recipients attaining ACR20 response criteria and 44% meeting
Paulus remission standards within initial therapeutic windows.
Clinical trials document significant reductions in joint swelling
counts, tender joint indices, and CRP levels following early
intervention (Bresnihan et al., 1998). Combination therapy with
methotrexate enhances treatment response, yielding 38%
ACR20 achievement versus 22% in placebo controls (p < 0.001)
after 24 weeks (Cohen et al., 2004). Radiographic assessments reveal
dose-dependent protection against structural damage, with 150 mg/
day anakinra regimens demonstrating significantly reduced
modified Sharp scores compared to placebo (p = 0.015)

(Bresnihan et al., 2004). Advanced imaging analyses confirm
therapeutic advantages through diminished Larsen scores and
fewer eroded joints in early-treatment cohorts, supporting the
critical window for IL-1 blockade in disease modification
(Bresnihan et al., 1998).

The therapeutic landscape shifts dramatically in established RA,
where irreversible joint damage and complex inflammatory
networks limit IL-1 inhibitor efficacy. Radiographic studies show
persistent elevation of modified Sharp scores (p = 0.015) despite 48-
week anakinra treatment in patients with baseline structural
damage, indicating irreversible osteochondral destruction
(Bresnihan et al., 2004). The cytokine redundancy characteristic
of late-stage disease undermines monotherapy effectiveness, as
evidenced by equivalent ACR50 response rates between anakinra/
etanercept combination therapy (31%) and TNF inhibitor
monotherapy (41%) in methotrexate-refractory cases (Genovese
et al., 2004). This therapeutic plateau reflects TNF-α and IL-6
pathway dominance that bypasses IL-1 blockade mechanisms.
Combination strategies introduce heightened safety concerns,
with severe infection rates escalating to 3.7%–7.4% in dual
biologic regimens compared to null events in monotherapy
controls (Genovese et al., 2004). Longitudinal data reveal
persistent disease progression (67.80 events/100 patient-years)
despite sustained IL-1 inhibition, suggesting cumulative immune
cell exhaustion mechanisms (Fleischmann et al., 2006). The

FIGURE 5
Results of a meta-analysis of ACR50 after 24 weeks of drug therapy.
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compromised bone marrow reserve in advanced RA may further
diminish therapeutic response through altered leukocyte dynamics.

6.3.2 RA subtypes with high IL-1β expression or IL-
1RN2 allele mutations

Yuan et al. employed Mendelian randomization to analyze the
role of IL-1 signaling in RA. They found that seropositive RA was
more closely associated with IL-1β, IL-1 receptor antagonist (IL-
1Ra), and IL-6, whereas seronegative RA correlated with IL-2ra, IL-
8, and IL-18 (Yuan et al., 2022). The association between IL-1β and
seropositive RA was primarily driven by single nucleotide
polymorphisms (SNPs) in the HLA-DQA1 region. Sensitivity
analyses confirmed robust results with no horizontal pleiotropy,
supporting the direct pro-inflammatory role of IL-1β and the
protective antagonism of IL-1Ra. These findings suggest that
sustained IL-1 inhibition or enhanced IL-1ra activity may reduce
RA risk, particularly in seropositive subtypes. Reverse MR analysis
further indicated that RA may promote downstream IL-6 signaling,
providing a rationale for combined targeting of IL-1 and IL-6.

6.3.3 RA patients with
autoinflammatory syndromes

IL-1 inhibitors demonstrate favorable safety and efficacy in
managing autoinflammatory conditions such as Kawasaki disease,
idiopathic recurrent pericarditis, Behçet’s disease, monogenic

autoinflammatory diseases (AIDs), undifferentiated AIDs, chronic
non-bacterial osteomyelitis, macrophage activation syndrome, and
febrile infection-related epilepsy (Maniscalco et al., 2020; Del
Giudice et al., 2022; Alexeeva et al., 2023). For severe or
recurrent cases, IL-1 inhibitors should be considered a valuable
therapeutic option in pediatric populations with rare
inflammatory disorders.

6.3.4 Patients with metabolic comorbidities
Clinical studies comparing Anakinra and TNF-α inhibitors

(TNFi) revealed distinct benefits in RA patients with type
2 diabetes. Anakinra significantly improved metabolic parameters
(e.g., HbA1c) and inflammatory markers (e.g., DAS28), with
sustained effects during long-term follow-up. These
improvements reduced the need for antidiabetic medications,
whereas TNFi showed no such metabolic benefits (Ruscitti et al.,
2021). This positions Anakinra as a superior choice for RA patients
with concurrent metabolic disorders.

6.3.5 Patients at high cardiovascular risk
Systemic inflammation in RA contributes to endothelial

dysfunction and atherosclerosis, underscoring the importance of
inflammation control for reducing cardiovascular risk (Weber et al.,
2023). IL-1 inhibitors have demonstrated efficacy in lowering
inflammation and improving cardiovascular outcomes, making

FIGURE 6
Results of a meta-analysis of ACR70 after 24 weeks of drug therapy.
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them a promising option for high-risk RA patients (Dragoljevic
et al., 2020). Although JAK inhibitors are effective in RA, their
association with elevated venous thromboembolism risk limits their
use in this population (Goldman et al., 2024). While TNF inhibitors
reduce cardiovascular events in RA, their efficacy varies, and some
patients exhibit inadequate responses (Desai et al., 2014; Sattin and
Towheed, 2016; Hsieh et al., 2020). IL-6 inhibitors also show
potential in cardiovascular risk reduction, though long-term data
remain limited (Gerasimova et al., 2024).

7 Discussion

Existing drugs for the treatment of RA face challenges related to
drug tolerance, incomplete efficacy, and patient heterogeneity. As a
result, research has increasingly focused on cytokine-targeted
therapies that align with the immune mechanisms underlying RA
(Cavalli and Dinarello, 2015). Among these, the IL-1 family plays a
significant role in disease pathogenesis by engaging distinct
receptors and activating TIR-mediated Akt and MAPK signaling
pathways, ultimately influencing inflammatory factor expression
(Dinarello, 2018). The complex interplay within this cytokine
family includes both pro-inflammatory members—such as IL-1α,
IL-1β, IL-18, IL-33, IL-36α, IL-36β, and IL-36γ—and anti-
inflammatory members—including IL-1Ra, IL-36Ra, IL-37, and
IL-38. This intricate balance suggests that targeted modulation of
IL-1 family cytokines, using soluble cytokine receptors, cytokine
antagonists, and cytokine analogues, holds promise for
RA treatment.

However, current research targeting the IL-1 family is relatively
limited. In clinical trials, multiple antibodies have not been studied,
and the studies that have been conducted have not shown ideal
therapeutic effects on RA, often being used for RA that is ineffective
to other drug treatments or in combination with other drugs to treat
RA. The reasons for the poor efficacy may include the following:

7.1 Cytokine redundancy and compensation
mechanisms

One of the primary challenges in targeting a single cytokine
within the IL-1 family is the presence of functional redundancy.
Many IL-1 family cytokines have overlapping roles, and inhibiting
one member can lead to compensatory upregulation of others,
thereby sustaining inflammation (Voronov et al., 2013). For
example, blockade of IL-1β may lead to increased activity of IL-
α, potentially undermining the efficacy of IL-1β-targeted therapies.
This compensatory response has been observed in other
inflammatory conditions, such as atherosclerosis, where cytokine
inhibitors inadvertently modulate multiple inflammatory pathways,
sometimes reducing treatment effectiveness (Beltrami-Moreira
et al., 2016).

7.2 Limited clinical success of IL-1 inhibitors

While IL-1 inhibition has demonstrated efficacy in conditions
such as systemic juvenile idiopathic arthritis and autoinflammatory

FIGURE 7
Results of a meta-analysis of the outcomes of adverse drug reactions after drug therapy.
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syndromes, its impact in RA has been less pronounced (Pardeo et al.,
2021; Arnold et al., 2022). Clinical trials investigating IL-1-targeting
agents—such as anakinra (IL-1 receptor antagonist) and
canakinumab (anti-IL-1β monoclonal antibody)—have not shown
superiority over existing RA treatments like TNF-α inhibitors or IL-
6 blockade (Singh et al., 2016). Consequently, IL-1 inhibitors are
often reserved for patients who do not respond to other therapies or
are used in combination regimens. Furthermore, IL-1 is a key
mediator of innate immunity, and blocking its activity may
weaken the body’s defense against pathogens. For instance, IL-1β
activates neutrophils and macrophages to clear pathogens, and
inhibiting its function may increase the risk of bacterial or viral
infections. Treatment with IL-1 inhibitors may induce serious
infections such as pneumonia and tuberculosis, especially more
pronounced in patients with immunosuppression (Selmi et al.,
2015). This may be a reason limiting the clinical application of
IL-1.

7.3 Anti-drug antibodies (ADA) and
immunogenicity

The human immune system can generate ADA against
therapeutic monoclonal antibodies, potentially leading to
treatment failure or hypersensitivity reactions. For instance,
monoclonal antibodies such as infliximab, adalimumab, anakinra,
and tocilizumab have been associated with ADA formation,

reducing their therapeutic efficacy. Similarly, heterologous
monoclonal antibodies, such as the rabbit-derived TNF-α
antibody SSS07, have been reported to trigger ADA responses,
limiting their clinical utility (Wang and Jin, 2020; Iwaszko
et al., 2021).

7.4 Inter-individual variability and disease
heterogeneity

RA exhibits significant inter-individual variability, influenced by
genetic background, environmental factors, and disease subtypes.
This variability affects cytokine expression patterns, making a one-
size-fits-all therapeutic approach challenging. For example, racial
differences have been shown to influence the efficacy of certain
biologics, such as golimumab in ulcerative colitis (Greywoode et al.,
2023). Personalised medicine approaches—such as gene and
protein-level analyses—may be necessary to optimise IL-1-
targeted therapies in RA (Lim et al., 2022).

7.5 Therapeutic potential of combined IL-1
family antagonists with other cytokine
inhibitors in RA

The primary challenge of IL-1 family inhibitors in RA treatment
lies in the limited efficacy of single-target inhibition due to cytokine

FIGURE 8
Results of a meta-analysis of the outcomes of serious adverse drug reactions after drug therapy.
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network redundancy and compensatory mechanisms.
Combining these inhibitors with other cytokine blockers (e.g.,
TNF-α or IL-6 antagonists) or developing multi-target drugs may
enhance therapeutic outcomes through the following
mechanisms: 1) IL-1 family cytokines primarily activate the
TIR-MyD88-Akt/MAPK pathway, driving inflammatory
responses in innate immune cells. In contrast, TNF-α and IL-6
mediate adaptive immune changes and systemic inflammation
via the NF-κB and JAK-STAT pathways, respectively.
Combination therapy inhibits these pathways synergistically,
reducing cross-induction of pro-inflammatory factors and
improving disease control. Notably, IL-1 inhibitors and TNF-
α/IL-6 antagonists share overlapping pathways; for example,
combining IL-1 inhibitors with TNF-α inhibitorss can
cooperatively suppress synovial fibroblast activation and bone
erosion, potentially achieving deeper remission. 2) Single-agent
IL-1β blockade may trigger compensatory increases in IL-18 or
IL-36γ. However, combining IL-1 inhibitors with TNF-α
blockers or IL-6 receptor antagonists can counteract these
compensatory signals and prolong clinical remission. 3)
Targeting two IL-1 family cytokines simultaneously neutralizes
dual pro-inflammatory isoforms, minimizing therapeutic
resistance caused by functional redundancy and enabling
comprehensive suppression of inflammation. This integrated

approach highlights the potential of IL-1-targeted combination
therapies to address RA heterogeneity while emphasizing the
need for rigorous safety evaluation to balance efficacy and
infection risks.

8 Prospects

Targeting the IL-1 family has improved symptoms of RA,
but some issues remain to be addressed. In the future, we can
conduct in-depth research from the following perspectives:
First, develop multi-specific antibodies that can target
multiple IL-1 family cytokines simultaneously, to enhance
efficacy. Second, use human monoclonal antibodies to
replace existing murine antibodies in order to mitigate
immune-related adverse reactions. Third, explore the
combined application of IL-1 inhibitors with conventional
therapies such as DMARDs, which may significantly
enhance treatment effects and shorten treatment cycles. Last
but not least, develop personalized treatment regimens
tailored to different subtypes of patients based on
their genetic profiles and protein expression characteristics,
to achieve precision medicine. In the future, further research
is believed to be able to improve the level of IL-1 targeted

FIGURE 9
Results of a meta-analysis of withdrawal after drug therapy.
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therapy for RA and bring about better clinical outcomes
for patients.
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