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Abstract

In this approach, the performance of a newly developed sensor probe coated with low-

dimensional Co3O4/Yb2O3 nanoparticles (NPs) in rapidly detecting 1,2-diaminobenzene

was evaluated by an electrochemical technique. The sensor probe was fabricated by

depositing a very thin layer consisting of synthesized Co3O4/Yb2O3 NPs using a 5% Nafion

conducting binder onto a glassy carbon electrode (GCE). The facile hydrothermally pre-

pared Co3O4/Yb2O3 NPs were totally characterized by conventional methods such as FTIR,

UV-vis, TEM, XPS, EDS, and XRD analyses. The fabricated chemical sensor probe was

found to exhibit long-term activity, stability in electrochemical response, good sensitivity

(5.6962 μAμM-1cm-2), lowest detection limit (0.02±0.001 pM), and broad linear dynamic

range (0.1 pM to 0.01 mM). The observed performances suggest that the newly introduced

sensor could play an efficient role in detecting 1,2-diaminobenzene especially in healthcare

and environmental applications on a broad scale.

Introduction

Generally, 1,2-diamino benzene (1,2-DAB) is an organic amine and industrially very impor-

tant chemical intermediate. It has extensive usage in producing medicine, auxiliaries, pesti-

cides, dyes, pigments, photosensitive materials and, so on [1]. 1,2-DAB has also been reported

[2, 3] as a carcinogenic and mutagenic substance causing hazardous effects in the human body

through inhalation, ingestion, eye contact and, so on. Heavy exposure to1,2-DAB can often

cause cancer and damage liver, respiratory, and digestive systems of the human body. The

ACGIH (American Conference of Governmental Industrial Hygienists) has identified

1,2-DAB as a serious hazardous substance that causes environmental pollution [4]. Therefore,

it drives the need to search for a sustainable method to detect 1,2-DAB efficiently. Currently,

various numerical methods including liquid chromatography [5–7], spectrophotometry [8, 9],

capillary electrolysis [10], etc are widely used in detecting 1,2-DAB. The technical advantages

of these methods include good sensitivity, high selectivity, and long-term stability. However,

these approaches have different drawbacks including complicated detection process,
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specialized instrumentation, laborious, high cost, and so on [11]. To ensure the real-time

detection of this hazardous toxin, the electrochemical method is most effective. Due to the

attractive electrical and optical properties, the various nanostructured metal oxides such as Pd-

Rh nano-frames [12], Au@Pt core/shell nanorods [13], Fe3O4 magnetic nanoparticles [14],

and tungsten carbide nanorods [15] have been recognized as potential sensing elements in the

chemical sensor for detecting 1,2-DAB. The chemical sensor fabricated by Fe3O4 doped func-

tionalized multiwall carbon nanotubes composite (Fe3O4@f-MWCTNs) is reported for its effi-

cient performance with the sensitivity of 2.8002 mAmM-1cm-2 as well as the detection limit of

50.0 μM [16]. Similarly, Fe-MIL-88-H2O2-OPD based DAB (diaminobenzene) chemical is

reported for its good performance with 50.0 nM– 30.0 μM LDR and 46.0 nM DL [17].

In the present study, Co3O4/Yb2O3 NPs/Binder/GCE based on a novel electrochemical sen-

sor is introduced for detecting 1,2-DAB in an optimized buffer system successfully. Firstly, the

slurry of Co3O4/Yb2O3 NPs in ethanol is prepared and then deposited a very thin layer onto

GCE with an additive of 5% Nafion binder. This fabricated sensor is applied to detect selective

1,2 DAB through the implementation of a reliable electrochemical method by using the elec-

trochemical approach. It is worth mentioning that the development of Co3O4/Yb2O3 NPs

based GCE sensor seems to be promising technology especially for detecting toxicant to the

safety of the environment.

Experimental procedures

Materials and experimental methods

The required inorganic salts of cobalt (II) chloride (CoCl2), ytterbium chloride (YbCl3) and

ammonium hydroxide (NH4OH) for preparing the required nano-materials supplied by SAC

(Sigma Aldrich Company), USA. The other required ingredients including analytical grade

1,2-diamino benzene (1,2-DAB), 3-methyl aniline (3-MA), 3-chlorophenol (3-CP), 2,4-dini-

trophenol (2,4-DNP) benzaldehyde (BH), pyridine (P), 3-methoxy hydrazine (3-MPHyd),

ammonium hydroxide (AH), ethanol (E), tetrahydrofuran (3-THF), 5% Nafion, monosodium

phosphate (NaHPO4) and disodium phosphate (Na2PO4) were also purchased from the Sigma

Aldrich Company. The prepared NPs were analyzed by XRD for identifying its crystalline

phases. FESEM (JSM7600F, JEOL, Japan) was used to investigate elemental analysis, molecular

arrangement, shape and size as well as morphological structure. The XPS (Thermo scientific,

K-α1 1066) analysis was conducted to examine the binding energy among Co, Yb, O and their

states of oxidation. The details of the XPS excitation radiation source are as follow: Al K-α1,

300.0 μm beam spot, 200.0 eV pass energy, 10−8 Torr pressure. The prepared Co3O4/Yb2O3

NPs were also examined by UV-vis spectrophotometer and FTIR (Thermo scientific NICO-

LET iS50, Madsion, USA). During fabricating the chemical sensor probe, an ethanolic slurry

of calcined Co3O4/Yb2O3 NPs and 5% Nafion were used to develop a thin layer on GCE. It was

then employed for detecting 1,2-DAB in aqueous medium. The Keithley electrometer (6517A;

Purchased from the USA) was utilized to conduct electrochemical analysis through electro-

chemical technique.

Hydrothermal process to prepare Co3O4/Yb2O3 NPs

The facile hydrothermal process is applied to prepare the Co3O4/Yb2O3 NPs. The hydrother-

mal is an efficiently used method to synthesis nano-doped material. This process basically con-

sists of three major steps. These include (i) hydroxides co-preparation in aqueous medium, (ii)

precipitation drying, and then (iii) calcining in the muffle furnace. For executing the experi-

mentation, ytterbium chloride (YbCl3) and cobalt chloride (CoCl2) are dissolved in 100.0 mL

de-ionized water. This mixing process is done in 250.0 mL conical flask. Since the
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hydrothermal process works in an alkaline medium, 0.1 M NH4OH solution is added dropwise

for adjusting the pH at 10.5 under continuous magnetic stirring. The ions Co+2 and Yb+3 are

co-precipitated with the state of Co(OH)2/Yb3(OH)2. The formed metal hydroxides are sepa-

rated and then carefully washed with di-ionized water as well as ethanol. Then the separated

precipitate is dried in an oven at a temperature of 105 ˚C. Subsequently, the dried precipitate is

placed inside the furnace to calcine at 500 ˚C temperature for 6h. In the presence of oxygen,

this calcination process transforms the metal hydroxides into Co3O4/Yb2O3 NPs. The obtained

sample is then ground to particles at nano level by using a motor. The possible reaction

schemes are listed below:

Reactions in aqueous medium

NH4OHðsÞ ! NH4
þ þOH� ðaqÞ ð1Þ

CoCl2ðsÞ ! Co2þ
ðaqÞ þ 2Cl� ðaqÞ ð2Þ

YbCl3ðsÞ ! Yb3þ

ðaqÞ þ 3Cl� ðaqÞ ð3Þ

Co2þ
ðaqÞ þ Yb3þ

ðaqÞ þ 5OH� ðaqÞ þ nH2O! CoðOHÞ
2
=YbðOHÞ

3ðsÞ:nH2O # ð4Þ

Reactions occurred in muffle furnace

CoðOHÞ
2
=YbðOHÞ

3ðsÞ þ O2 ! Co3O4=Yb2O3 þH2OðvÞ ð5Þ

Due to the presence of several metal ions in the reaction medium, the precipitation of metal

ions as metal hydroxides are dependent on the product solubility (Ks) of the corresponding

metal hydroxides. It is noted that the values of product solubility (Ks) for Yb(OH)3 and Co

(OH)3 are 1.0x10-22 and 5.92x10-15 respectively [18]. As the addition of 0.1 M NH4OH solution

dropwise in the reaction medium, the concentration of OH- is increased gradually. Therefore,

Yb(OH)3 starts to precipitate first due to its lower value of product solubility (Ks). It forms Yb

(OH)3 crystal nuclei and then starts the aggregation. However, as the pH keeps increasing, the

Co(OH)3 starts precipitating at a certain pH value. These precipitations are then absorbed on

crystallites of Yb(OH)3. Similar growth patterns of nano-materials are reported in literature

[19–21]. The calcined Co3O4/Yb2O3 NP is then ground in a mortar to make a powder sample

for full of characterization. The prepared Co3O4/Yb2O3 NPs are applied to detect the selective

1,2-DAB through an electrochemical approach at room temperature.

GCE fabrication by using Co3O4/Yb2O3 NPs

A slurry/paste of Co3O4/Yb2O3 NPs was prepared by mixing ethanol in order to prepare a thin

layer coated GCE. The prepared GCE was then dried at ambient temperature. A drop of 5%

ethanolic emulsion of Nafion (so-called conducting binder) was added during the coating pro-

cess to enhance the binding strength between GCE and used NPs. It is worth mentioning that

Nafion has been reported in the literature for its capability to improve conductivity, stability,

and electron transfer rate of the electrode [22, 23]. For drying the produced conducting film

entirely, the fabricated electrode was put inside an oven at 34.0 ˚C temperature. At the next

stage, the prepared Co3O4/Yb2O3 NPs/binder/GCE and 1.5 mm dia Pt-wire were used as

working and counter electrode respectively for making an electrochemical cell. The 1,2-DAB
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solution was used as a target analyte in the developed chemical sensor. The sensitivity (Sen) of

the sensor was determined from the calibration curve that represents current vs. concentra-

tions. Similarly, DL and LDR were determined from noise and sensitivity. The used Keithley

electrometer (6517A, USA) consisting of two electrode systems supplies voltage in developing

electrochemical curve. Throughout this chemical experimentation, the solution with 0.1 PBS

was kept constant to 10.0 mL in glass beakers.

Results and discussions

Analysis of structural and optical properties

The obtained FT-IR spectra of Co3O4/Yb2O3 NPs are presented in Fig 1A. The FT-IR spec-

trum of Co3O4/Yb2O3 NPs is displayed two distinctive peaks at 552 and 654 cm-1, which origi-

nate from metal-oxygen stretching vibration. The bands at 552 and 654 cm-1 are associated

with Co+3-O and Co+2-O vibration respectively [24, 25]. The adsorption peaks at wavenumber

1407, 1625, and 3306 cm-1 are more likely attributed to the stretching vibration mode of O-H

due to the adsorption of water from the environment [26–28]. The photo-electronic sensitivity

through UV-vis analysis of prepared Co3O4/Yb2O3 NPs was conducted at 290–800 nm wave-

length. Due to the adsorption of visible light radiant energy, the electrons of synthesized NPs

are transmitted from the low-level to high-level, which resulted in UV-vis spectra [29]. The

Fig 1. (a) FT-IR, (b) UV-vis spectrum, and (c) XRD patterns of Co3O4/Yb2O3 NPs for evaluation of optical and morphological

properties.

https://doi.org/10.1371/journal.pone.0246756.g001
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typical UV-vis spectra are presented in Fig 1B. An intense peak (as shown in the inset, Fig 1B)

is observed at 307.0 nm. This could be the characteristic bond of synthesized Co3O4/Al2O3

NPs. The obtained UV absorption band is in good agreement with the literature [30–32]. As

per Eq (6), the measured band-gap energy is found to be 4.04 eV.

Eg ¼ 1240=λmax ð6Þ

Where, Eg: band-gap energy; λmax: maximum absorbed wavelength [33, 34].

The X-ray diffraction (XRD) analysis was conducted on Co3O4/Yb2O3 NPs in the range of

10 to 80 degrees at the scanning speed of 2 / min. The obtained XRD spectrum is presented in

Fig 1C which shows the well-crystalline phases of Co3O4 and Yb2O3. The reflected crystalline

peaks of Co3O4 indices as θ are (111), (220), (311), (400), (420), (440), and (511) as identified

in the literature [35–37] accordingly JCPDS 42–1467. Moreover, the identified peaks of Yb2O3

indices as ß are (200), (211), (220), (222), (400), (440) and (622) as reported by the studies [38,

39] accordingly JCPDS No. 87–2374.

Fig 2. XPS analysis of Co3O4/Yb2O3NPs: (a) Full range spectrum; Orbital spins of (b) Yb4d-level, (c) O1s-level, and (d) Co2p-

level.

https://doi.org/10.1371/journal.pone.0246756.g002
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As per general practice, the crystal size of synthesized NPs is measured from XRD diffrac-

tion patterns by using Eq (7).

D ¼ 0:91 λ=ðβ cosθÞ ð7Þ

Here, λ: wavelength, β: width at half corresponding to the highest intense peak, and θ: dif-

fraction angle [40]. The measured crystal size by using Eq (7) is found to be 27.03 nm.

Analysis of binding energy

The prepared NPs of Co3O4/Yb2O3 were also analyzed by the XPS technique. When Co3O4/

Yb2O3 NPs are scanned using XPS, the valence electron from outer orbit transmits from low-

energy level to high-energy level owing to the kinetic energy of the X-ray beam absorbed. This

practice is utilized to determine the atomic composition as well as oxidation compounds pres-

ent in the tested sample [41–43]. The obtained XPS spectra are presented in Fig 2A for Co2p,

Yb4d, and O1s. The Co2p core level spectrum presented in Fig 2D shows two dominating

peaks of Co2p3/2 and Co2p1/2 at 781 eV and 796 eV respectively along with satellite peaks.

These two dominating sharp peaks can be recognized to verify the existence of Co+3. The

observed satellite peaks of Co2p3/2 and Co2p1/2 are at 786 eV and 802 eV respectively. These

two peaks are more likely ascribed to the presence of Co+2 in the prepared Co3O4/Yb2O3 NPs

[44–48]. Thus, the presence of Co2p spin orbitals demonstrates the co-existence of Co(II) and

Co(III) on the synthesized Co3O4/Yb2O3 NPs. The O1s peak at 530 eV as shown in Fig 3C is

Fig 3. Morphology and elemental analyses. (a-b) FESEM micrographs, (c-d) EDS analysis of Co3O4/Yb2O3NPs.

https://doi.org/10.1371/journal.pone.0246756.g003
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attributed to the O2- in Co3O4 [49–51]. Similarly, the Yb4d peak at 186 as is ascribed to Yb+3 –

O-2 bonds in Yb2O3 as illustrated in Fig 3B [52–54].

Elemental and morphological analysis

Fig 3 represents the morphological and elemental analysis of prepared NPs of Co3O4/Yb2O3

and this analysis was carried out by the implementation of FESEM and EDS on the synthesized

sample. Fig 3A and 3B clearly shows that the prepared Co3O4/Yb2O3 nanomaterials are spheri-

cal in shape [55–57]. The elemental analysis of Co3O4/Yb2O3 NPs as per EDS test presented in

Fig 2C and 2D shows O 14.8%, Yb 63.4%, and Co 21.9%. Besides this, there is no other visible

peak and therefore it can be concluded that the prepared Co3O4/Yb2O3 NPs consist of cobalt,

ytterbium, and oxygen only [58, 59].

Applications: Detection of 1,2-DAB by Co3O4/Yb2O3 NPs

The conductive binder (5% Nafion) was used during the fabrication of the sensor probe

through the deposition of a thin layer of Co3O4/Yb2O3 NPs on GCE. The use of conductive

binder successfully improved its conductivity, stability, and electron transfer rate. The pre-

pared Co3O4/Yb2O3NPs/binder/GCE based chemical sensor was then employed to detect

1,2-DAB selectively in optimized aqueous buffer solution. In electrochemical detection of

1,2-DAB by electrochemical method, current versus potential was determined on the thin film

of Co3O4/Yb2O3 NPs by fixing the holding time for 1 s. Scheme 1 presents the possible reaction

mechanism of 1,2 DAB. It is worth mentioning that enrichment of electrons is observed dur-

ing the determination of sensing performance. Thus, the conductivity of the sensing medium

of 1,2-DAB is increased. As a result, amplified electrochemical responses as illustrated in Fig

5A are found to be significant with the increment of 1,2-DAB concentration. It seems that the

reactive 1,2-DAB is absorbed on the fabricated working electrode (GCE coated of Co3O4/

Scheme 1. Schematic representation of the possible detection mechanism of target 1,2-DAB onto Co3O4/Yb2O3 NPs/

Nafion/GCE.

https://doi.org/10.1371/journal.pone.0246756.g004
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Yb2O3 NPs) surface as per reaction (8) and consequently the oxidation reactions are started.

The produced electrons and hydrogen ions from oxidation of 1,2-DAB as shown in reaction

(8) effectively increase the conductivity of the sensing medium [16, 60, 61]. This is why the

electrochemical responses are observed to be more significant with the increase of 1,2-DAB

concentrations. This demonstrates that the electrochemical responses are directly proportional

to the concentration of 1,2-DAB. This is in good agreement with the results reported elsewhere

[62]. The pictorial representation of the Co3O4/Yb2O3 NPs modified electrode in detecting of

1,2-DAB is demonstrated in Scheme 1.

The possible oxidation reaction of 1,2-DAB is presented by reaction (8) below.

2C6H8N2 ! C12H12N4 þ 4Hþ þ 4e� ð8Þ

The hydrothermally prepared Co3O4/Yb2O3 NPs are not similarly active to all the phos-

phate buffer systems in applied electrochemical method. Therefore, it is very important to

optimize the buffer solution for obtaining the maximum electrochemical responses. The fabri-

cated Co3O4/Yb2O3 NPs/binder/GCE based sensor probe was examined in different buffer

solutions with pH ranging from 5.7 to 8.0 T he tested chemical sensor probe was maximum

Fig 4. Optimization of Co3O4/Yb2O3 NPs/binder/GCE based 1,2-DAB chemical sensor: (a) optimization of pH, (b) level of

selectivity, (c) response time and (d) degree of repeatability.

https://doi.org/10.1371/journal.pone.0246756.g005
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current at pH of 7 as it is shown in Fig 4A. This performance (pH optimization) test was con-

ducted by using Keithley electrometer at applied potential range 0–1.5 V. The electrochemical

responses were recorded for different concentrations ranging from 1.0 nM of 1,2-DAB and pH

of 7. Such responses of 1,2-diamino benzene (1,2-DAB), 2,4-dinitro-phenol (2,4-DNP)

3-methyl aniline (3-MA), benzaldehyde (BH), 3-methoxy phenyl hydrazine (3-MPHyd),

3-chlorophenol (3-CP), pyridine (P), ammonium hydroxide (AH), ethanol (E) and tetrahydro-

furan (THF) are illustrated in Fig 4B. Among others, 1,2-DAB was found to exhibit the maxi-

mum electrochemical responses. The key analytical performance of a sensor is denoted by the

response time. This test was conducted in 1.0 nM concentration for 1,2-DAB to optimize in

buffer solution. The highly applicable value of the response time as per observation from Fig

4C is 11.0 sec. Reproducibility is another important sensor performance parameter. The data

on reproducibility is presented in Fig 4D after conducting the test in 1.0 nM concentration of

1,2-DAB and pH of 7. The responses were observed to be outstanding even after washing the

working electrode in each trail. At the next stage, RSD (relative standard deviation) was calcu-

lated. It was found to be 2.26 at +.8 V potential.

Fig 5 shows the graphical presentation of current versus the potential for 1,2-DAB detection

at the concentration ranging from 0.1 mM to 0.1 mM. The observed responses corresponding

to the concentration are found to be distinguishable. The resulted plot shows the regression

coefficient value (r2 = 0.9745) at +1.0 V potential. The estimated sensitivity and LDR (Linear

dynamic range) are found to be 5.6962 μAμM-1cm-2 and 0.1 pM– 0.01 mM respectively. The

detection limit (DL) is calculated as 0.02 ± 0.001 pM (signal to noise ratio of 3).

Fig 5A demonstrates that the electrochemical response varies with the concentration of

1,2-DAB which is in good agreement with the finding reported in the literatures [63–65]. A

few 1,2-DAB chemicals are absorbed in the very beginning of the sensing performance of

1,2-DAB with the Co3O4/Yb2O3 NPs/binder/GCE sensor probe. The absorption of 1,2-DAB

mainly occurs when oxidation starts progressively onto the working electrode surfaces [66]. In

the meantime, the analyte concentration on the surface increases and covers a larger part of

the surface. It indicates a gradual increase of reaction rate on the Co3O4/Yb2O3 NPs/binder/

GCE surface. However, the surface reaction rate and corresponding current density reach a

Fig 5. (a) Effect of concentration variation on the performance of Co3O4/Yb2O3 NPs/binder/GCE based 1,2-DAB chemical

sensor through (a) I-V graphical presentation, (b) current versus concentration curve (Inset: Log [Conc. Of 1,2-DAB] versus

current).

https://doi.org/10.1371/journal.pone.0246756.g006
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steady-state level when surface coverage level approaches its equilibrium state due to the addi-

tional of the 1,2-DAB on Co3O4/Yb2O3 NPs/binder/GCE electrode. The experimental results

presented in Fig 5B show a linear plot with the homogeneous distribution. This suggests that

the proposed 1,2-DAB sensor could be applied successfully to toxin levels in buffer medium.

The response time is required as 10.4 sec by the Co3O4/Yb2O3NPs/binder/GCE sensor probe

based chemical sensing as shown in previously presented Fig 4C to reach steady-state response.

Thus, it is possible to record and preserve the data within 10.4 sec. The fabricated Co3O4/

Yb2O3NPs/binder/GCE sensor probe is found to be efficient in terms of DL and DLR selec-

tively. Table 1 shows the comparison of chemical sensors fabricated with various nanostruc-

tured metals by electrochemical methods.

Real sample analysis

The newly developed Co3O4/Yb2O3 NPs/binder/GCE based chemical sensor was justified for

its applicability within the practical field through employing it in detecting 1,2-DAB with veri-

ties of real samples collected from the various sources. To confirm its wide range of applicabil-

ity, the tested real samples were collected from different sources including extracts from PC

baby-bottles, PC water bottles, PVC-made food packing bags, and so on. The collected samples

are initially filtered. Finally, the samples are used to detect by fabricated Co3O4/Yb2O3 NPs/

binder/GCE sensor probe using an electrochemical method in room conditions. The obtained

results as presented in Table 2, are found to be quite satisfactory and acceptable.

Conclusions

Finally, nanoparticles of Co3O4/Yb2O3 were prepared hydrothermally and analyzed by various

conventional methods, such as UV-vis, FTIR, FESEM, EDS, XRD and XPS. A selective chemi-

cal sensor probe was successfully prepared through depositing a very thin layer of Co3O4/

Yb2O3 NPs onto GCE. During deposition process, a drop of Nafion was added for improving

its fabrication process to stick the powder NPs onto GCE surface. The fabricated sensor probe

was then employed in detecting the target toxic 1,2-DAB in phosphate buffer system. The

1,2-DAB chemical sensor is exhibited satisfactory results for various analytical performing

factors including detection limit, selectivity, linearity, response time, reproducibility,

Table 2. Measured concentrations of 1,2-DAB analytes for different real samples by an electrochemical method using Co3O4/Yb2O3 NPs/Nafion/GCE.

Real sample Observed current (μA) Average Measured Conc. (μM) %SD

Reading 1 Reading 2 Reading 3 Reading 4

Industrial effluents 1.59 1.61 1.62 1.64 1.615 0.0113 1.29

PC baby bottle 2.84 2.88 2.95 2.97 2.910 0.0206 2.08

PC water bottle 2.26 2.19 2.14 2.23 2.205 0.0156 2.36

Packing bag/PVC 2.37 2.46 2.50 2.61 2.485 0.0176 4.00

�SD–Standard deviation, μM–Micromole.

https://doi.org/10.1371/journal.pone.0246756.t002

Table 1. The comparative performances of different chemical sensors in detecting 1,2-DAB based on various electrode modification.

Modified electrode system Detection limit (DR) Linear dynamic range (LDR) Sensitivity Ref.

Fe3O4@f-MWCNTs 50.00 μM 0.6–80 μM 2.80 μAμM-1cm-2 [16]

Co3O4/Yb2O3 NPs /GCE 0.02 pM 0.1 pM ~0.01 mM 5.69 μAμM-1cm-2 This work

�nM–Nanomole, μM–Micromole, pM–picomole.

https://doi.org/10.1371/journal.pone.0246756.t001
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repeatability, stability, and so on. The obtained sensitivity and LDR (linear dynamic range) are

observed to be 5.6962 μAμM-1cm-2 and 0.1 pM—0.01 mM respectively. The DL (detection

limit) is found to be 0.02 ± 0.001 pM at the point where the signal to noise ratio is 3. The test

results are obtained from various real sample sources demonstrated that the fabricated sensor

is highly reliable and suitable in detecting toxins by an electrochemical process on a broad

scale. Thus, a sensor probe with binary doped nanostructure material is applied and useful for

the safety of environmental and health care fields on a large scale.
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