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Abstract

INTRODUCTION: While elevated blood glial fibrillary acidic protein (GFAP) has

been associated with brain amyloid pathology, whether this association occurs in

populations with high cerebral small vessel disease (CSVD) concomitance remains

unclear.

METHODS: Using a Singapore-based cohort of cognitively impaired subjects, we

assessed associations between plasma GFAP and neuroimaging measures of brain

amyloid andCSVD, includingwhitematter hyperintensities (WMH).We also examined

the diagnostic performance of plasma GFAP in detecting brain amyloid beta positivity

(Aβ+).
RESULTS:When stratified byWMHstatus, elevated brain amyloidwas associatedwith

higher plasma GFAP only in the WMH– group (β = 0.383; P < 0.001). The diagnostic

performance of plasma GFAP in identifying Aβ+was significantly higher in theWMH–

group (area under the curve [AUC] = 0.896) than in the WMH+ group (AUC = 0.712,

P= 0.008).

DISCUSSION: The biomarker utility of plasma GFAP in detecting brain amyloid

pathology is dependent on the severity of concomitantWMH.
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Highlight

∙ Glial fibrillary acidic protein (GFAP)’s association with brain amyloid is unclear in

populations with high cerebral small vessel disease (CSVD).

∙ PlasmaGFAPwasmeasured in a cohort with CSVD and brain amyloid.

∙ PlasmaGFAPwas better in detecting amyloid in patientswith lowCSVDversus high

CSVD.

∙ Biomarker utility of GFAP in detecting brain amyloid depends on the severity of

CSVD.

1 BACKGROUND

Alzheimer’s disease (AD) is characterized by abnormal accumula-

tion of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs),

as well as progressive neuronal loss, culminating in brain atrophy

and clinical symptoms primarily of cognitive impairments. In addi-

tion, cerebral small vessel disease (CSVD) pathology not only con-

tributes directly to vascular dementia (VaD), but also frequently

coexists in AD brains,1–4 where it interacts in an additive or

synergistic manner with AD to exacerbate cognitive decline.2,5–7

Importantly, the prevalence of concomitant AD and CSVD may be

higher in specific populations, such as those in Asia, with con-

sequent implications for preventative, diagnostic, and treatment

strategies.8–11

AD and CSVD share major pathophysiological mechanisms, includ-

ing dysregulated, chronic neuroinflammation.12–15 Astrocytes, which

contribute numerically to the highest proportion of glial cells in the

central nervous system (CNS), are one of the key regulators of neuroin-

flammatory responses.16,17 Physiologically, they are involved in brain

signaling, modulating of synapses, transport of nutrients, homeosta-

sis, and structural support. They also become reactive in response to

a variety of disease processes in the brain including ischemic stroke

and neurodegeneration,17–19 during which they undergo characteris-

tic morphological and functional changes, including the upregulation

of a specific cytoskeletal protein, glial fibrillary acidic protein (GFAP),

in a process termed reactive astrogliosis.17–20 As such, elevated

GFAP level is commonly used as a marker of reactive astrogliosis in

human clinical studies. Higher GFAP levels have been reported in the

cerebrospinal fluid of patients with AD and other non-AD neurode-

generative diseases.21–23 Interestingly, recent advances in the use of

ultra-sensitive immunoassay platforms such as single molecule arrays

(Simoa) for blood biomarkers24 have also facilitated reports of higher

GFAP levels in AD blood.25–27 Blood GFAP positively correlated with

brain amyloid burden and demonstrated good diagnostic performance

in detecting elevated brain amyloid.25,27–33 However, because blood

GFAP levels may be affected by a number of neurological conditions,

further delineation of the effects of concomitant CSVD, which may

confound associations based on blood GFAP measurements,34 are

needed for AD. However, current studies are based predominantly

on Caucasian cohorts from North America and Europe with rela-

tively low CSVD burden; whether the proposed clinical utility of blood

GFAP could be generalized to an Asian cohort which manifests a high

prevalence of baseline CSVD remains unclear.

In this study, using a well-characterized Singapore-based cohort

of cognitively impaired patients, we first examined the associations

between plasma GFAP and neuroimaging measures of brain amy-

loid (amyloid positron emission tomography [PET]) and various CSVD

pathologies (white matter hyperintensities [WMH], lacunes, and cere-

bral microbleeds [CMBs]). We also assessed the interaction effects

between brain amyloid and each CSVD pathology. Finally, we deter-

mined the diagnostic performance of plasma GFAP in identifying

elevated brain amyloid.

2 METHODS

2.1 Study population

From April 2016 to April 2019, 217 participants were recruited

from the National University Hospital Memory Clinic and commu-

nity in Singapore. Among the participants, 20 did not have sufficient

plasma samples available. The remaining 197 participants had ade-

quate plasma for GFAP measurements and were thus included in this

study. Control subjects were defined as having no objective cogni-

tive impairment (NCI; n = 41) based on formal neuropsychological

assessments. Clinical diagnoses of cognitive impairment no demen-

tia (CIND; n = 93) and dementia (n = 63) were made as previously

described.35 The dementia cohort consisted of patients who were

clinically diagnosed as AD (n = 45) or VaD (n = 18).35 Participants

provided detailed medical histories and underwent physical, clinical,

and neuroimaging examinations and a neuropsychological battery con-

sisting of seven cognitive domains35,36 (see Data S1 in supporting

information for component tests of each domain). Apolipoprotein E

(APOE) ε4 status was as previously described.37 Approval for the study
was obtained from the Singapore National Healthcare Group Domain-

Specific Review Board (2018/00996, 2015/00406, and 2015/00441).

Written informed consent was obtained for all participants prior to

recruitment.
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2.2 Plasma GFAP, phosphorylated tau181, and
Aβ42/Aβ40 ratio measurements

Non-fasting blood was collected into tubes containing ethylenedi-

aminetetraacetic acid as anticoagulant. Mean blood sampling to neu-

roimaging intervals were 8 months (standard deviation [SD] = 6

months) and 0.5 months (SD= 1month) for magnetic resonance imag-

ing (MRI) and amyloid PET scans, respectively. Blood samples were

centrifuged at 2000 rcf for 10 minutes at 4◦C. Plasma was extracted

and aliquoted in 0.2 mL aliquots that were stored in polypropylene

tubes at −80◦C until use. Plasma GFAP was measured on the Simoa

HD-1 platform (Quanterix), using commercially available kits (Quan-

terix). Plasma phosphorylated tau (p-tau)181 and Aβ42/Aβ40 ratio

were available in a subset of the participants (n = 185). Measure-

ments of plasma p-tau181 and Aβ42/Aβ40 ratio were as previously

described.35

2.3 MRI markers of CSVD

MRI scans were performed on a 3T Siemens Magnetom Trio Tim scan-

ner, using a 32-channel head coil, at the Clinical Imaging Research

Centre (CIRC) from the National University of Singapore (NUS). The

sequences included T1-weighted, fluid attenuated inversion recov-

ery (FLAIR), T2-weighted, and susceptibility-weighted imaging (SWI)

sequences as previously described.38

A detailed description of the neuroimaging measures of WMH vol-

ume is provided in Data S2(a) in supporting information. Presence of

elevatedWMH (WMH+) was defined at the cut-off of 50th percentile

(median) of log-transformedWMH volume.39 WMH volumewas avail-

able for 195 participants. The description for the visual gradings of

lacunes and CMBs is found in Data S2(b). Lacune status was binarized

(Lacune– vs. Lacune+) using lacune counts < 2 versus ≥ 2. Similarly,

CMB status was binarized (CMB– vs. CMB+) using CMB counts <

2 versus≥ 2. Lacune and CMB counts are available for all participants.

2.4 Amyloid PET acquisition and quantification

PET imaging for brain amyloid burden was conducted at CIRC NUS

using either the [11C]Pittsburgh compound B (PiB; n = 167) or

[18F]Flutafuranol (n = 30) amyloid tracer radioligands, as previously

described.35 A comprehensive description of the amyloid PET mea-

surement is provided inData S2(c). PiB-PET standardized uptake value

ratio (SUVR) is available for 166participants. Brain amyloid status (Aβ–
vs. Aβ+) was determined for all participants using visual assessment as

previously described.35

2.5 Statistical analyses

Statistical analyses were performed using SPSS version 26 (IBM SPSS)

and R statistical software.40 Group comparisons of continuous demo-

RESEARCH INCONTEXT

1. Systematic review: Recent studies demonstrated the

potential utility of blood glial fibrillary acidic protein

(GFAP) as a biomarker for brain amyloid pathology in

dementia. However, extant studies are based onWestern

cohorts with relatively low cerebral small vessel disease

(CSVD) burden. Whether the postulated clinical utility of

GFAP is generalizable toAsian cohorts known tomanifest

high concomitant CSVD remains unclear.

2. Interpretation: Using a Singapore-based cohort of cog-

nitively impaired patients with concomitant CSVD, we

found elevated brain amyloid associated with higher

plasma GFAP only in individuals with low white matter

hyperintensities burden (WMH–). The diagnostic per-

formance of plasma GFAP in identifying brain amyloid

positivity was significantly higher in the WMH– group

versus theWMH+ group.

3. Future directions: The utility of plasmaGFAP in detecting

brain amyloid is dependent on the severity of concomi-

tantWMH. Population differences need to be considered

before the widespread application of plasma GFAP as a

clinical biomarker for dementia.

graphic variables were performed using one-way analysis of variance

(ANOVA) with Bonferroni post hoc tests for normally distributed

data, and non-parametric Kruskal–WaIIis test with post hoc Dunn–

Bonferroni correction for skewed distributed data. Chi-square tests

were used for categorical variables.

Correlation analyses were performed using Spearman rank corre-

lations. WMH volumes and plasma GFAP levels were logarithmically

transformed due to the skewed distribution for further analyses. In

the entire cohort, we first assessed the association between each neu-

roimaging measure (PiB-PET SUVR, WMH volume, lacune counts, or

CMB counts) with blood GFAP using separate linear regression mod-

els. All neuroimaging measures were treated as continuous variables

in the regression analyses. A forward selection approachwas also used

to identify predictors of blood GFAP out of all the neuroimaging mea-

sures. At each step, variables were chosen and included in the final

model based on P values (entry criterion P value< 0.05). All regression

models were adjusted for covariates, including age, sex, APOE ε4, and
education.

To determine potential interactions between brain amyloid and

CSVD on plasma GFAP, the cross-product term for brain amyloid

and each CSVD marker measurement were included in respec-

tive regression models. Outcome measures for the regression

analyses were reported as mean differences (β) with 95% confi-

dence intervals (CIs). Differences in plasma GFAP among groups

stratified by A and WMH status were assessed using a univariate



4 of 10 CHONG ET AL.

general linear model, adjusted for covariates, and post hoc Bonfer-

roni tests for pairwise group comparisons of estimated marginal

means.

Diagnostic performance was assessed using the area under the

receiver operating characteristic curve (AUROC). Area under the

curve (AUC) and 95% CIs were computed using DeLong method

with the pROC package. AUROC analyses were performed in

the entire cohort, as well as in groups stratified by WMH status

(WMH– vs. WMH+). Comparisons of the ROC curves between

WMH– and WMH+ groups were performed using DeLong method

(unpaired ROC curves). Subgroup analyses were also performed

for the cognitively impaired participants (CIND and dementia).

Additionally, for AUROC analyses, subgroup analyses were also

performed in the non-dementia (NCI+CIND) and CIND par-

ticipants, respectively. Results were considered significant at

P< 0.05.

3 RESULTS

3.1 Participant characteristics

Demographic data, neuroimaging, and plasma GFAP values are shown

in Table 1. CIND and dementia participants had significantly higher

WMH volume compared to NCI. For brain amyloid burden, demen-

tia participants showed the highest PiB-PET SUVR values. Plasma

GFAP correlated with age (rho = 0.356; P < 0.001), sex (male median

[interquartile range (IQR)] = 207 [122] pg/mL; female = 251 [224];

P = 0.009), APOE ε4 genotype (carriers median [IQR] = 253 [241]

pg/mL; non-carriers = 203 [149] pg/mL; P = 0.002) and education

(rho = −0.231, P < 0.001). There was no significant association

between plasma GFAP and vascular risk factors (Figure S1 in support-

ing information). After adjustment for covariates, plasma GFAP levels

were significantly increased in dementia compared to CIND and con-

trols (P= 0.003 and P< 0.001, respectively, see Figure S2 in supporting

information).

3.2 Associations of neuroimaging measures with
plasma GFAP

In all participants, plasma GFAP correlated only with brain amyloid

burden (measured by PiB-PET SUVR, rho = 0.489; P < 0.001) among

the neuroimaging variables investigated (Table S1a in supporting

information). The association remained after adjustments for age, sex,

APOE ε4 status, and education in linear regression analyses (PiB-PET

SUVR, β [95% CI] = 0.232 [0.149, 0.316], see Table S1b). Notably,

PiB-PET SUVR was also selected for the final regression model using

a forward selection approach (Data S3a in supporting information).

Similarly, within the cognitively impaired elderly, PiB-PET SUVR was

positively associated with GFAP (β [95% CI] = 0.242 [0.151, 0.333]),

see Table 2, Model 1).

3.3 Interaction effects between brain amyloid
and CSVD on plasma GFAP

Next, we determined if there was an interaction between brain amy-

loid and CSVD on plasma GFAP. A significant interaction was observed

between brain amyloid andWMHmeasurements (P < 0.05, see Tables

S2 and S3 in supporting information), suggesting that the effects of

brain amyloid on plasma GFAP are dependent onWMH severity. Thus,

we next performed the regression analyses in groups stratified by

WMH status. In both the overall cohort and cognitively impaired sub-

group, positive associations between PiB-PET SUVR and GFAP were

observed in theWMH– participants (Table 2, Model 2 and Table S4a in

supporting information), but not in the WMH+ participants (Table 2,

Model 3 and Table S4b). No significant interaction was observed

between brain amyloid and other CSVD markers on plasma GFAP

(P> 0.05, see Tables S2 and S3).

3.4 Plasma GFAP in participants stratified by
brain amyloid and WMH status

To further investigate potential links among brain amyloid, white mat-

ter disease, and GFAP, we performed group comparisons stratified by

Aβ andWMH status (see Table S5 in supporting information for demo-

graphics table). Figure 1A shows, for the entire cohort, that plasma

GFAP levels were 60% higher in the Aβ+ than Aβ– individuals after

adjustment for age, sex, APOE ε4 status, and education (adjusted mean

of plasma GFAP [pg/mL] = 200 vs. 318; P < 0.001). With stratifica-

tion by Aβ and WMH status, plasma GFAP levels were increased in

the Aβ+WMH–, Aβ–WMH+, and Aβ+WMH+ subgroups compared

to Aβ–WMH– (all P ≤ 0.05). Notably, plasma GFAP levels were 99%

higher in the Aβ+ compared to Aβ– individuals amongWMH– individ-

uals (adjustedmean of plasmaGFAP [pg/mL]= 179 vs. 356; P< 0.001).

In contrast, among WMH+ individuals, plasma GFAP levels were not

significantly different between Aβ+ versus Aβ– participants (adjusted
mean of plasmaGFAP [pg/mL]= 227 vs. 291; P= 0.091).

Similarly, for cognitively impaired subjects, plasmaGFAP levelswere

54% higher in Aβ+ compared to Aβ– individuals (adjusted mean of

plasma GFAP [pg/mL] = 210 vs. 324; P < 0.001, see Figure 1B).

Among WMH– individuals, plasma GFAP levels were 95% higher in

those with Aβ+ compared to Aβ– (adjusted mean of plasma GFAP

[pg/mL]=185vs. 361;P<0.001). However, amongWMH+ individuals,

plasma GFAP levels were not significantly different between Aβ+ ver-

sus Aβ– participants (adjustedmean of plasmaGFAP [pg/mL]= 234 vs.

297; P= 0.198).

3.5 Diagnostic performance of plasma GFAP in
identifying elevated brain amyloid

To test the diagnostic performance of plasma GFAP in detecting brain

amyloid positivity (Aβ+), we applied a AUROC curve analysis (Table 3).
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TABLE 1 Demographic and clinical characteristics.

NCI CIND Dementia P value

Maximum n 41 93 63

Demographic factors

Age, years, mean (SD) 74 (6) 76 (6) 76 (8) 0.429

Female, n (%) 27 (66) 46 (50) 43 (68) 0.038

Education, years, mean (SD) 10 (5) 8 (5) 5 (5)ab <0.001

APOE ε4 carrier, n (%) 9 (22) 24 (26) 25 (40) 0.087

Vascular risk factors

Hypertension, n (%) 28 (68) 67 (72) 50 (79) 0.409

Hyperlipidemia, n (%) 31 (76) 68 (73) 42 (67) 0.554

Diabetes, n (%) 7 (17) 31 (33) 17 (27) 0.154

Cardiovascular disease, n (%) 1 (3) 11 (12) 3 (5) 0.145

Brain amyloid burden

PiB-PET SUVR, median (IQR) 1.1 (0.2) 1.2 (0.4) 1.6 (0.9)ab 0.002

Aβ+, n (%) 4 (10) 32 (34)a 32 (51)a <0.001

Cerebral small vessel disease

Whitematter hyperintensities

(WMH) volume, mL, median (IQR)

1.3 (4) 3.6 (12)a 5.5 (13)a <0.001

WMH+, n (%) 13 (32) 49 (53) 37 (61)a 0.014

Cerebral microbleeds count, median (IQR) 0 (1) 0 (1) 0 (2) 0.231

Lacunes count, median (IQR) 0 (0) 0 (1) 0 (1) 0.169

PlasmaGFAP, pg/mL, median (IQR) 177 (93) 209 (160) 296 (265)ab <0.001

Notes:P values are derived fromchi-square tests for categorial variables, and fromone-wayANOVAwith post hocBonferroni test orKruskal–Wallis testwith

post hoc Dunn–Bonferroni for multiple comparisons, for normally distributed or skewed continuous variables, respectively. Bold fonts indicate significant P
values. Diabetes statuswas available for 196 participants. Cardiovascular statuswas available for 183 participants. PiB-PET SUVRdatawas available for 166

participants. Aβ+ was determined by visual assessment of amyloid PET using either the PiB or flutafuranol amyloid tracer radioligands. WMH volume data

was available for 195 participants. For WMH+, the cut-off for log transformedWMH volume was at the 50th percentile. The dementia cohort consisted of

patients whowere clinically diagnosed as AD (n= 45) or VaD (n= 18), respectively.

Abbreviations: Aβ, amyloid beta; AD, Alzheimer’s disease; ANOVA, analysis of variance; APOE, apolipoprotein E; CIND, cognitive impairment no dementia;

IQR, interquartile range; NCI, no cognitive impairment; PET, positron emission tomography; PiB, Pittsburgh compound B; SD, standard deviation; SUVR,

standardized uptake value ratio; VaD, vascular dementia;WMH, whitematter hyperintensities.
aSignificantly different fromNCI.
bSignificantly different fromCIND.

In the entire cohort, the AUC obtained was 0.81 (95% CI [0.74, 0.87]).

When stratified byWMH status, plasma GFAP performed significantly

better in WMH– individuals (WMH–: AUC = 0.90, 95% CI [0.83, 0.96]

vs. WMH+: AUC = 0.71, 95% CI [0.61, 0.82], P = 0.005). Among the

cognitively impaired participants, the AUC obtained was 0.80 (95%

CI = 0.73, 0.87). Stratification by WMH status again showed superior

diagnostic performance of GFAP in WMH– individuals (AUC = 0.90,

95% CI [0.82, 0.97]) over WMH+ (AUC = 0.71, 95% CI [0.60, 0.82],

P= 0.008).

Given the emerging use of blood biomarkers in disease-modifying

trials to identify brain amyloid positivity among preclinical and pro-

dromal elderly, we repeated AUROC analyses in the non-dementia

(NCI+CIND) and CIND subgroups. Similar findings were derived in

both subgroups, in which plasma GFAP performed significantly better

inWMH– individuals (non-dementia: AUC= 0.87, 95% CI [0.77, 0.97];

CIND: AUC = 0.87, 95% CI [0.75, 0.99]) than WMH+ (non-dementia:

AUC = 0.67, 95% CI [0.53, 0.81], P = 0.025; CIND: AUC = 0.66, 95%

CI [0.50, 0.82], P = 0.040). Together, these results suggest that the

diagnostic performance of plasma GFAP in identifying elevated brain

amyloid (Aβ+) could be dependent on severity ofWMHburden.

Finally, we investigated if the diagnostic performance of other

established plasma AD biomarkers, namely p-tau181 and Aβ42/Aβ40
ratio, are dependent on severity of WMH burden (Table 3). In con-

trast to plasma GFAP, for plasma p-tau181 and Aβ42/Aβ40 ratio, there
was no significant difference in theAUCs betweenWMH+ andWMH–

groups (all P≥ 0.190). This implies that the effects of concomitantWM

lesions on diagnostic performance were relevant to plasma GFAP, but

not p-tau181 and Aβ42/Aβ40 ratio.

4 DISCUSSION

To our knowledge, this is the first study to evaluate associations

between plasma GFAP and neuroimaging measures of brain amyloid



6 of 10 CHONG ET AL.

TABLE 2 Associations of brain amyloid burdenwith plasmaGFAP.

Outcome: GFAPa

Model 1 All participants

All participants (n= 166) Cognitively impaired (n= 141)

PiB-PET SUVR β= 0.232 (0.149, 0.316) β= 0.242 (0.151, 0.333)

Model 2 WMH– participants only

AllWMH– participants (n= 84) Cognitively impaired (n= 66)

PiB-PET SUVR β= 0.351 (0.244, 0.457) β= 0.383 (0.260, 0.505)

Model 3 WMH+ participants only

AllWMH+ participants (n= 82) Cognitively impaired (n= 75)

PiB-PET SUVR β= 0.094 (−0.033, 0.221) β= 0.112 (−0.020, 0.244)

Notes: Brain amyloid burden as measured by PET. Results from linear regression in all participants (Model 1), as well as in groups stratified by WMH status

(Models 2 and 3). The cognitively impaired group consisted of CIND and dementia participants. Bold fonts indicate significant (P < 0.05) β values and their

respective 95% confidence intervals.

Independent variables in eachmodel:

Model 1: PiB-PET SUVR, age, sex, APOE ε4 status, education.
Model 2: PiB-PET SUVR, age, sex, APOE ε4 status, education.
Model 3: PiB-PET SUVR, age, sex, APOE ε4 status, education.
Abbreviations: APOE, apolipoprotein E; CIND, cognitive impairment no dementia; PET, positron emission tomography; PiB, Pittsburgh compound B; SUVR,

standardized uptake value ratio;WMH, whitematter hyperintensities.
aLog-transformed.

and CSVD in an Asian cohort with high baseline CSVD burden.10,39,41

We showed that the utility of GFAP in detecting brain amyloid is

dependent on concomitantWMHseverity. Specifically, increased brain

amyloid was significantly associated with higher GFAP levels only

among subjects with low WMH burden (WMH–). Furthermore, GFAP

demonstrated superior utility in detecting amyloid positivity among

WMH– compared to WMH+ participants. Given that the recent stud-

ies reporting associations between GFAP and brain amyloid were

generally performed in Western cohorts of European descent with

relatively low CSVD burden,25,27,28,30–33 our findings imply that the

purported utility of plasma GFAP as a screening tool for amyloid

positivity may be dependent on the baseline WMH burden of the

population in question.

Elevated GFAP is thought to represent reactive astrogliosis, an

inflammatory response of activated astrocytes to brain insults such as

aberrant accumulation of protein aggregates, neuronal damage, and

brain vascular injury. Therefore, both accumulating AD pathology such

as brain amyloidosis,42 as well as presence of vascular insults such

as active, expanding WMH lesions,43,44 may trigger astrogliosis and

release of GFAP. In this context, while our finding of elevated plasma

GFAP in Aβ+ participants corroborates previous studies,25,28,30,31,33

this link was observed only within the WMH– group. On the other

hand, GFAP was increased even in Aβ–WMH+ participants (i.e., pres-

ence of elevated WMH only), which reduced the difference between

Aβ–WMH+ and Aβ+WMH+ groups, resulting in non-significance.

Interestingly, two other studies have shown positive association

between blood GFAP and WMH burden,32,45 with one study suggest-

ing that theassociation is dependentonbrain amyloid status.32 Overall,

these findings further support elevated blood GFAP as a biomarker for

neuroinflammatory reaction to both brain amyloidosis and white mat-

ter lesion. Previous studies have reported cross-sectional associations

between higher degree of WMH and worse cognitive performance.46

Longitudinally, WMH was associated with cognitive decline and inci-

dent dementia.46,47 Importantly, studies have also demonstrated the

combined, additive effect of AD and vascular pathologies in brain atro-

phy and cognition,46,48,49 indicating the relevance of a biomarker that

is associated with both pathologies.

In line with previous studies, we have also reported the good

diagnostic performance of plasma GFAP in detecting brain amyloid

positivity among elderly with different cognitive profiles (e.g., cog-

nitively impaired or non-dementia subgroups). Notably, we further

showed that the biomarker utility of plasma GFAP is dependent on

the severity of concomitant WMH. Plasma GFAP demonstrated supe-

rior performance in the WMH– participants compared to the WMH+

participants. On further investigation of other established plasma AD

biomarkers, p-tau181 and Aβ42/Aβ40 ratio, we did not observe such

differential diagnostic performance. This could be due to the interac-

tion between brain amyloid and WMH burden on GFAP levels, where

the presence of WMH burden alleviated the associations between

brain amyloid and GFAP. In contrast, there was no significant asso-

ciation between WMH burden and plasma p-tau181 or Aβ42/Aβ40
ratio, as previously reported.35 This finding provides more insights

into the potential roles that astrogliosis play in both AD and CSVD.

It also has clinical implications as current findings suggest that popu-

lation differences need to be considered before widespread adoption

of plasma GFAP as a clinical biomarker of brain amyloid pathology.

Plasma GFAP could potentially be used in clinical practice, in combi-

nation with other promising plasma AD-related biomarkers such as

p-tau and neurofilament light chain (NfL), which have similarly demon-

strated promising utility in AD diagnosis and predicting subsequent
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F IGURE 1 PlasmaGFAP in groups stratified by amyloid and status ofWMH. PlasmaGFAP across groups stratified by amyloid (Aβ) status, and
further stratified byWMH status, in (A) all participants or (B) cognitively impaired group. The cognitively impaired group consisted of CIND and
dementia participants. The graphs show the unadjustedmean and standard error of themean. The groups’ differences were assessed with
univariate general linear model using log-transformed plasmaGFAP levels, adjusted for age, sex, APOE ε4 status, and education, with P values
representing post hoc Bonferroni for pairwise group comparisons of estimatedmarginal means. The percentage increase of adjusted or unadjusted
(in brackets) plasmaGFAP levels in the A+ group from the A– group is shown in green font.Red fonts indicate significant P values. Aβ, amyloid beta
APOE, apolipoprotein E; CIND, cognitive impairment no dementia; GFAP, glial fibrillary acidic protein;WMH, white matter hyperintensities.
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TABLE 3 AUROC analyses of plasmaGFAP and other AD biomarkers for identifying elevated brain amyloid burden.

ROC1 (Entire cohort)

ROC2 (WMH–

participants only)

ROC3 (WMH+

participants only)

Difference in

AUC (ROC 2 vs.

ROC3)

p-value (ROC
2 vs. ROC3)

All participants

GFAP

(68 Aβ+ vs. 129 Aβ–)
0.807 (0.744–0.870) 0.895 (0.827–0.962) 0.713 (0.610–0.817) 0.182 0.005

P-tau181

(64 Aβ+ vs. 121 Aβ–)
0.839 (0.780–0.898) 0.808 (0.713–0.903) 0.870 (0.798–0.941) −0.062 0.314

Aβ42/Aβ40
(63 Aβ+ vs. 122 Aβ–)

0.814 (0.750–0.877) 0.849 (0.766–0.931) 0.786 (0.689–0.883) 0.063 0.336

Cognitively impaired participants

GFAP

(64 Aβ+ vs. 92 Aβ–)
0.797 (0.726–0.868) 0.896 (0.819–0.973) 0.712 (0.602–0.822) 0.184 0.008

P-tau181

(60 Aβ+ vs. 85 Aβ–)
0.839 (0.773–0.906) 0.793 (0.673–0.913) 0.870 (0.794–0.946) −0.077 0.292

Aβ42/Aβ40
(59 Aβ+ vs. 85 Aβ–)

0.787 (0.711–0.863) 0.800 (0.685–0.915) 0.778 (0.672–0.883) 0.022 0.778

Non-dementia participants

GFAP

(36 Aβ+ vs. 98 Aβ–)
0.774 (0.688, 0.859) 0.866 (0.765, 0.966) 0.668 (0.530, 0.806) 0.198 0.025

P-tau181

(34 Aβ+ vs. 92 Aβ–)
0.803 (0.723–0.884) 0.771 (0.650–0.893) 0.842 (0.736–0.948) −0.071 0.393

Aβ42/Aβ40
(34 Aβ+ vs. 92 Aβ–)

0.855 (0.784–0.926) 0.901 (0.827–0.975) 0.803 (0.679–0.928) 0.098 0.190

CIND participants

GFAP

(32 Aβ+ vs 61 Aβ–)
0.764 (0.663, 0.865) 0.869 (0.749, 0.989) 0.660 (0.504, 0.815) 0.209 0.040

P-tau181

(30 Aβ+ vs. 56 Aβ–)
0.807 (0.713–0.901) 0.760 (0.604–0.917) 0.842 (0.722–0.961) −0.082 0.420

Aβ42/Aβ40
(30 Aβ+ vs. 55 Aβ–)

0.836 (0.747–0.925) 0.878 (0.770–0.986) 0.800 (0.661–0.937) 0.078 0.378

Notes: AUC and 95% confidence interval (CI) were derived from DeLong test. For WMH+, the cut-off for log transformed WMH volume was at the 50th

percentile. The cognitively impaired group consisted of CIND and dementia participants. The non-dementia group consisted of NCI and CIND participants.

Comparisons of the ROC curves between WMH– and WMH+ groups were performed using DeLong’s method (unpaired ROC curves), with bold fonts

denoting significant differences in AUC.

Abbreviations: Aβ, amyloid beta; AD, Alzheimer’s disease; AUC, area under the curve; AUROC, area under the receiver operating characteristic curve; CIND,

cognitive impairment no dementia; GFAP, glial fibrillary acidic protein; NCI, no cognitive impairment; p-tau, phosphorylated tau; ROC, receiver operating

characteristic;WMH, whitematter hyperintensities.

cognitive decline.50,51 However, more studies are needed to deter-

mine the optimal combinations of plasma biomarkers that improve

the current diagnostic and prognostic work-up.50 The examination

of confounding factors, such as kidney disease and body mass index

(BMI), which may affect blood GFAP concentrations independent of

disease pathologies in the brain, is also warranted.50 Given the cross-

sectional association between plasma GFAP andWMH, future studies

may assess the prognostic performance of plasma GFAP in predicting

WMHprogression.

The strength of this study is the thoroughly characterized Asian

cohort with comprehensive neuroimaging measures of brain amyloid,

CSVD, and brain atrophy.

However, a few limitations should also be recognized such as the

relativelymodest sample size and cross-sectional design. Further stud-

ies are required to validate the current findings in larger, independent

cohorts using both cross-sectional and longitudinal study designs. Lon-

gitudinal studies may assess how trajectory of plasma GFAP changes

associated with development and progression of AD and vascular

pathology. Next, a head-to-head comparison of the prognostic per-

formances of plasma GFAP and other promising plasma AD-related

biomarkers, including p-tau, Aβ and NfL, alone or in combination,

is warranted. The inclusion of a PET imaging tracer such as [11C]-

deuterium-1-deprenyl would be useful to examine the relationship

between plasma GFAP and regional brain astrocytosis. Furthermore,

though an increase in GFAP is a strong indication of reactive astrocyte

remodeling, it is not an absolute or sole marker of reactivity.19 There-

fore, other astrogliosis markers such as YKL40 and S100B52 should be

investigated to compare to the GFAP results.
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In conclusion, our results suggest that high blood GFAP levels is a

non-specific biomarker for AD- and vascular-related injury. Addition-

ally, depending on the prevalence of CSVD burden in the populations,

blood GFAP holds promise as a non-invasive pre-screening tool for

brain amyloid pathology, in clinical settings and disease-modifying

trials.
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