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T-wave alternans (TWA) in surface electrocardiograph (ECG) signals has been recognized as a marker of cardiac electrical
instability and is hypothesized to be associated with increased risk for ventricular arrhythmias among patients. A novel time-
domain TWA hybrid analysis method (HAM) utilizing the correlation method and least squares regression technique is described
in this paper. Simulated ECGs containing artificial TWA (cases of absence of TWA and presence of stationary or time-varying or
phase-reversal TWA) under different baseline wanderings are used to test the method, and the results show that HAM has a better
ability of quantifying TWA amplitude compared with the correlation method (CM) and adapting match filter method (AMFM).
The HAM is subsequently used to analyze the clinical ECGs, and results produced by the HAM have, in general, demonstrated
consistency with those produced by the CM and the AMFM, while the quantifying TWA amplitudes by the HAM are universally
higher than those by the other two methods.

1. Introduction

The T-wave alternans (TWA) has been considered as one of
the most promising markers of sudden cardiac death (SCD)
over the past 10 years. TWA is a phenomenon appearing in the
surface electrocardiograph (ECG) as a consistent fluctuation
in the repolarization morphology on an “every-other-beat”
basis (2 : 1 behavior). This fluctuation refers to a beat-to-beat
variability in the amplitude, morphology, and/or polarity of
the T-wave. Numerous clinical studies have demonstrated
that TWA is associated with ventricular arrhythmias. Nowa-
days TWA has been considered an independent predictor of
cardiac arrhythmias.

Several signal processing methods have been proposed
to detect and estimate TWA in the ECG on a single-lead or
multilead basis [1–8]. And a comprehensive and systematic
discussion of methods for TWA detection and analysis is
reported in [9]. Most widely used TWA detection methods
work in two different domains: time and frequency.

The disadvantage of the frequency based methods is that
they treat the alternans signal as a stationary wave with

the constant amplitude and phase, which is not true in
general. They cannot detect nonstationary characteristics of
the signal.

The time-domain methods can detect the TWA of non-
stationary ECG signal in short time, and they have also
been used on Holter data. The correlation method (CM)
[6, 7], as a well-known time-domain method, performs
well under different conditions, but it is sensitive to noise,
especially to baseline wandering. In the presence of baseline
oscillations at TWA frequency, a strong overestimation of
TWAmean amplitude, and even TWA detection from TWA-
free ECG tracings, is produced by the CM. And in the
presence of higher frequency baseline fluctuations, the CM
is not able to identify TWA [10]. An adapting match filter
method (AMFM) was proposed by the same authors of
the CM to overcome the CM limitations [11]. The AMFM
yielded a significant improvement in the algorithm-based
identification of duration and amplitude of TWA from ECG
tracings with frequency of baseline oscillations both lower
and higher than that of TWA. Nevertheless, in the presence
of baseline fluctuations at the TWA frequency, it produced
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erroneous TWA detection from ECG tracing with no TWA
and even strong overestimation of TWA amplitude, when
present.

Based on above background, we propose a hybrid
approach for the TWA detection, which is based on the cor-
relation method and the least squares regression technique.
The study aims to develop a novel TWA detector to overcome
the CM limitations, which can detect and measure transient
TWA with more accuracy in the time domain, even in the
presence of higher frequency baseline fluctuations.

The rest of the paper is organized as follows. In Section 2,
we present a novelmethod of TWAdetection; simulated cases
and clinical cases are also prepared. Then, in Section 3, we
report the results of its validation on the simulation database
and clinical database and compare the results to that of
the CM and the AMFM. Next, in Section 4, we give the
discussion. Finally, we summarize the conclusions of this
work in Section 5.

2. Material and Methods

2.1. The Hybrid Analysis Method (HAM) Using Correlation
Method and Least Squares Regression Technique. The hybrid
analysismethod consists of three different blocks: preprocess-
ing, TWA detection, and TWA evaluation. The whole TWA
analysis process is described as follows.

2.1.1. Data Preprocess. Before detecting TWA, the clinical
ECG used here are required to be submitted to a preliminary
preprocessing stage. This consists of various steps, which are
baselinewandering suppression,QRS complex detection, and
segmentation of the T-wave.

(i) Baseline wandering suppression: this is performed
using a cubic spline interpolation technique [12].

(ii) QRS complex detection: it is determined using a
wavelet-based algorithm [13].

(iii) T-wave segmentation: it is done by selecting intervals
of 300ms, beginning at a distance from the QRS
fiducial point dependent on the 𝑅𝑅 interval. The
interval onset for the 𝑖th beat, 𝑏

𝑖
, is given by the

expression

𝑏
𝑖
= 40 + 1.3𝑅𝑅

1/2
(ms) . (1)

(iv) T-wave alignment: after T-wave segmentation, 128
consecutive T-waves present in the ECG are used to
compute the median T-wave (𝑇

𝑚
, which has each

sample point given by the median value of the
corresponding sample points of the 128 available T-
waves), which is used as a template. Synchroniza-
tion of the 𝑖th T-wave is performed according to a
recursive procedure that keeps the segmented T-wave
window length constant but varies its position±30ms
from the original position, with a time increment of
one sample point. For each position of the T-wave
window, the windowed 𝑖th T-wave is cross-correlated
against the template. Optimal alignment occurs when
maximum correlation is reached.
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Figure 1: An example of the presence of TWA.

2.1.2. Qualitative Detection of TWA. After data preprocess-
ing, TWA is detected by looking for an alternating trend in
the T-wave morphology quantified by a correlation index. To
this aim, an alternans correlation index (ACI) is computed to
measure morphological changes of each of the consecutive 𝑇

𝑖

waves in comparison to 𝑇
𝑚
[12], which is as shown as follows:

ACI
𝑖
=

∑
𝑁

𝑗=1
𝑇
𝑖
(𝑗) 𝑇
𝑚
(𝑗)

∑
𝑁

𝑗=1
[𝑇
𝑚
(𝑗)]
2

𝑖 = 1, 2, . . . , 128, (2)

where 𝑇
𝑚
is the median T-wave computed using 128 T-waves

available in each ECG tracing.𝑁 is the number of samples in
each T-wave.

ACI
𝑖
is defined as the ratio of the maximum value of the

cross-correlation function of 𝑇
𝑖
and 𝑇

𝑚
over the maximum

value of the autocorrelation function of 𝑇
𝑚
. 𝑇
𝑖
is classified as

alternating.
Thepresence of TWA is consideredwhen the value of ACI

strictly oscillates (not necessary around one) in the case of
monophasic TWA for at least 7 consecutive beats. Figure 1
shows an example of alternating values of ACI

𝑖
, indicating the

presence of TWA.
To limit false detections caused by noise, a local threshold

criterion,withThACI equal to 0.06 [6], is considered, such that
ACI values alternations have to exceed 0.12 for at least seven
consecutive beats to be detected as TWA.

2.1.3. Quantitative Estimation of TWA. The odd and even
beats of the above detected consecutive beats are labeled as
𝐴 and 𝐵, respectively. The odd T-waves are obtained from 𝐴

series and the even T-waves are obtained from 𝐵 series. The
odd T-waves constitute a matrix:

𝑇
𝐴
𝑚×𝑛

= (𝑇
𝐴
0

, 𝑇
𝐴
1

, . . . , 𝑇
𝐴
𝑛
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,

(3)

where 𝑇
𝐴
𝑚,𝑛

is the 𝑛th point of the 𝑚th odd T-wave. Analo-
gously the even T-wave matrix 𝑇

𝐵
𝑚,𝑛

can be constituted.
The amplitude corrections of odd and even T-waves are

performed using the first-degree polynomial as shown below:

𝑓 (𝑖) = 𝑎𝑇𝑖,𝑘 + 𝑏, (4)

where 𝑇
𝑖,𝑘

is the 𝑖th row and 𝑘th column point of odd (or
even) T-wave matrix. And the coefficients 𝑎, 𝑏 are estimated
by the linear least squares fitting process.
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Each column vector 𝑇
𝐴
𝑘

of 𝑇
𝐴
𝑚×𝑛

is divided into 7-
point epochs, and (4) is recursively applied to each epoch
throughout the entire𝑇

𝐴
𝑘

. Denote 𝜃
𝑖
as the 𝑖th deviation point

of 𝑇
𝐴
𝑘

from the fitting line:

𝜃
𝑖
=
𝑇𝑖,𝑘 − 𝑓 (𝑖)

 . (5)

Then the mean deviation value of 𝑇
𝐴
𝑘

can be expressed as
follows:

𝜃 =
∑
𝑚

𝑖=0
𝜃
𝑖

𝑚
. (6)

Ifmax(𝜃
𝑖
) ≥ 3×𝜃, then the 𝜃

𝑖
is considered to be corrected

and replaced by the 𝑖th columnmean value𝑇(𝑘) (as shown in
(7)) of odd (or even) T-wave matrix. Consider

𝑇 (𝑘) =
∑
𝑚

𝑖=0
𝑇
𝑖,𝑘

𝑚
. (7)

And the amplitude correction of the entire𝑇
𝐴
𝑘

is recalculated,
until the max(𝜃

𝑖
) ≤ 3 × 𝜃 or max(𝜃

𝑖
) ≺ 2 𝜇V.

A specific example of amplitude correction of odd T-
wave matrix using the linear fitting function is shown in
Figure 2. Figure 2(a) represents the uncorrected T-waves and
Figure 2(b) represents the corrected T-waves.

The corrected matrixes for odd and even T-waves are
known as 𝑇

𝐴
and 𝑇

𝐵
, respectively. Measure TWA

𝑘
as the

maximum absolute value of the difference between 𝑇
𝐴
𝑘

and
𝑇
𝐵
𝑘

:

TWA (𝑘) = max𝑖=𝑇offset
𝑖=𝑇onset


𝑇
𝐴
𝑘

(𝑖) − 𝑇𝐵
𝑘

(𝑖)

, (8)

where TWA(𝑘) denotes the 𝑘th local TWA (i.e., relative to a
single odd (or even) beat), 𝑘 = 1, 2, . . . , 𝑚.

The TWA of the analyzed consecutive ECG segment
(segment TWA) is measured as the mean value of measured
local TWAs:

TWAseg =
∑
𝑚

𝑘=1
TWA (𝑘)
𝑚

. (9)

And the global TWA (i.e., relative to the entire ECG tracing
analyzed) is measured as the mean value of segment TWAs:

TWA =

∑
𝑙

𝑖=1
TWAseg (𝑖)

𝑙
. (10)

The above process can be described as the block diagram
(Figure 3).

2.2. Simulated Cases. There is no generally accepted TWA-
measuring criterion to be used as a gold-standard.Therefore,
a simulation approach was used in the present study in
different controlled cases.

A realistic, clean simulated ECG was obtained as a K-
fold repetition of a single beat extracted from a real ECG
[14]. This guarantees that all the T-waves of the simulated
ECG are identical, so no TWA can be present in the original

signal. In particular, we used a 0.7 s beat sampled at 500
samples per second. The length of each simulated ECG
tracing was assumed to count 128 consecutive heart beats.
Our choice relies on the fact that 128 consecutive beats were
originally used for SM applications, although some time-
domain methods (e.g., modified moving average) use shorter
ECGs [15]. A constant 𝑅𝑅 interval of 0.7 s was assumed, so
that TWA fundamental frequency was 0.71Hz (i.e., 1/(0.7 ×
2 s) or 0.5 cycles per beat). TWA was simulated by varying
T-wave amplitude (10, 50, and 100 𝜇V) in a time window of
160ms centered around the T-wave apex.

Four different sets of ECG simulation were considered,
respectively, reproducing the cases relative to the absence
of TWA, the presence of stationary TWA, the presence of
time-varying TWA, and the phase-reversal TWA, which are
described below.

2.2.1. Case 1: Simulated ECG Tracing with No TWA. The
simulated ECG tracing with no TWA (N TWA) is assumed
not to be affected by any kind of noise.This simulated signal is
thought to test the ability of recognizing the absence of TWA,
which is represented in Figure 4(a).

2.2.2. Case 2: Simulated ECG Tracings with Stationary TWA.
The simulated ECG tracings with stationary TWA (S TWA)
are designed to test the ability of quantifying TWA amplitude
in the presence of stationary alternating T-wave profiles.
Three kinds of simulated ECG tracings were considered,
namely, a tracing with a 10 𝜇V TWA (S TWA10), a tracing
with a 50𝜇V TWA (S TWA50), and a tracing with a 100 𝜇V
TWA (S TWA100). An example of a tracing with a 50𝜇V
TWA is represented in Figure 3(b).

2.2.3. Case 3: Simulated ECG Tracings with Time-Varying
TWA. ECG with visible TWA clearly shows the nonstation-
ary nature of this phenomenon, whose variability often shows
on-off or cyclic trends. Evaluation of dynamic aspects of
TWA is important in clinics since transient TWA has been
observed during acute ischemia [16]. To test the ability of
the HAM in detecting nonstationary TWA, two simulated
ECG tracings were considered, each one incorporating a
specific beat-to-beat varying (and then, time-varying) 𝐴(𝑛)
sequence. Sinusoidal 𝐴(𝑛) sequences, with 128 beats period
were affecting the first (TV TWA1) ECG tracing, while An
𝐴(𝑛) varying from 50 𝜇V to 20𝜇V, following a smoothed
(24 beats transition) step pattern, was affecting the second
ECG tracing (cascadedTWA, TV TWA2).The two simulated
tracings were characterized by a uniform profile of TWA,
which are represented in Figures 5(a) and 5(b).The examples
of TV TWA1 and TV TWA2 are represented in Figures 6(a)
and 6(b), respectively.

2.2.4. Case 4: Simulated ECG Tracing with Phase-Reversal
TWA. Arrhythmias can sometimes trigger a phase-reversal
so that the alternans pattern changes from ABABAB to
BABABA [5].The simulated ECG tracing with phase-reversal
TWA (PR TWA) is designed to test the ability of the method
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Figure 2: A specific example of amplitude correction of odd T-wave matrix.
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Figure 3: The block diagram of T-waves amplitude correction and TWA estimation.

in detecting phase-reversal TWA. PR TWA tracing incorpo-
rates a stationary 10 𝜇𝑉 TWA, which changes phase twice,
at beats 40 and 80, respectively. This simulated case may
also be used to help in the interpretation of realistic cases
in which a beat is missed (false negative QRS detection) or
wrongly inserted (false positive QRS detection). An example
is represented in Figure 6(c).

Finally the noise is also considered to be added to above
simulated ECG tracings in this study. In clinical settings,
power line interference is generally eliminated by a hardware
filter. When computing the ACI indexes (2) the white noise
is already taken into account. So baseline wandering is
considered in the present simulated cases which might cause
erroneous detection of TWA. Baseline wandering can be



Computational and Mathematical Methods in Medicine 5

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

Time (s)

A
m

pl
itu

de
 (m

V
)

(a)

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

Time (s)

A
m

pl
itu

de
 (m

V
)

(b)

Figure 4: An example of simulated ECG tracings with/without
TWA. (a) Simulated ECG tracings not affected by TWA (N TWA);
(b) simulated ECG tracingswith stationary 50 𝜇VTWA(S TWA50).

eliminated through the preprocessing state, but elimination
related to T wave variability should be prevented because
TWA is a specific case of it [4]. Based on these considerations,
ECG simulations with baseline wandering are considered.
Baseline wanderings are simulated with a sinusoid of 0.1mV
amplitude and various frequencies: 0.30, 0.71, and 1.50Hz,
respectively, which we denote as bw030, bw071, and bw150.
These frequencies are, respectively, lower, equal, and greater
than TWA frequency. The frequency of 0.30Hz relates to a
usual breathing pattern in patients. And the baseline fluctu-
ations are simply added to each simulated ECG tracing. Two
representative examples of our simulated ECG tracings, with
and without baseline fluctuations, are displayed in Figure 7.

2.3. Clinical Cases. Two clinical data sets are considered in
this study: ECG tracings from healthy subjects (H-subjects)
and that from patients.

ECG tracings from H-subjects belong to the Digital
Electrocardiology Study Databases of Liuhuaqiao Hospital,
Guangzhou, which include 320 Holter ECG tracings fromH-
subjects.The study was approved by the institutional research
ethics committee of Guangzhou Medical College, and it was
conducted following the required rules for human subjects’
research principles, according to the Declaration of Helsinki,
as well as to Title 45, U.S. Code of Federal Regulations, Part
46, Protection of Human Subjects, Revised November 13,
2001, effective December 13, 2001. Each subject underwent
10-min ECG recording in resting conditions. Nine standard
leads (V1–V6, I, II, and III) were recorded using equipment by
Siemens-Elema AB and digitized at a sampling rate of 500Hz
with amplitude resolution of 0.6 𝜇V. Leads aVF, aVR, and aVL
were derived from leads I, II, and III.

ECG tracings from patients belong to the T-Wave Alter-
nans Challenge Database (TWACD) [17], which contains 100
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Figure 5: The different cases of nonstationary TWA. (a) Sinusoidal
trend of TWA amplitude signals; (b) cascaded TWA amplitude
signals; (c) phase-reversal TWA.

multichannel ECG records sampled at 500Hz with 16 bit
resolution over a ±32mV range.The subjects include patients
with myocardial infarctions, transient ischemia, ventricular
tachyarrhythmia, and other risk factors for sudden cardiac
death, as well as healthy controls and synthetic cases with
calibrated amounts of T-wave alternans. The databases are
chosen for two reasons: one is that previous studies found T-
wave alternans episodes, some of them related to annotated
ischemic episodes. Another is that the databases are well-
known and available by many research groups.

In the specific, a group of fourteen healthy subjects was
compared with a group of fourteen patients. A subject was
classified as belonging to the H-group when fulfilling the
following criteria [18]:
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Figure 6: The simulated ECG tracings with different nonstationary TWA. (a) TV TWA1; (b) TV TWA2; (c) PR TWA.
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Figure 7: Two examples of the simulated tracings affected by
baseline wanderings. (a) The simulated tracings without baseline;
(b) the simulated tracings with 0.3Hz baseline.

(1) no overt cardiovascular disease or history of car-
diovascular disorders (including stroke, TIA, and
peripheral vascular disease);

(2) no history of high blood pressure (>150/90mmHg);

(3) not taking medication;

(4) no other chronic illness (e.g., diabetes, asthma,
chronic obstructive pulmonary disease, etc.);

(5) diagnosed as being healthy if evaluated by a physician
for cardiovascular-related syndrome (chest pain, pal-
pitation, syncope);

(6) normal physical examination;

(7) sinus rhythm in 12-lead ECG without any suspicious
abnormalities (e.g., signs of ventricular hypertrophy,
inverted T-wave, intraventricular conduction distur-
bances);

(8) normal echo and normal ECG exercise testing in the
presence of suspicious ECG changes;

(9) no pregnancy.

2.4. Statistics. To evaluate the ability of the presentedmethod
to quantify TWA, the other two related time-domain meth-
ods, which are the CM and the AMFM, are used here for
comparison.

In our simulation study, the root mean square error
(RMSE) in the estimate of TWA amplitudes is computed [13]:

RMSE
𝑀
=
√
∑
𝑁

𝑛=1
(TWA

𝑀 (𝑛) − 𝐴 (𝑛))
2

𝑁
,

(11)

where𝑁 is the total number of beats in an ECG tracing,𝐴(𝑛)
(relative to the 𝑛th beat) is assumed equal to the absolute value
of the maximum difference between the 𝑛th and the (𝑛 + 1)th
T-wave sample amplitude, and TWA

𝑀
(𝑛) is the estimated

local TWA (relative to the 𝑛th beat) by the three competing
methods. Subscript𝑀 is for either theHAMor the CMor the
AMFM. In this study, the resolution of RMSE is 0.1 𝜇V, and
the predefined 𝐴(𝑛) are considered as constitutive reference
TWA-amplitude signals (gold-standard).

When analyzing clinical data, the Lilliefors test was
used to evaluate the hypothesis that estimated TWA had a
normal distribution (significance was set at 5% level) over a
population. Comparisons between normal distributions were
performed using Student’s 𝑡-test, whereas distributions that
could not be considered normal would be compared using
theWilcoxon rank sum test. Statistical significant differences
were assumed for 𝑃 < 0.05.
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Table 1: TWA amplitude measurements and errors evaluation for N TWA case.

TWACM TWAAMFM TWAHAM RMSECM RMSEAMFM RMSEHAM

N TWA(no bw) 0 0 0 0 0 0
N TWA(bw030) 2 0 0 4.6 0 0
N TWA(bw071) 34 200 23 34.4 385.9 22.6
N TWA(bw150) 1 0 0 5.2 0 0

Table 2: TWA amplitude measurements and errors evaluation for S TWA case.

TWACM TWAAMFM TWAHAM RMSECM RMSEAMFM RMSEHAM

S TWA10(no bw) 6.5 5.7 10.0 3.2 4.23 0
S TWA10(bw030) 6.5 5.8 10.0 4.7 4.2 0
S TWA10(bw071) 12 219.7 10.1 21.6 209.7 0.2
S TWA10(bw150) 7.2 5.9 10.0 2.6 4.2 0
S TWA50(no bw) 36 28.6 50.0 14.3 21.4 0
S TWA50(bw030) 36 28.8 50.0 14.8 28.9 0
S TWA50(bw071) 17.3 198.8 32.0 32.4 198.8 18.4
S TWA50(bw150) 38.2 29 50.0 11.7 29 0
S TWA100(no bw) 74.9 57.7 100.0 25.3 42.3 0
S TWA100(bw030) 74.9 57.5 70.0 25.6 42.4 0
S TWA100(bw071) 54.7 176.2 100.0 45.0 76.0 29.5
S TWA100(bw150) 79.2 57.6 100.0 21.1 42.4 0

3. Results

For the simulated data and clinical data set, ECG segments of
128 consecutive beats were randomly extracted and directly
submitted to the AMFM, which does not require prepro-
cessing [11]. Rather, a data preprocessing stage, described in
Section 2.1, was performed prior to submitting the CM and
the HAM.

3.1. SimulatedCases. For the simulated cases, results obtained
from TWA analysis, by applying the CM, the AMFM, and the
HAM, respectively, are reported in the tables below.

In Table 1 the results obtained from the simulated ECG
tracing with no TWA (N TWA) are reported. These three
methods applying to tracings with no baseline yielded an
accurate identification of TWA amplitude. In the presence of
0.30 and 1.50Hz baseline wandering, a slight overestimation
of TWA amplitude was produced by the CM. In the presence
of baseline fluctuations with a frequency equal (0.71Hz) to
that of TWA, the strong overestimations of TWA amplitude
were produced by the three methods.

In Table 2 the results obtained from the simulated ECG
tracing with stationary TWA (S TWA) are reported. In the
presence of 0.30 and 1.50Hz baseline wandering, the CM and
the AMFMproduced underestimation of TWA amplitude for
different stationary TWA,while theHAMyielded an accurate
identification of TWA (RMSEHAM = 0 𝜇V). In the presence
of baseline fluctuations at the TWA frequency of 0.71Hz, the
CM produced underestimation of TWA amplitude and the
AMFM produced strong overestimation of TWA amplitude.
While the HAM, produced a slight underestimation of TWA
amplitude, showed a better ability to quantifying TWA
amplitude in this case, and RMSEHAM obtained 0 𝜇V for

Table 3: TWA errors evaluation for TV TWA1 and TV TWA2
cases.

RMSECM RMSEAMFM RMSEHAM

TV TWA1(no bw) 13.8 12.7 0.9
TV TWA1(bw030) 16.1 10.9 1.2
TV TWA1(bw071) 25.5 296.9 14.9
TV TWA1(bw150) 16.1 12.6 1.0
TV TWA2(no bw) 6.9 2.8 0.5
TV TWA2(bw030) 10.1 2.2 1.3
TV TWA2(bw071) 19.9 342.1 15.1
TV TWA2(bw150) 7.5 3.0 0.5

S TWA10, 18.4 𝜇V for S TWA50, 29.5 𝜇V for S TWA100,
respectively.

For TV TWA1 and TV TWA2 cases, the local TWA
comparisons are considered because of time-varying ampli-
tudes. A graphical representation of the results obtained from
ECG simulations with the presence of time-varying TWA
(TV TWA1 and TV TWA2) is depicted in Figure 8. The
columns of panels from left to right display simulated TWA-
amplitude signals (128 beats) and detected TWA-amplitude
signals provided by the CM, the AMFM, and the HAM,
respectively. For the cases of the simulated ECG tracing with
0.30 and 0.71Hz baseline wandering, analogous results are
obtained.

The root mean square errors obtained are reported in
Table 3.The three methods were able to track the time course
of TWA. But the local TWA-amplitude signals provided
by the CM showed vigorous amplitude fluctuation, and
RMSECM are higher then RMSEAMFM and RMSEHAM uni-
formly.TheCMand theAMFMproducedunderestimation of
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Table 4: TWA amplitude measurements and errors evaluation for PR TWA cases.

TWACM TWAAMFM TWAHAM RMSECM RMSEAMFM RMSEHAM

PR TWA(no bw) 10 6 10 0 2.8 0
PR TWA(bw030) 10 6 10 5.1 3.1 1.3
PR TWA(bw071) 32 230 19.7 22.5 348.3 13.1
PR TWA(bw150) 10 6 10 0 3.2 0

Table 5: TWA amplitude measurements of clinical data applying the CM, the AMFM, and the HAM.

H-subjects TWACM TWAAMFM TWAHAM TWACD TWACM TWAAMFM TWAHAM

1 0 0 0 TWA06 6.55 5.73 7.05
2 0 0 0 TWA09 6.91 6.21 8.11
3 0 0 0 TWA10 7.05 5.93 7.65
4 3.02 2.11 0 TWA18 3.75 3.23 4.25
5 0 0 0 TWA22 14.17 12.56 15.10
6 0 0 0 TWA23 12.91 10.83 13.47
7 0 0 0 TWA41 12.08 11.10 14.48
8 0 0 0 TWA46 5.95 4.91 7.55
9 4.12 4.08 6.11 TWA61 11.83 11.06 13.06
10 0 0 0 TWA71 7.12 7.10 8.80
11 0 0 0 TWA85 10.88 10.06 13.16
12 0 0 0 TWA92 13.10 12.55 14.21
13 0 0 0 TWA94 13.79 12.94 15.41
14 0 0 0 TWA99 7.16 6.38 8.23

0.5 ± 1.3 0.4 ± 1.9 0.5 ± 1.3 9.5 ± 3.5
∗

8.6 ± 3.3
∗

10.8 ± 3.7
∗

∗
𝑃 < 0.05 when comparing H-subjects versus patients with the 𝑡-test for normal distributions.

TWA amplitude, which are the same as the above mentioned
cases, while the HAM provided a good estimate of TWA
(RMSEHAM < 1.5 𝜇V, except the case of frequency of baseline
equal to that of TWA).

In Table 4 the results obtained from the simulated ECG
tracing with phase-reversal TWA (PR TWA) are reported.
The AMFM produced underestimation of TWA amplitude
(40%) in the presence of 0.30 and 1.50Hz baseline wan-
dering, while the CM and the HAM produced good results
(RMSECM = 0 𝜇V, RMSEHAM = 0 𝜇V). In the presence
of baseline fluctuations at the TWA frequency of 0.71Hz,
the three methods produced strong overestimation of TWA
amplitude, but obviously the results provided by the HAM
are more close to the simulated TWA (TWAHAM = 19.7 𝜇V,
RMSEHAM = 13.1 𝜇V).

3.2. Clinical Cases. TWA levels quantified by the three
competing methods in the H-subjects and patients data are
reported in Table 5. The CM, the AMFM, and the HAM
detected various levels of TWA in the sameH-subjects and all
patients. TWAwas detected in twoH-subjects by the CM and
the AMFM, while only one H-subject was affected by TWA
according to the HAM (Table 5). And the three methods
detected the presence of TWA in all patients. TWA showed
a normal distribution over patients’ populations. Mean TWA
values estimated by theHAM inH-subjects (0.5±1.9 𝜇V) and
patients (10.8 ± 3.7 𝜇V) were higher than the corresponding
mean TWA estimates provided by the AMFM (H-subjects:

0.4 ± .91 𝜇V; patients: 8.6 ± 3.3 𝜇V) and the CM (H-subjects:
0.5 ± 1.3 𝜇V; patients: 9.5 ± 3.5 𝜇V). All these methods
provided mean TWA estimates which showed significant
differences between H-subject and patient groups.

The CM, the AMFM, and the HAM detected the pres-
ence of TWA in all patients and provided similar TWA
estimates. The CM and the AMFM tend to underestimate
TWA (Figure 8 and simulation study results), and this finding
is confirmed by our clinical result.

4. Discussion

In this study four simulated cases were generated with
characters of absence of TWA; presence of different kinds
of stationary TWA; presence of two kinds of nonstationary
(time-varying) TWA; and presence of phase-reversal TWA.
The other two time-domain methods, namely, the CM and
the AMFM, are compared with the HAM in TWA detection.
Results of our simulation study indicate that the HAM allows
detection and quantification of TWA better than the CM and
the AMFM.

The CM was found to underestimate TWA amplitude
in the simulated ECG tracing, since it assumed TWA being
distributed along the entire length of the T-wave [19]. And
in the case of ECG simulations with the presence of time-
varying TWA, the CM produced the worst results compared
with other methods (Figure 8 and Table 3).
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Figure 8: The time-varying TWAmeasurement results under different baseline conditions.

The AMFM showed good performance of time-varying
TWA detection, due to that its heart-rate adaptive-match-
filter yielded the suppression of all ECG and interferences fre-
quency components, while it produced strong overestimation
of TWA amplitude in the presence of baseline fluctuations at
the TWA frequency, and the reason and a potential solution
were given in the literature [10].

We can find that the HAM yielded, in general, a more
accurate TWA estimation in the simulated cases, although
in the presence of baseline fluctuations with frequency equal
to that of TWA the deviation from TWA amplitude was
produced which are also produced by the CM, and the reason
is that the accuracy of isoelectric line estimation by the cubic
spline interpolation technique reduces. And all simulation
cases showed that RMSEHAM were systematically smaller than
TWACM and TWAAMFM, even in the presence of baseline
fluctuations at the TWA frequency of 0.71Hz.

The HAM performs an amplitude corrections procedure
based on the linear least squares fitting technique before
calculating the local TWA, which further suppresses the
interferences, and the local threshold criterion, integrated
in the HAM, appears to help improve detecting accuracy.
The limitation of the CM is that when computing the ACI,

the exact location of the maximum amplitude difference
between the two waves is lost, so that a mean (over T-wave)
TWA amplitude value is provided (assumption of uniformly
distributed TWA), while in our method TWA is measured
by the maximum absolute value of the difference between
the corrected matrixes for odd and even T-waves, which also
improves the accuracy of TWAestimation.The baselines with
various frequencies are considered in the simulated cases, and
the test results also show that HAM is robust to the noise.

Our results relative to the clinical data highlighted con-
sistency in the detection and quantification of TWA by the
three different methods, and significant differences between
H-subject and patient groups are manifested, as shown in
Table 5, while the TWA amplitudes measured by the CM and
the AMFM are slightly lower than that by the HAM. The
results of our simulation test help interpreting the TWA data
obtained from clinical cases.

5. Conclusions

Anovel time-domainTWAdetector is presented in this paper
based on the correlation method and linear least squares
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fitting technique. Although the method is simple, it was
validated using simulated ECG test signals with artificial
TWA of various amplitudes and baseline wanderings and
achieved good performance under reasonable levels of noise.
The results of our simulation study indicate that the HAM
provides a more accurate TWA estimation than the CM and
the AMFM.

Results of TWAdetection produced by the threemethods
in real clinical ECG records show high consistency, which
confirms the TWA detection power of the hybrid method for
clinical data, although the quantifying TWA amplitudes by
the HAM are universally higher than that by the CM and the
AMFM.
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