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ARTICLE INFO ABSTRACT

Keywords: Background: A diagnosis with histological classification by pathologists is very important for appropriate treatments to
Breast cancer improve the prognosis of patients with breast cancer. However, the number of pathologists is limited, and assisting the
Pathology pathological diagnosis by artificial intelligence becomes very important. Here, we presented an automatic breast

Artificial intelligence

Deen learni lesions detection model using microscopic histopathological images based on a Single Shot Multibox Detector (SSD)
eep learning

for the first time and evaluated its significance in assisting the diagnosis.

Methods: We built the data set and trained the SSD model with 1361 microscopic images and evaluated using 315
images. Pathologists and medical students diagnosed the images with or without the assistance of the model to
investigate the significance of our model in assisting the diagnosis.

Results: The model achieved 88.3% and 90.5% diagnostic accuracies in 3-class (benign, non-invasive carcinoma, or
invasive carcinoma) or 2-class (benign or malignant) classification tasks, respectively, and the mean intersection
over union was 0.59. Medical students achieved a remarkably higher diagnostic accuracy score (average 84.7%)
with the assistance of the model compared to those without assistance (average 67.4%). Some people diagnosed
images in a short time using the assistance of the model (shorten by average 6.4 min) while others required a longer
time (extended by 7.2 min).

Conclusion: We presented the automatic breast lesions detection method at high speed using histopathological
micrographs. The present system may conveniently support the histological diagnosis by pathologists in laboratories.

Introduction prognosis of patients. However, the number of pathologists is limited and

they have too many tasks and are under the stress in many laboratories.®™

Breast cancer is one of the most common malignancies in females
worldwide." Benign breast disorders include ductal hyperplasia,
intraductal papilloma, adenosis, and fibroadenoma.> Conversely, invasive
carcinoma accounts for >80% of all breast carcinoma diagnoses, and non-
invasive carcinoma account for 10%-20%.%* Histological examination of
specimens (Hematoxylin and eosin (H&E)-stained tissues) is conventionally
used under light microscopy in pathological diagnosis.® Early detection and
accurate diagnosis of breast carcinoma with histological classification by pa-
thologists are very important for appropriate treatments to improve the

In addition, pathological diagnosis tends to depend on the subjectivity of
their experience. Therefore, assisting the pathological diagnosis by objectively
double-checking with artificial intelligence (AI) becomes very important.
Several studies about automatic classification for breast pathological
images, especially using artificial neural network (ANN) approach, have
been previously reported.'®® K. Kiambe proposed a 2-stage model for 4-
class classification (normal, benign, non-invasive carcinoma, and invasive
carcinoma) of breast histopathological images, and the model achieved
99.84% accuracy.' Yun Jiang et al. designed a convolutional neural
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network (CNN) with a small SE-ResNet module to classify BreakHis dataset
into 8 subtypes and revealed that the model achieved a 90.66% and 93.81%
accuracy.'®

However, various problems remained to overcome to practically intro-
duce Al into the clinical workflow for pathological diagnosis. Firstly, most
tissues include various types of components although many showed the re-
sults of classification for whole images and/or heat maps, indicating poten-
tial areas where carcinoma cells may be present.'®~*® Especially, a single
result of classification for a whole image by Al leads many users to feel
the Al as a black box and be hesitant to use AL.>* Thus, providing more in-
formation about the processes that lead to the results by showing the areas
of each component may be important to make the users feel less inhibited
and for practical use as assistance for doctors.

Furthermore, the impact of Al assistance on clinical utility has not been
fully investigated while the performance to classify histopathological im-
ages has been mainly focused on. Pathological diagnosis is always
regarded as the final diagnosis to decide on patient treatments. More-
over, pathological diagnosis is complicated and pathologists diagnose
based on their breadth of knowledge and diagnostic experience as
stated above. Therefore, completely replacing the role of pathologists
with Al may be currently difficult, and confirming the significance of
Al as assistance for pathologists and understanding these disadvan-
tages, as well as benefits, is important.

Finally, introducing Al to clinical practice remains a big hurdle regard-
ing cost and trouble. The technology has been developed to digitize an en-
tire glass slide (Whole slide imaging; WSI),?® and various Als to classify WSI
have been reported.'®2%-2® WSI gives various advantages, such as the
automated WSI scanner that automatically scans.?**° However, intro-
ducing WSI scanners and digital pathology system and managing huge
amounts of digital data need a lot of money. In addition, scanning
speed is widely different by machines. For example, while some scan-
ners with high specifications scan 1 slide in 0.5-1.5 min, some WSI
scanners take 7-9 min for scanning 1 slide.>' Although WSI technology
is becoming widespread in clinical practice, actually, using WSI is some-
times difficult in some hospitals.>* Thus, proposing the significance of
the Al model, which is easy to introduce and simpler to use using micro-
graphs, could be important.

Single Shot Multibox Detector (SSD) is an object detection method
that provides detection at high speed in real-time.>® The SSD network
is relatively simple and can be trained and integrated into systems
with comparative ease. The significance of SSD in pathology has not
been investigated although it may assist the pathological diagnosis.
Therefore, the present study demonstrated an automatic breast lesion
detection model using microscopic histopathological images based on
SSD for the first time and investigated the effects of the present model
in assisting the diagnosis (Fig. 1).
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Materials and methods
Clinical cases

The H&E-stained®* glass slides of histopathological specimens of
human breast diseases were obtained from Tohoku University Hospital,
Sendai, Japan. All specimens were obtained from patients who had under-
gone surgical treatment or biopsy at Tohoku University Hospital and had
been fixed with 10% formalin neutral buffer solution and embedded in
paraffin wax.>® Experiments and analyses were performed following the
Helsinki declaration, and the research protocol of this study was approved
by the Ethics Committee at the Tohoku University Graduate School of
Medicine (approval no. 2021-1-1046).

Datasets and annotations

Table 1 showed the dataset summary. The micrographs were taken in
PNG formation from glass slides by microscope (Olympus BX53, Olympus
Inc.,Tokyo, Japan) with Olympus DP26 digital camera (Olympus) and the
software cellSens Dimension (Olympus) by an expert pathologist, especially
for breast disorders (annotation pathologist). The size of each image is
2448 x 1920 pixels (72 dpi) at 40 x magnification. The images were anno-
tated by a pathologist using the Labellmg v1.8.1 tool (https://github.com/
tzutalin/labellmg), drawing bounding boxes around the breast epithelium tis-
sues that conformed with one of these 3 labels (annotation label): invasive
carcinoma, non-invasive carcinoma, and benign, including benign lesions
and normal breast epithelium tissues in the present study. Representative
examples of annotation for various images were shown in Fig. 2A-C.

Then, a single-label diagnosis of the whole image (image label) was
provided for each image. Many images include various annotation labels,
and an image label was determined following the prioritization, such as
invasive carcinoma, non-invasive carcinoma, and benign. Images, includ-
ing the area of invasive carcinoma, were labeled with “invasive carcinoma”
regardless of the presence of non-invasive carcinoma and benign lesions.
Images, including components of non-invasive carcinoma without invasive
carcinoma cells, were labeled with “non-invasive carcinoma” regardless of
the presence of a benign lesion. Images, which did not contain carcinoma
cells, were labeled as “benign” in this study. These determination methods
followed the same rules as for clinical diagnosis.

SSD network structure and training
The SSD is an object detection method that accurately detects at high
speed in real-time.>® SSD is based on a forward propagation CNN network,

and, the network produces scores for the presence of each object category
in each bounding box and performs adjustments to the boxes to match

Evaluation of the model

1. Accuracy of object detection 2. Significance in assisting the diagnosis

- Intersection over Diagnose images
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Fig. 1. Summary of the present study. We built the data set. The micrographs were taken from glass slides by a pathologist and annotation and image label (benign, non-
invasive carcinoma, and invasive carcinoma) were provided for each image. The Single Shot Multibox Detector (SSD) model was trained using 1361 images and
evaluated using 315 images. The model performance was evaluated by the intersection over union (IoU) and diagnostic accuracy using detection of the model. To
investigate the significance of our model in assisting the diagnosis, 3 pathologists and 5 medical students diagnosed images with or without assistance of the model.
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Table 1
The dataset summary.
Number of pictures Number of annotations
Benign Non-invasive carcinoma Invasive carcinoma Total Benign Non-invasive carcinoma Invasive carcinoma Total
Training 608 337 416 1361 3516 1485 1294 6295
Test 164 40 111 315 853 154 247 1254
Examination set-1 14 15 14 43 - - - -
Examination set-2 14 15 14 43 - - - -
A Annotation Detection

Fig. 2. Example images of annotation by pathologists and detection by the trained SSD model. Examples of the annotation (left) and the model detection (right). The blue, red,
and green boxses indicated benign, non-invasive carcinoma, and invasive carcinoma, respectively. A: The image of accurately detection by the model. B: The image that some
boxes with different labels were detected in same region. C: The image that the model accurately detected the benign area by bounding boxes with different shape against the

annotation.

the object shape for prediction. Furthermore, the network combines predic- computation in a single network, leading to detection at high speed.
tions from multiple feature maps with various resolutions, thereby process- Thus, SSD can train and integrate into systems with comparative ease with-
ing the objects at diversified sizes. SSD is simple because it sums up all out using machines of too high specifications. We performed 300 000
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iterations of the train using 1361 images in the training set and conducted
random horizontal flipping for images during training for data augmenta-
tion. The test set used 315 images to evaluate the model. An example
image of accurate detection by the trained model was shown in Fig. 2A.

Evaluation measures

This study evaluated the performance of the model in diagnosing each
image. The diagnosis of each image was determined following the same
rules, as well as giving an image label in building the data set, using the de-
tection results of the trained model. Images were classified as benign, non-
invasive carcinoma, or invasive carcinoma in the 3-class task and classified
as benign or malignant, including non-invasive carcinoma and invasive car-
cinoma, in the 2-class task. Images that the model did not detect the lesions
were considered as “Benign.” Detection with higher confidence score was
used for diagnosis and that with lower confidence score was not used, if
some boxes with different labels were detected in the same region
(Fig. 2B). Accuracy, recall, precision, and F1-score were used following
the formula below to evaluate the diagnosis of images.>®

Accuracy (Diagnostic accuracy)(%)
= Accurately classified images/Total images x 100

Recall (%)
= Accurately classified target images/Total target images x 100

Precision(%)
= Accurately classified target images/Total predicted target images x 100

Fl-score = 2* (Recall*Precision)/(Recall + Precision)

Moreover, the intersection over union (IoU) score was used to evaluate
the performance of breast lesion detection.®” The IoU score was calculated
using the below formula.

IoU score = Area of overlap/Area of Union.
Impact of the SSD model on the diagnosis by pathologists and medical students

We compared the diagnostic accuracy between the trained SSD model,
pathologists, and medical school students, and investigated the effects of
this model for assisting the diagnosis. A total of 3 experienced pathologists
and 5 medical school students who conducted the pathological studies
using breast carcinoma tissues participated in the experiments. They were
not involved in building a data set. They diagnosed the Examination set-1
and set-2, both with 43 images. The accuracies of the trained model were
the same score between Examination set-1 and set-2. First, they diagnosed
images in Examination set-1 without the assistance of the trained model.
Then, they classified the images in Examination set-2 with the assistance
of model detection. The trained model was implemented as a simple tool,
which showed the result of object detection and confidence score by input-
ting an image, and the threshold of detection confidence score could be
freely changed in the tool. They were given information about the perfor-
mance of the trained model, and the selection of the threshold of detection
confidence score for display was left to them. All experiments were con-
ducted without time constraints and the time taken for diagnosis of all im-
ages in each set was recorded. The diagnosis accuracy and needed time
were analyzed between the trained model, pathologists, and medical stu-
dents, as well as between the model-assisted and unassisted patterns.

Software, tool, and statistical analysis
All the SSD model experiments were performed using a PC with the fol-

lowing specifications: Intel(R) Core (TM) i5-10300H processor with 16 GB
RAM and NVIDIA(R) GeForce RT (TM) 2060 GPU. The models were
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mounted and trained by TensorFlow, and a tool to simply use this trained
model was implemented. IoU score was calculated in python using a
shapely package. A student t-test was used to examine differences in the
diagnostic accuracies of pathologists and medical school students.

Results
Accuracy of diagnosis for images using the SSD model

The SSD model was trained using 1361 images in the training set and
evaluated using 315 images in the test set. We investigated the diagnostic
accuracy for images using detection by the trained model in the different
thresholds of available confidence scores of detected objects. Thresholds
of confidence score were changed from 0.1 to 0.9 at intervals of 0.1. The
present model achieved a diagnostic accuracy of 85.4% using detection
confidence score thresholds of 0.3 and 0.4, as shown in Table 2. The
calculated F1-score with recall and precision score showed 89.6% for im-
ages labeled with benign (the confidence score threshold of 0.4), 71.0%
for non-invasive carcinoma (the confidence score threshold of 0.5), and
88.8% for invasive carcinoma (the confidence score threshold of 0.1). The
model achieved a higher diagnostic accuracy of 88.3% using the threshold
of detection confidence score when each component showed the highest
F1-score (benign for 0.4, non-invasive carcinoma for 0.5, and invasive car-
cinoma for 0.1 of confidence score thresholds). Furthermore, the trained
model showed 90.5% accuracy under the same conditions in a 2-class
task to diagnose as benign or malignant (non-invasive carcinoma or inva-
sive carcinoma). Conversely, the model showed a relatively low precision
score (68.0%) for the classification of images of non-invasive carcinoma.
Additionally, the model sometimes could not detect lesions in the images
that showed remarkably weak H&E staining in this study (Supplementary
figure).

Performance of object detection by the SSD model

We evaluated the trained model by IoU score, which is a better detec-
tion evaluation metric.>” The mean IoU of benign detection was 0.52,
non-invasive carcinoma was 0.44, and invasive carcinoma was 0.62 when
the threshold of detection confidence score for benign was 0.4, non-
invasive carcinoma was 0.5, and invasive carcinoma was 0.1, as shown in
Table 3. The 3-class average IoU was 0.59.

The mean average precision (mAP)>® is also useful for evaluating the
target localization and detection model, but we did not use it to evaluate
this model. Breast lesions could not be divided and counted simply due to
the intricacies of these forms and there is a wide range of variations of
drawing bounding boxes around them. For example, the model accurately
detected the benign area by bounding boxes with different shapes against
the annotation boxes as shown in Fig. 2C. Hence, we considered that
mAP was not suitable to accurately evaluate this model.

Comparison of the SSD model with humans and its effects on diagnosis

We evaluated the trained SSD model as compared with 3 pathologists
and 5 medical students using 43 images in Examination set-1. They diag-
nosed these images without time constraints, and diagnostic accuracy was
evaluated. All results were shown in Table 4 and Fig. 3. The model showed
higher diagnostic accuracy than medical students while pathologists got re-
markably higher accuracy than the model and medical students in both 3-
class (Fig. 3A) and 2-class (Fig. 3B) tasks.

We then investigated the significance of the model in assisting the diag-
nosis by humans by evaluating its effects on diagnostic accuracy and the
time taken for diagnosis. They conducted the diagnosis for images in Exam-
ination set-2, which contains different 43 images from Examination set-1
but keeps the same composition, with the assistance of the model detection.
Medical students showed remarkably higher diagnostic accuracy scores
(3-class task: average 84.7%, 2-class task: average 88.4%) with the model
assistance compared to that without model assistance (3-class task: average
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Table 2

Model performance for diagnosis of images in different threshold of confidence score.

Journal of Pathology Informatics 13 (2022) 100147

Threshold of detection confidence score.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Benign; 0.4
Non-invasive
carcinoma; 0.5
Invasive carcinoma;
0.1
Diagnostic accuracy (%) 81.6 83.8 85.4 85.4 84.8 82.9 82.5 80.0 77.8 88.3
Recall 90.9
Benign 83.9 87.0 88.5 89.6 89.1 87.9 87.7 86.5 84.6 Precision 90.9
F1-score 90.9
Recall 85.0
3-class task . . . i
F1-score Non-invasive carcinoma 61.3 64.7 68.8 70.2 71.0 67.4 68.8 66.0 67.4 Precision 68.0
Fl-score 75.6
Recall 85.6
Invasive carcinoma 88.8 88.3 88.2 85.4 83.7 81.3 79.8 74.4 68.2 Precision 94.1
Fl1-score 89.6
Diagnostic accuracy (%) 84.4 86.7 87.9 88.9 88.3 86.7 86.3 84.8 81.9 90.5
o-class task Recall (%) 79.3 84.7 87.9 90.8 91.3 91.0 91.5 91.9 93.5 90.1
Precision (%) 91.4 88.1 86.8 85.4 83.4 80.1 78.8 74.8 66.9 90.1
F1-score 84.9 86.4 87.3 88.1 87.2 85.2 84.7 82.5 78.0 90.1

Table 3
Model performance for the breast lesions detection.

Intersection over Union (IoU)*

Benign Non-invasive carcinoma Invasive carcinoma 3-class average

0.52(0.32) 0.44 (0.39) 0.62 (0.34) 0.59 (0.27)

# Threshold of detection confidence score; Benign 0.4, Non-invasive carcinoma
0.5, Invasive carcinoma 0.1. Data were presented as mean (STD).

67.4%, 2-class task: average 79.1%) in both 3-class (Figure 3C) and
2-class (Figure 3D) tasks. Notably, no significant difference was found be-
tween the accuracy of pathologists and medical students with the assistance
of the model in the 2-class task. Furthermore, some medical students
achieved the same or higher accuracy scores than pathologists when
using the assistance of the model for diagnosis (Fig. 3E, F). Pathologists
achieved a diagnostic accuracy score of more than the 90% average with
or without the assistance of the model. Two participants diagnosed images
in a short time using the assistance of the model (shorten by average
6.4 min) while six participants required a longer time (extended by average
7.2 min) when we investigated the time taken for diagnosis of all images in
each set (Fig. 3G). The average times taken for diagnosis were extended by
5.0 min and 3.1 min in pathologists and medical students, respectively.

Discussion

The present study firstly demonstrated the SSD model as an object de-
tection method to detect the breast lesions in micrographs of human breast
tissues to our best knowledge and evaluated the significance of the model in
assisting the diagnosis. Many currently employed AI models that classify

Table 4
Impact of the SSD model on the diagnosis by pathologists and medical students.

breast pathological images were developed using an algorithm, such as
ANN, including CNN,?>?7*? ResNet,*>** AlexNet,'*** and Inception-
V3,*47 however, the present model provides more detailed information
not only about the classification of images but also location and type of le-
sion in images, and it could be useful for assisting the pathologists. The 3-
class and 2-class classification tasks obtained 88.3% and 90.5% diagnostic
accuracies for images, respectively. The diagnosis for images using the
model achieved higher accuracy scores than medical students in experi-
ments for model evaluation compared with pathologists and medical stu-
dents, which would be helpful for pathological diagnosis.

Conversely, pathologists achieved higher accuracies than the model.
The mean IoU is 0.59 and there is room for improvement in the perfor-
mance of the model. There may be a limit to completely annotate and accu-
rately detect lesions by object detection methods using bounding boxes
because of the intricacies of these forms. Using other methods, such as se-
mantic segmentation,*® with pixel-level annotated images may be efficient
if the speed or simplicity of machine specs for implementation is not so im-
portant for users. For example, Priego-Torres et al. presented a new frame-
work for carcinoma cell segmentation in breast histopathological images
and the estimated segmentation accuracy was 95.62%.*° Additionally,
new released object detection methods after SSD also may be useful in
the aspect of accuracy.”

We then investigated the significance of the present model in assisting
the diagnosis. Steiner et al evaluated the potential impact of assistance for
pathologists by automatic detection of breast carcinoma metastasis in
lymph nodes and revealed some benefits of the assistance by Al in
pathology.® Very recently, Mantrala et al investigated the concordance
rate in breast carcinoma grading as determined by the Nottingham Grading
System between Al and pathologists using WSL.?>” However, the impact of
assistance by Al in diagnosing various breast lesions on clinical utility has

Examination set-1 (Unassisted)

Examination set-2 (Assisted)

Model only®  Pathologists (n = 3) Medical students (n = 5) Model only® Pathologists (n = 3) Medical students (n = 5)
3-class task  Diagnostic accuracy (%) 86.0 97.7 67.4 86.0 93.8 84.7
Diagnostic accuracy (%) 88.4 98.4 79.1 88.4 96.1 88.4
9-class task Precision (%) 92.9 98.9 78.0 100 96.7 89.6
Recall (%) 89.7 98.9 96.6 82.8 97.7 93.8
F1- score 91.2 98.9 86.2 90.6 97.1 91.6
Time taken for diagnosis (min) - 12.9 20.2 - 17.9 23.3

Time differences between unassisted
or assisted tasks (min)

+5.0 +3.1

@ Threshold of detection confidence score; Benign 0.4, Non-invasive carcinoma 0.5, Invasive carcinoma 0.1. Data of pathologists and medical students were presented as

average scores.
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Fig. 3. Performance of diagnosis by the SSD model, pathologists, and medical students with or without assistance of the model. A-D: The average diagnostic accuracy of the
model, pathologists (n = 3), and medical students (n = 5) without assistance (A, B) or with assistance (C, D) of the model in the 3-class (A, C) or 2-class (B, D) classification
tasks. A student t-test was used to examine differences in the diagnostic accuracies and the data were presented as the mean + S.D. *P < 0.05, ***P < 0.001 vs model,
respectively. N.S.; not significant. E, F: The change of each accuracy score with or without assistance of the model in 3-class (E) and 2-class (F) classification tasks. G: The

change of the time taken for diagnosis with or without assistance of the model.

not been fully investigated. The present study revealed that medical stu-
dents upregulated accuracy scores when using the assistance of the model
and some students achieved the same or higher accuracy scores than pa-
thologists, although the SSD model and medical students showed lower di-
agnostic accuracies than pathologists. Notably, some medical students
showed the best performance when using the assistance of the present
model compared with the model only or without the assistance of the
model. These results indicated that the present model may be helpful for
medical students or pathologists who are not so skilled in breast disorders
to accurately diagnose using micrographs, and using Al as assistance has
the potential to support pathological diagnosis in laboratories. Addition-
ally, the present model uses micrographs of breast tissues although WSI
scanning still takes a lot of time,* and there is a wide range of variation
of methods to use. For example, pathologists can take micrographs and
quickly confirm the detection of the model only if they hesitate to judge cer-
tain components. A microscope is used in routine diagnosis in clinical prac-
tice, and the present model may be comparatively easy to introduce and
simpler to use at high speed using micrographs. Conversely, the average ac-
curacy of pathologists achieved >90% and could not be changed by the as-
sistance of the model. Further amelioration of the performance of the model
can be helpful for pathologists, with a broader range of experience levels,
including virtuosic pathologists. Additionally, these experiments were con-
ducted without time constrain and Al may be more effective in stressful sit-
uations, such as when many images are needed to be diagnosed under time
constrain in clinical practice.

Some medical students achieved high diagnostic accuracy in a short
time using the model when pathologists and medical students diagnosed
images using the assistance of the model, and this result indicated that as-
sistance by the present model may have the potential to improve both accu-
racy and efficiency of pathological diagnosis. On the other hands,
diagnosing images with assistance took a long time on average than with-
out assistance. The present study used the model by inputting one image
at a time. More simple operation methods to use the model could further
improve the efficiency. Additionally, further investigation about appropri-
ate conditions in using Al tools will be needed to improve the efficiency
of diagnosis for more people. Too much information from Al can lead to

confusion among pathologists and increase the workload to process infor-
mation, thus an appropriate amount of information should be supplied for
them. For example, by setting the suitable threshold of confidence score.
The relationship between accuracy and efficiency of diagnosis using Al as
assistance, when the amount of information from Al is changed, should
be explored in the future.

One of the limitations of the present study is the created dataset with
specimens obtained from a single institution and it may not represent the
heterogeneity of specimens in various facilities. The present model could
not detect lesions in images taken by specimens whose hematoxylin stain-
ing is weak compared with other specimens. The model should be trained
and evaluated using other images taken from specimens in other facilities
in the future.

In conclusion, we presented the automatic breast lesions detection
method using histopathological micrographs based on SSD, which is an ob-
ject detection algorithm, for the first time. The model can detect breast le-
sions in micrographs at high speed with a low cost for the introduction.
The model showed 88.3% diagnostic accuracies for images in 3-class classi-
fication tasks and medical students improved their diagnosis performance
using the assistance of this model. Therefore, the present system conve-
niently supports the histological diagnosis by pathologists in laboratories.
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