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1  | INTRODUC TION

Targeted therapies interfering with oncogenic driver alterations 
have achieved great success in chronic myeloid leukaemia (CML) 
with BCR- ABL fusions,1 melanoma with BRAF V600E mutations,2 
lung cancer with EGFR mutations3 and breast cancer with HER2 

amplification.4 However, approved targeted agents can only block 
limited types of cancer with specific driver gene alterations. The de-
velopment of novel therapeutics targeting other cancer driver alter-
ations is extremely urgent to improve patients’ prognosis.

The fibroblast growth factor (FGF)- FGF receptor (FGFR) signal-
ling cascade plays a pivotal role in driving cancer growth. Anti- FGF 
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Abstract
The sites of targeted therapy are limited and need to be expanded. The FGF- FGFR 
signalling plays pivotal roles in the oncogenic process, and FGF/FGFR inhibitors are a 
promising method to treat FGFR- altered tumours. The VEGF- VEGFR signalling is the 
most crucial pathway to induce angiogenesis, and inhibiting this cascade has already 
got	success	in	treating	tumours.	While	both	their	efficacy	and	antitumour	spectrum	
are limited, combining FGF/FGFR inhibitors with VEGF/VEGFR inhibitors are an ex-
cellent way to optimize the curative effect and expand the antitumour range because 
their combination can target both tumour cells and the tumour microenvironment. In 
addition, biomarkers need to be developed to predict the efficacy, and combination 
with immune checkpoint inhibitors is a promising direction in the future. The article 
will discuss the FGF- FGFR signalling pathway, the VEGF- VEGFR signalling pathway, 
the rationale of combining these two signalling pathways and recent small- molecule 
FGFR/VEGFR inhibitors based on clinical trials.
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or FGFR therapy is a promising way to treat tumours with FGF and 
(or) FGFR alterations.5	With	the	accelerated	approval	of	erdafitinib	
for FGFR- altered urothelial carcinoma in April 2019 and pemigatinib 
for cholangiocarcinoma with FGFR2 fusion or other rearrangements 
in April 2020,6,7 the FGF- FGFR signalling pathway has received more 
attention. However, patients often received limited clinical benefits 
in treatment with agents that only block the FGF- FGFR signalling 
cascade.5 Combination of the inhibitory of the FGF- FGFR signalling 
pathway with other mechanisms is a promising way to solve this 
puzzle.

Tumours growth relies on blood supply, and vascular endothe-
lial growth factors (VEGFs) are essential angiogenesis stimulators.8 
Through inhibiting the VEGF- VEGF receptor (VEGFR) signalling, 
anti- VEGF or VEGR agents have been approved for use in various 
solid tumours, but they lead only to mild clinical benefits in most 
situations.9

Herein, in this review, we mainly focus on the FGF- FGFR signal-
ling pathway, the VEGF- VEGFR signalling pathway, the rationale of 
combining these two pathways and recent small- molecule FGFR/
VEGFR inhibitors based on clinical trials.

2  | FGF- FGFR SIGNALLING

2.1 | FGFs

Fibroblast growth factor was first extracted from bovine pituitary 
in 1973, partially purified in 1975, and finally purified to homoge-
neity	 in	1983.10- 12 The mammalian FGF family comprises 22 mem-
bers, including FGF1- FGF23. Human FGF19 and mouse FGF15 are 
analogs. Phylogenetic and gene locus analyses divide the FGF family 
into seven subfamilies. Their action mechanisms classify these sub-
families into three groups, the canonical FGF subfamily including the 
FGF1/2/5,	 FGF3/4/6,	 FGF7/10/22,	 FGF8/17/18	 and	 FGF9/16/20	
subfamilies, the endocrine FGF19/21/23 subfamily and the intracel-
lular FGF11/12/13/14 subfamily.13,14

2.2 | FGFRs

The canonical and endocrine FGFs produce their biological actions 
by signalling through FGFRs (FGFR1- 4), which are expressed on the 
cell membrane, consisted of three extracellular immunoglobulin 
(Ig)- like domains (I, II, III), a transmembrane domain (TM) and two 
intracellular	 tyrosine	 kinase	 domains	 (TK1	 and	 TK2).15,16 FGFR1- 3 
generate two additional major splice variants of Ig- like domain III, 
referred to as IIIb and IIIc, concerned with ligand- binding specificity. 
In contrast to other family members, FGFR4 has only one isoform.17 
The FGF- binding pocket is formed by the II and III subregions.18 The 
FGFR	TK	domains	are	the	heart	of	the	action,	responsible	for	offering	
ATP- binding area and phosphorylating tyrosine residues to gradu-
ally increase catalytic activity tens to thousands of times. Finally, the 
specific phosphorylation site can bind and phosphorylate substrate 

proteins to activate multiple signal transduction pathways.19 Take 
FGFR1 as an example; seven phosphorylatable tyrosine residues 
have	been	identified,	that	is,	Y463,	Y583,	Y585,	Y653,	Y654,	Y730	
and Y766.20 Among these, Y653 and Y654 are essential for kinase 
activity, and phospho- Y766 serves as a binding site for downstream 
protein.21 There are several critical functional loops in the intracel-
lular domain, one of which is an activation loop (A- loop). The con-
formation of the highly conserved Asp- Phe- Gly motif (DFG- motif) 
in the A- loop is an indicator of kinase activity status. The DFG- motif 
exists in two states: the active DFG- in and inactive DFG- out confor-
mations, relating to the mechanism of FGFR inhibitors, which we will 
describe more below.22

2.3 | Extracellular FGF associated cofactors

Heparin	and	heparan	sulphate	proteoglycans	(HSPG)	act	as	essential	
cofactors for the binding of canonical FGFs.23	Unlike	the	canonical	
FGFs,	endocrine	FGFs	require	Klotho	co-	receptors	instead	to	act	as	
cofactors for FGFR activation. αKlotho	is	a	cofactor	for	FGF23	and	
βKlotho	for	FGF15/19	and	FGF21.24 All cofactors are single- pass TM 
proteins, binding to extracellular Ig- like domain II of FGFR. This 1:1:1 
FGF-	HS/Klotho-	FGFR	ternary	complex	structure	leads	to	conforma-
tional changes that stabilize a symmetric 2:2:2dimer.25

2.4 | Intracellular signal transduction

The binding of FGFs drives the dimerization of FGFRs to stimulate the 
activation of four major intracellular signalling pathways: Ras- Raf- 
MAPK,26	PI3K-	AKT,27 PLCγ28	and	STATs.29 (Figure 1) Phospho- FGFR 
phosphorylates	 the	docking	proteins	FGFR	substrate	2	 (FRS2)	and	
FGFR	substrate	3	(FRS3).	The	activated	FRS2	binds	to	growth	factor	
receptor-	bound	2	(GRB2)	and	tyrosine	phosphatase	SHP2	proteins.	
Subsequently,	GRB2	 recruits	 SOS	and	GAB1	 to	 activate	 the	RAS-	
MAPK	and	PI3K-	AKT	pathways,	 respectively.26,27 Phosphorylation 
of Y766 is linked to the initiation of the phospholipase C (PLC- γ) 
pathway. Activated PLC- γ catalyses the hydrolysis of phosphati-
dylinositol 4,5- bisphosphate (PIP2) to generate inositol triphosphate 
(IP3) and diacylglycerol (DAG). IP3 production elevates the level 
of intracellular calcium ion while DAG stimulates protein kinase C 
(PKC).28	The	STAT	pathway	is	triggered	by	Y677	phosphorylation.29

2.5 | Roles of FGF- FGFR signalling in physiology

Through triggering downstream signalling pathways, the FGF- FGFR 
signalling participates in various vital physiological processes.15,30 
By regulating key cell behaviours, such as proliferation, differen-
tiation and survival, the FGF- FGFR signalling pathway can mediate 
the development of multicellular organisms to ensure proper mor-
phogenesis in the whole development process and also can regu-
late angiogenesis and wound repair in adults.31 Besides, endocrine 
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FGFs can regulate bile acid metabolism in the liver, lipid metabolism 
in the white adipose tissue, and phosphate and vitamin D levels in 
serum.15 In contrast, intracellular FGFs, independent of FGFRs, exert 
their biological activity in their original cells via interaction with cy-
toplasmic domains of ion- gated sodium channels and mainly play 
roles in neuronal functions in the postnatal stages.32

2.6 | FGF- FGFR signalling in cancer

FGFRs are not constitutively active in non- malignant cells. The onco-
genic role of FGF- FGFR signalling in driving cancer cell proliferation, 
survival, migration and invasion is mediated by the upregulation of 

FGF, FGFR genetic alterations, angiogenesis and immune evasion in 
the tumour microenvironment.5

2.7 | FGFR genetic alterations

An	 analysis	 of	 4,853	 solid	 tumours	 by	 the	 next-	generation	 se-
quencing technique demonstrated FGFR aberrations in 7.1% of 
cancers. Among them, gene amplification, gene mutations and 
gene	 rearrangement	 accounted	 for	 66%,	 26%	 and	 8%,	 respec-
tively. FGFR1 had the most common alterations (49%), followed 
by FGFR3 (23%) and FGFR2 (19%), with FGFR4 owning the least 
alterations (7%).33

F I G U R E  1   FGF- FGFR signalling pathway. The binding of FGFs stimulates FGFRs dimerization, resulting in cellular proliferation, 
differentiation,	survival,	migration	and	angiogenesis	mainly	through	Ras-	Raf-	MAPK,	PI3K-	AKT,	PLCγ	and	STATs	pathways.	(See	the	
manuscript for more details) (Created with BioRender.com)
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2.7.1 | Gene	amplification

Deregulated gene transcription or amplification can lead to elevated 
FGFR levels, which can activate FGF- FGFR signalling in a ligand- 
independent manner. The amplification of FGFR1 and FGFR2 is 
more frequent than that of FGFR3 and FGFR4 (Table 1).34

Amplification of the FGFR1 gene is the most common in all 
types of FGFR gene alterations. It has been described in a pleth-
ora of human tumour types with different ratios.33 Recent studies 
described that the rate of FGFR1 amplification was significantly 
higher	in	squamous	cell	lung	cancer	(SqCLC)	and	Asians,	and	FGFR1	
amplification may be a potential new therapeutic target for individ-
ual	patients	with	specific	 lung	cancer	subtypes	such	as	EGFR	TKI	
for Asian patients with lung adenocarcinoma.35 FGFR1- amplified 
lung cancer models respond to FGFR inhibitors in preclinical stud-
ies	 in	both	non-	small	cell	 lung	cancer	 (NSCLC)	and	small-	cell	 lung	
cancer	 (SCLC),	 especially	 in	 SqCLC,	with	 9.3%	 in	 stage	 I,	 22%	 in	
stage II, and 19% in stage IV with brain metastasis.36 However, 
several phase II clinical trials found its limited activity in FGFR1- 
amplified lung cancer patients with an acceptable safety profile.37 
The relationship between amplification of FGFR1 and progno-
sis	 is	 still	 in	doubt	 in	NSCLC.	Maybe,	 it	 is	 because	of	 the	FGFR1	
amplicon co- amplified with other genes that could contribute to 
carcinogenesis.38 In HR (+)/HER2 (- ) breast cancers, increased ex-
pression of FGFR1 was found in hormone- resistant breast cancer 
and	in	patients	who	received	CDK4/6	inhibitors,	and	these	patients	
can receive 19% of the objective response rate (ORR) treated by 
lucitanib.39,40	 Combination	 of	 FGFR1	 and	 CDK4/6	 inhibitors	 can	
effectively suppress FGFR1 and aromatase activities and prolong 
median	progression-	free	survival	(PFS)	by	5.4	months	in	FGFR1	am-
plified group in a phase II clinical trial.39 FGFR1 amplification is an 
independent biomarker of a poor prognosis in patients with ER (+) 
breast cancer.41 Moreover, FGFR1 and/or FGF3 gene amplification 
is associated with resistance to HER2 targeted therapy, a shorter 
PFS	 survival	 and	 a	 lower	 pathological	 complete	 response	 (CR)	 in	
HER2 (+) early breast cancer treated with neoadjuvant anti- HER2 
therapy.42	What	 is	 more,	 allelic	 loss	 and	 amplification	 of	 FGFR1	
can predict chemo-  and radiotherapy response in breast cancer.43 
FGFR1 amplification correlating with inadequate response to tra-
ditional treatments also happens in osteosarcoma,44 and the ex-
pression of FGFR1 is associated with worse disease- free survival 
(DFS)	and	poor	overall	survival	(OS)	in	head	and	neck	squamous	cell	
carcinoma	(HNSCC),45 oesophageal cancer46 and colorectal cancer 
(CRC).47

Amplification of FGFR2 is less frequent than that of FGFR1 and 
mainly focuses on FGFR2, with few other genes co- amplified. FGFR2 
amplification exists in several cancers. Among them, gastric cancer 
is the most thoroughly studied.48 High- level FGFR2 amplification 
is associated with the lower response, resistance to chemotherapy, 
shorter	PFS	and	shorter	OS	in	gastric	cancers.	Animal	experiments	
show retarded tumour growth in FGFR2- amplified gastric cancer 
treated with FGFR inhibitors.49 A phase III study demonstrated an 
ORR of 19% in late- line gastric cancer with FGFR2 inhibitor. The 

addition of FGFR2 inhibitor to modified FOLFOX6 for advanced 
FGFR2- positive gastroesophageal cancer is ongoing.50

It is reported relatively less in amplification of FGFR3 and 
FGFR4. However, FGFR3 is overexpressed in around 50% of oral 

TA B L E  1   FGFR genetic amplification or overexpression in 
human cancers. [Correction added on 01 April 2021, after first 
online publication: cholangiocarcinoma tumor has been moved 
from FGFR3 to FGFR4 in Table 1.]

Gene Cancer type Frequency (%) Reference

FGFR1 Squamous	cell	lung	
cancer

5.1- 41.5 35

Lung adenocarcinomas 0- 14.7 35

Small-	cell	lung	cancer 0-	7.8 35

Myxofibrosarcoma 20 5

Osteosarcoma 9 44

Rhabdomyosarcoma 3 209

Undifferentiated	
pleomorphic sarcomas

7 210

Hormone receptor- 
positive breast cancer

15 211

Triple- negative breast 
cancer

5 212

Head and neck 
squamous cell 
carcinoma

9.3- 17.4 45

Prostate cancer 16 213

Ovary cancer 5 33

Bladder cancer 2 34

Oesophageal cancer 9 214

Gastric cancer 2 215

Colorectal cancer 6 216

Pancreatic cancer 1 217

FGFR2 Gastric cancer 5– 10 50

Intrahepatic 
cholangiocarcinoma

12 218

Overall breast cancer 2 219

Triple- negative breast 
cancer

4 219

FGFR3 Head and neck 
squamous cell 
carcinoma

3 33

Oral squamous cell 
carcinoma

48 51

Oropharyngeal 
squamous cell 
carcinoma

59 51

Oligometastatic 
colorectal cancers

15 53

Urothelial	cancers 3 33

FGFR4 Cholangiocarcinoma 
tumour

50 54

Liver cancer 31.60 55
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and oropharyngeal squamous cell carcinoma.51 FGFR3 amplification 
is	also	found	in	HNSCC,	urothelial	cancers	and	CRC.33 High expres-
sion of FGFR3 is concerned with poor prognosis in papillary blad-
der cancers and oligometastatic CRC.52,53 Amplification in FGFR4 
occurs in cell lines of rhabdomyosarcoma, prostate and liver can-
cers. 50% of cholangiocarcinoma and 31.6% of liver cancer patients 
displayed FGFR4 overexpression concerning cancer initiation and 
progression.54,55

2.7.2 | Gene	mutations

Both somatic activating mutations and germline single- nucleotide 
polymorphisms	(SNPs)	in	FGFRs	have	been	reported	to	associate	with	
cancer incidence. The research conducted by Greenman et al found 
more	 than	1,000	 somatic	mutations	 in	 the	 coding	 exons	 of	 518	 ki-
nase genes from 210 different cancers, whereas the FGF- FGFR signal-
ling pathway was the most commonly mutated genes.56 Mutations in 
FGFRs are variable, occurring in the extracellular fragment, TM do-
main	or	kinase	domain.	Somatic	activating	mutations	of	FGFR2	and	
FGFR3 are more common than those of FGFR1.37

N546K	mutation	in	the	kinase	domain	of	FGFR1	is	the	most	com-
mon reported subtype among all the types of FGFR1 mutations. It 
has been found in Ewing sarcoma, glioblastomas, gastrointestinal 
stromal tumours and pheochromocytomas.57- 59 Other mutations in 
FGFR1,	such	as	K565E,	have	also	been	reported	in	glioblastoma.60 
RNA interference of FGFR1 expression in Ewing sarcoma lines 
blocked proliferation and completely suppressed xenograft tumour 
growth.57

Unlike	the	mutations	in	FGFR1,	the	most	common	mutations	of	
FGFR2	 are	 S252w	 and	 P253R	 occurring	 in	 the	 extracellular	 frag-
ment,	while	K650E/M/N	and	N549K	in	FGFR2	are	also	found	in	the	
A- loop. FGFR2 mutations are found in up to 12% of endometrial 
carcinomas,	10%	of	gastric	tumours,	approximately	4%	of	NSCLCs	
and <2% of urothelial cancers.61 FGFR2 mutation is an independent 
prognostic factor in endometrioid endometrial cancer through dis-
rupting cell polarity to enhance migration and invasion.62 However, 
a phase II study failed to prove that the proportion of patients who 
were	progression-	free	at	18	weeks	was	higher	in	advanced	or	met-
astatic endometrial cancer with FGFR mutations than in FGFR- 
non-	mutated	 endometrial	 cancer	when	 treated	 by	 dovitinib,	 a	 TK	
inhibitor	(TKI)	of	FGFRs,	VEGFRs,	PDGFR-	beta	and	c-	KIT	after	first-	
line chemotherapy.63

FGFR3	mutations	commonly	occur	 in	the	extracellular	 (R248C,	
S249C)	and	TM	(G370C,	Y373C)	domains	of	the	receptor,	which	are	
found to have the ability to stimulate proliferation in cell lines and 
lead to the transformation of fibroblasts into tumour cells.33 75% 
of muscle- non- invasive bladder cancers (MNIBC) have mutations in 
FGFR3, while the proportion is around 15% in muscle- invasive blad-
der cancers (MIBC).64 Mutations in FGFR3 indicate a better prog-
nosis in MNIBC, a better response to neoadjuvant chemotherapy in 
MIBC and disease occurrence or recurrence in bladder cancers.65 

At	the	same	time,	FGFR3	S249C	mutation	in	urinary	cell-	free	DNA	
could	predict	early-	stage	(≤pT1)	of	upper	muscle-	invasive	urothelial	
carcinoma with 100% positive predictive value.66 Besides, FGFR3 
mutations also occur in cervical, vulvar squamous cell carcinoma and 
breast cancer.67- 69

The	kinase	domain	mutations	of	FGFR4	(V550E/L	and	N535D/K)	
were described in 7% of rhabdomyosarcoma, leading to tumour 
growth in vivo and drug resistance to all type I and some type II 
inhibitors in patients.70	 Besides,	 variant	 rs351855-	G/A	 can	 lead	
to	 germline	 FGFR4	 G388R	 substitution,	 subsequently	 expose	 a	
membrane-	proximal	STAT3-	binding	site	and	trigger	STAT3	signalling	
cascade, which can accelerate cancer progression and also contrib-
ute to tumour- extrinsic immune evasion.71	FGFR4	G388R	substitu-
tion is correlated with poor survival in resected colon cancer and 
lung cancer.72,73

2.7.3 | Gene	fusions

Different gene fusions of FGFRs can lead to variable expression of 
fusion	proteins,	which	contain	a	 transcription	 factor	and	TKs	with	
the ability to induce ligand- independent receptor dimerization and 
oncogenic effects. Gene fusions referred to chromosomal transloca-
tions in haematological malignancies and chromosomal rearrange-
ments in solid tumours. Compared to fusions in FGFR1- 3, FGFR4 
fusions are rarely reported.37

Gene fusions with FGFR1 have been found in myeloid/lymphoid 
neoplasm, lung cancer, papillary thyroid carcinoma, low- grade gli-
omas and phosphaturic mesenchymal tumour.74- 76 Among them, 
FGFR1- translocated myeloid and lymphoid neoplasms are the most 
frequently reported, for example, TFG- FGFR1, BCR- FGFR1, CNTRL- 
FGFR1,	 ZNF198:FGFR1/ZMYM2-	FGFR1,	 CEP110-	FGFR1	 and	
FGFR1OP2- FGFR1 and even achieved complete remission in some 
patients when treated by FGFR inhibitor.77

FGFR2 fusions occur in around 10%- 20% of patients with 
intrahepatic cholangiocarcinoma. The major fusion partners of 
FGFR2 are PPHLN1, AHCYL1, BICC1 and TACC3, which bring the 
probability of targeted therapy for the patients who have FGFR2 
rearrangements.78	 Several	 FGFR	 inhibitors	 have	 been	 tested	 in	
phase I or II clinical trial and finally, pemigatinib, an FGFR1- 3 in-
hibitor, received accelerated approval in April 2020 by the FDA 
for the treatment of patients with previously treated, unresect-
able, locally advanced or metastatic cholangiocarcinoma with an 
FGFR2 fusion or other rearrangements based on FIGHT- 202 phase 
II clinical trial, in which 35.5% of patients with FGFR2 fusions or 
rearrangements achieved an objective response.7 Interestingly, 
FGFR2 fusions also have been found in breast, prostate and 
thyroid cancer.33

In addition to the presence of FGFR3 amplification and mutations 
in urothelial carcinoma, FGFR2/3 fusions have also been detected. 
FGFR3- TACC3 is an oncogene and has been found in urothelial 
carcinoma, glioblastoma, lung adenocarcinomas, cervical cancer, 
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triple- negative breast cancer (TNBC) and oesophageal cancer.79-	84 
The fused protein can phosphorylate the phosphopeptide PIN4 
through activating mitochondria and subsequently promote mito-
chondrial respiration and tumour growth. Other researchers found 
the	fused	protein	can	trigger	the	MAPK-	ERK	and	JAK-	STAT	signal-
ling pathways.80,84 Last year, erdafitinib was granted accelerated 
approval by the FDA for FGFR- altered urothelial carcinoma pro-
gressing on platinum- based chemotherapy, with an ORR of 40%, a 
median	PFS	of	5.5	months	and	a	median	OS	of	13.8	months	 in	an	
open- label, single- armed BLC2001 phase II trial.6

2.8 | Upregulation of FGFs

Genetic alterations mentioned above mainly lead to constitutive re-
ceptor activation and ligand- independent signalling. However, the 
ligand- dependent signalling triggered by FGFs also contributes to the 
pathogenesis of cancer. The increased amount of FGFs comes from 
the secretion of cancer cells and (or) the surrounding stromal cells, 
also referred to as autocrine and paracrine ligand signalling.37 Multiple 
FGFs have been found elevated in different kinds of tumours, such as 
FGF2	in	leukaemia,	lung	and	breast	cancer,	FGF8	in	breast	and	pros-
tate cancer, FGF10 in lung cancer, FGF19 in hepatocellular carcinoma 
(HCC) and TNBC.85 Interestingly, different kinds of FGFs can be found 
in one type of tumour. FGF3, FGF4 and FGF19 co- increase has been 
detected	 in	approximately	15%	of	TNBC.	FGF1,	FGF2,	FGF6,	FGF8,	
FGF19 and FGF23 are involved in prostate cancer development and 
progression.86

2.9 | Angiogenic effects

Although FGF- FGFR signalling plays a significant role in tumour 
growth, as discussed above, actually FGFs were firstly found as an-
giogenic	 factors.	FGF1,	FGF2,	FGF4	and	FGF8	are	demonstrated	 to	
have pro- angiogenic effects in different models, especially for FGF1 
and FGF2, while other members of canonical FGFs have few or contro-
versial data.87 The intratumoral levels of FGF2 mRNA or protein do not 
correlate with intratumoral vascular density in most cases but correlate 
with the clinical outcome in some types of cancer (eg breast cancer 
and HCC).88 Endothelial cells also express different members of the 
FGFR family, including FGFR1IIIc, FGFR2- IIIc and FGFR3IIIc. The FGF- 
FGFR signalling exerts potent pro- angiogenic properties by promoting 
endothelial cell proliferation, migration, tube formation, protease pro-
duction and other biological behaviours.89 The inhibition of FGF- FGFR 
signalling in endothelial cells disintegrates adhesion and tight junc-
tions, looses endothelial cells and finally disassembles the vasculature. 
Neutralizing FGF2 and FGFRs inhibit neovascularization and tumour 
growth in vivo models.90 Though not required for vascular homeostasis 
or physiological function, FGF- FGFR signalling plays a pivotal role in 
tissue repair and neovascularization following injury, which validates 
endothelial cell FGFRs as a target for diseases associated with aberrant 
vascular proliferation.91

2.10 | Targeting FGF- FGFR signalling in cancer

As the role of FGF- FGFR signalling in tumourigenesis, a large num-
ber of drugs targeting this signalling pathway have been developed. 
Except for erdafitinib and pemigatinib approved for urothelial car-
cinoma and cholangiocarcinoma, respectively, as mentioned above, 
more inhibitors are under preclinical or clinical trials in various FGFR- 
altered tumours. According to their action mechanism, they can be 
divided	 into	 several	 categories:	 (a)	 small-	molecule	 FGFR	 TKIs,	 (b)	
anti- FGFR antibodies and (c) and FGF ligand traps.37

Actually,	 FGFR	 TKIs	 are	 the	most	 widely	 used	 therapeutic	 ap-
proach, which can be classified into different groups according to dif-
ferent	criteria.	Firstly,	the	FGFR	TKIs	may	target	other	growth	factor	
receptors, as the binding pocket of ATP- competitive FGFRs shares 
a	high	degree	of	homology	with	other	receptor	TKs	 (RTKs)	such	as	
VEGFR and PDGFR. Accordingly, they can be divided into multikinase 
FGFR	inhibitors	and	FGFR-	specific	TKIs.5 FGFR inhibitors can be fur-
ther classified into type I, type II and other types of reversible and/
or irreversible inhibitors. Type I and type II inhibitors bind to the ATP- 
binding pockets of FGFRs in the active DFG- in and inactive DFG- out 
configuration,	 respectively,	 while	 BLU-	554,	 FGF401	 and	 TAS-	120	
bind covalently to their FGFR target and are divided into type VI in-
hibitors.92 Furthermore, according to the interaction between a small 
molecular inhibitor and the ATP- bind pocket in the kinase domain, 
FGFR inhibitors can be covalent (irreversible) or non- covalent (revers-
ible) inhibitors. Covalent inhibitors, also called irreversible inhibitors, 
are thought to have a better binding affinity and selectivity.93

Though the approval of erdafitinib and pemigatinib brings some 
hope in targeting the FGF- FGFR signalling pathway, many early 
phases of clinical trials have been terminated for limited efficacy or 
demonstrated minimal clinical benefit without further researches.94 
Responses to FGFR- targeted treatments may be hampered by the 
activation of bypass signalling pathways and the appearance of sec-
ondary drug- resistant FGFR mutations, FGFR amplification without 
alterations in protein expression, and intratumour heterogeneity.37 
Combination inhibition of the FGF- FGFR signalling pathway with other 
mechanisms, for example, endocrine therapies, immunotherapies and 
other targeted therapies may have the potential to enhance the an-
titumour	effect	of	FGFR	TKIs,	as	well	as	broaden	their	indications.37 
Among these methods, VEGF- VEGFR signalling deserves attention.

3  | VEGF- VEGFR SIGNALLING

3.1 | VEGFs

One hundred years ago, the growth of tumours had already been 
thought to rely on blood supply. It was not until 1939 that tumour 
cells were supposed to release a blood vessel growth factor by 
themselves.9 And then, in 1971, Folkman speculated that tumours 
could be treated through anti- angiogenesis.95

Inspired by these hypotheses, vascular permeability factor (VPF) 
was	 found	 by	 Senger,	 and	 his	 colleagues	 in	 1983.96 Ferrara and 
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co-	workers	isolated	VEGFA	in	1989.	What	is	more,	cDNA	and	pro-
tein sequence analyses proved that VPF and VEGFA were the same 
molecules.9

In mammals, the VEGF family consists of five members, VEGFA, 
B, C, D and placenta growth factor (PLGF), encoded from the same 
gene and organized in an anti- parallel fashion to form a dimer.97 In 
particular, VEGF, referred to as VEGFA, is a major regulator of nor-
mal and abnormal angiogenesis. Because of alternative splicing, 
several variants of VEGFA have been detected, mainly VEGFA121, 
VEGFA165,	VEGFA189	and	VEGFA206.98

The ability to interact with VEGFR co- receptors and proteo-
lytic processing decide the bioactivities of the VEGFA isoforms.99 
Lacking	 the	 HSPG-		 and	 neuropilin-	binding	 domains,	 VEGFA121	
is a diffuse molecule and cannot remain on the cell surface and 
in the extracellular matrix (ECM). VEGFA165 has two properties: 
it can be secreted or stored in the vicinity of the producer cell. 
On	the	other	hand,	VEGFA189	and	VEGFA206	include	HSPG-		and	
neuropilin (NRP)- binding domains and can bind to co- receptors 
with greater affinity than VEGFA165. In addition, protease cleav-
age	of	VEGFA189	allows	the	release	of	an	active,	freely	diffusible	
VEGFA110. In other words, VEGFA165 is the most active of all 
subtypes.99,100

Hypoxia is the primary inducer of VEGF gene transcription via 
hypoxia- inducible factor (HIF). Besides, growth factors, hormones, 
cytokines and oncogenic mutations can also influence the produc-
tion of VEGF.101

3.2 | VEGFRs

These ligands bind in an overlapping pattern to VEGFR1- 3 and have 
seven Ig- like domains in the extracellular domain, a single TM region 
and	a	split	TK	domain	 (Figure	2).102 Except for VEGFA121, VEGFA 
isoforms also interact with the NRP co- receptors (NRP1 and NRP2), 
which lack established VEGF- induced catalytic function but can en-
hance the function of VEGFR2. VEGFA, B and PLGF bind to VEGFR1, 
VEGFA binds to VEGFR2, and VEGFC and D bind to VEGFR3. 
Proteolytic processing of the human VEGFC and D allows for bind-
ing to VEGFR2. The Ig- like domains 2 and 3 are the binding area.103 
However, VEGFR2 is the central signalling receptor for VEGFA and 
VEGFR1 acts as a decoy receptor, sequestering VEGFA and thus 
regulating VEGFR2 activity.104

3.3 | Intracellular signal transduction

Among the downstream pathways of VEGFR1- 3, VEGFR2 is 
the most thoroughly studied (Figure 2). Y1175, Y951 and Y1214 
are the three major VEGFA- dependent phosphorylation sites in 
VEGFR2.105 Phosphorylated Y1175 (pY1175) can bind PLC- γ, the 
adaptor	protein	Shb	and	the	adaptor	protein	Sck,	further	promot-
ing the cascade signalling.106	Similar	to	the	FGF-	FGFR	pathway,	ac-
tivated PLC- γ promotes PIP2 to produce IP3 and DAG. Different 

from	 the	 FGF-	FGFR	pathway,	 PKC	 can	 initiate	 the	Raf-	MEK-	ERK	
pathway, independent of Ras, which is central to the proliferation 
of endothelial cells. Besides, pY1175 can recruit GAB1 to active the 
PI3K-	AKT	 pathway.	 Subsequently,	 AKT	 directly	 phosphorylates	
two apoptotic proteins, Bcl- 2 associated death promoter (BAD) 
and caspase- 9, inhibiting their apoptotic activity and promot-
ing cell survival.107	 In	 addition,	AKT	can	 stimulate	 the	activity	of	
endothelial	nitric	oxide	synthase	 (eNOS)	and	 further	mediate	 the	
generation of nitric oxide (NO) to lead to VEGF- induced permeabil-
ity.102 Phosphorylated Y951 promotes the formation of complexes 
between	Src	through	the	adaptor	protein	VRAP/TSAd,	resulting	in	
the opening of inter- endothelial junctions, critical for cytoskeletal 
reorganization and migration.108 Phosphorylated Y1214 associates 
with VEGF- induced actin remodelling via binding the adaptor pro-
tein	Nck.	Nck	 interacts	with	 the	Src	 family	kinase	Fyn	 leading	 to	
activation	of	Cdc42	and	p38	MAPK.103

VEGFR1 functions as a decoy receptor that binds its ligands and 
prevents VEGF binding to VEGFR2, while it is also proved to trig-
ger	PI3K	and	MAPK	pathways	 in	transfected	cell	 lines.103 VEGFR3 
activates	 the	 PI3K-	AKT/PKB	 pathway	 and	 the	 ERK1/2	 in	 a	 PKC-	
dependent manner, just as VEGFR2. Besides, VEGR3 can also trigger 
the	activity	of	STAT3	and	STAT5.109

3.4 | Roles of VEGF- VEGFR signalling in physiology

VEGFR1 is expressed on haematopoietic stem cells, monocytes, 
macrophages and vascular endothelial cells. Accordingly, it is re-
quired to recruit haematopoietic stem cells and for the migration of 
monocytes	and	macrophages.	VEGFR1-	/-		mice	die	at	E8.5-	9.5	due	to	
disorganization induced by excessive proliferation of angioblasts.102 
VEGFR2 is critical for vascular endothelial cell development, which 
concerns vasculogenesis during embryogenesis and angiogenesis in 
the adult, as it is mainly expressed on vascular endothelial cells.110 
Lacking one of the two VEGF alleles or VEGFR- 2- /-  can lead to early 
embryonic lethality due to defective vascular development.102 In 
adults, skeletal growth and repetitive functions are closely related 
to angiogenesis. VEGFR2 can also express on neuronal cells, mega-
karyocytes and haematopoietic stem cells,107 while VEGFR- 3 is al-
most restricted to lymphatic endothelial cells and correspondingly 
regulates its development.8

3.5 | VEGF- VEGFR signalling in cancer

A tumour needs angiogenesis to ensure oxygen and nutrients for 
its growth. VEGF secreted by tumour cells and their microenviron-
ment, binding to VEGFR2, plays the most crucial role in vascular per-
meability and neo- angiogenesis.95	 What	 is	 more,	 the	 capillary	 and	
vascular network facilitates tumour cells to metastasis and spread 
to	 distant	 organs.	 Studies	 also	 found	 that	VEGF	 can	 induce	 immu-
nosuppression by inhibiting cytotoxic T lymphocyte and dendritic 
cell development and increasing the recruitment and proliferation of 
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immunosuppressive	cells,	such	as	Treg	cells,	MDSCs,	and	pro-	tumour,	
M2- like TAMs, resulting in tumour growth by allowing the escape of 
tumours from the host immune system.111 The expression of VEGFA 
and VEGFR2 mRNA is upregulated in most human tumours, correlat-
ing with tumour recurrence, metastasis and poor prognosis.94 Though 
VEGFR1 acts as a decoy receptor most of the time, it can also be ex-
pressed on cancer cells, where it exerts a role in tumour cell survival 

and growth. Furthermore, the signalling triggered by VEGFR1 can 
induce the formation of matrix metalloproteinase- 9 and facilitate tu-
mour metastases through recruiting monocytes and macrophages.112 
Besides, VEGFR- 3 signalling also deserves attention. Malignant cells 
can escape from their resident tumour and traffic along the lymphatic 
tracts to the lymph nodes. After entering into the circulation, they can 
form a malignant mass on other sites in the body.113

F I G U R E  2   The promotion, composition and intracellular activation of the VEGF- VEGFR signalling pathway. A, Hypoxia promotes VEGF 
production. B, Different mammalian VEGFs bind to the three VEGFRs fixedly. C, Binding of VEGFA stimulates VEGFR2 dimerization, 
resulting in endothelial cellular survival, proliferation, permeability and migration mainly through phosphorylation sites Y1175, Y951 and 
Y1214. (see the manuscript for more details) (Created with BioRender.com)
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3.6 | Targeting VEGF- VEGFR signalling in cancer

In 1993, the finding that a monoclonal antibody can target and neutral-
ize VEGFA and inhibit tumour growth in the xenograft model led to the 
translational possibility for targeting VEGF- VEGFR signalling.114 These 
agents can be divided into two broad classes: agents targeting the 
VEGF ligand and agents designed to target the cell surface receptor.115

As bevacizumab (Avastin) was demonstrated to improve the re-
sponse rate and survival of patients with CRC combined with chemo-
therapy, it became the first approved anti- VEGF monoclonal antibody 
by the FDA in 2004.116	Since	then,	bevacizumab,	in	combination	with	
standard treatments, has gained more and more indications.117- 119

Many small- molecule inhibitors of the VEGFRs have been devel-
oped	to	target	the	ATP-	binding	site	of	the	RTKs,	resulting	in	the	block-
ade of downstream intracellular signalling pathways. Monotherapy 
with	 the	 VEGFR	 TKIs	 has	 mainly	 proved	 efficacious	 in	 metastatic	
renal cell carcinoma (RCC), advanced HCC and thyroid cancer.120- 122

Besides,	 a	 soluble	 VEGF	 decoy	 receptor	 (Aflibercept,	 Zaltrap)	
neutralizing VEGFA, VEGFB and PLGF was approved in 2012 by the 
FDA to treat metastatic CRC.123 Besides, ramucirumab (Cyramza), 
a fully human monoclonal antibody that inhibits VEGFR2, has been 
approved for use in various solid tumours.124

The treatment with those anti- angiogenic drugs has shown 
benefit in some patients with advanced cancers, but more drugs 
lead only to mild clinical benefits. The primary or acquired resis-
tance mediated by both tumour cells and stromal cells may ex-
plain the minimal benefits.9 The resistant mechanisms derived 
from anti- angiogenic drugs are different from the inhibitors of 
well-	defined	oncogenic	pathways.	So	far,	there	is	no	definitive	ev-
idence of pre- existing or acquired mutations in VEGFA or its sig-
nalling pathway.125	Upregulation	of	alternative	angiogenic	factors,	
including FGF, plays a vital role in the induction of resistance to 
VEGF/VEGFR inhibitors.126

4  | TARGETING FGF-  FGFR AND 
VEGF- VEGFR SIGNALLING IN C ANCER

4.1 | Combination rationale

The prominent roles of the FGF- FGFR and VEGF- VEGFR signalling 
in tumour cells and angiogenesis have been described in detail ear-
lier in this article. Except for those, other mechanisms, especially 
combined or interactive mechanisms, deserve further exploration.

As mentioned above, FGF- FGFR and VEGF- VEGFR signalling 
pathways can promote angiogenesis. Interestingly, both FGF and 
VEGF	can	be	stored	on	the	ECM-	associated	HSPGs,	and	studies	have	
shown that these two pathways have synergistic effects as induc-
ers of angiogenesis.127 Researchers have found the combination of 
FGF- 1 and VEGF induced a more significant angiogenic effect than 
the additive effects of FGF- 1 or VEGF alone in vitro quantitative 
fibrin- based 3- dimensional angiogenesis system.128 Besides, FGFR 
regulated	the	secretion	of	VEGF	in	a	MAPK-	dependent	manner,	and	

VEGF, in turn, upregulates the expression of FGF. FGF can also induce 
the	VEGFR2	expression	in	an	ERK1/2-	dependent	pathway,	and	the	
expression of VEGFR2 rapidly declines without this interaction.129 
What’	 more,	 neutralizing	 the	 VEGF	 antibody	 reduced	 FGF-	driven	
angiogenesis, implying that VEGF is a crucial mediator that existed 
downstream of FGF.127 It is not surprising that targeting both VEGFR 
and FGFR resulted in synergistic anti- angiogenic effects in vivo. A 
similar synergism is found in lymphangiogenesis, and inhibition of it 
by dual FGFR/VEGFR inhibitor could prevent metastasis easier.130

In addition, upregulation of FGF expression, expressed by peri-
cytes, has been described as a significant mechanism in resistance 
to anti- VEGF/VEGFR therapy.131 In patients with metastatic RCC 
who progressed after or were intolerant to sorafenib or sunitinib, 
dual FGFR and VEGFR inhibitors, including anlotinib, dovitinib and 
lenvatinib with promising results in phase I or II clinical trials bring 
them another chance to overcome resistance.132- 134 Lenvatinib and 
nintedanib also offer opportunities for patients with HCC who pro-
gressed on sorafenib treatment.135,136

The roles of VEGF- VEGFR signalling in suppressing tumour im-
munity have been discussed above. Coincidentally, FGF- FGFR sig-
nalling has similar effects on immune evasion. FGF2 and activation 
of FGFR1 regulate immunity in the tumour microenvironment by 
affecting macrophage programming.137 VEGF/VEGFR, FGF/FGFR 
and FGFR/VEGFR inhibitors can invert the TME from immunolog-
ically ‘cold’ tumours into ‘hot’ tumours through immune- supportive 
effects by decreasing immunosuppressive cells and enhancing infil-
tration of mature dendritic cells and cytotoxic T lymphocytes.138-	140

The FGFR/VEGFR inhibitors are also reported to arrest the cell 
cycle in the G0/G1 phase and cause tumour cell apoptosis.141 In 
general, the dual blockade of FGF- FGFR and VEGF- VEGFR signal-
ling cascade is reasonable due to the mechanisms mentioned above 
(Figure	 3).	 Small-	molecule	 FGFR/VEGFR	 inhibitors	 are	 preferable	
because of convenience and economy and are well studied.

4.2 | Small- molecule FGFR/VEGFR inhibitors

The small molecular drugs that inhibit FGFR and VEGFR are divided into 
selective	and	non-	selective	FGFR/VEGFR	TKIs	according	to	whether	
the value of IC50 of inhibitory activity to other kinases is <10 nM.5

4.3 | Non- selective FGFR/VEGFR TKIs

The	values	of	IC50	and	critical	clinical	trials	of	multi-	TKIs	are	listed	
in Tables 2 and 3, respectively. The details of these drugs will be 
discussed below.

4.3.1 | Anlotinib

Anlotinib	(AL3818)	is	a	multi-	TKI	that	is	designed	to	inhibit	VEGFR1-	3,	
FGFR1- 4, PDGFRα/β,	c-	Kit	and	Ret	and	has	been	approved	by	the	
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CFDA	as	a	third-	line	or	beyond	therapy	for	stage	IV	NSCLC	in	2018.142 
In phase III ALTER- 0303 trial, anlotinib significantly improved me-
dian	OS	from	6.3	months	in	the	placebo	group	to	9.6	months	in	the	
anlotinib	group	(HR,	0.68;	95%CI,	0.54	to	0.87;	P =.002) and median 
PFS	from	1.6	months	to	5.4	months	(HR,0.25;	95%CI,	0.19	to	0.31;	
P =.001).143 Besides, anlotinib also showed promising efficacy in pa-
tients with metastatic RCC, advanced or metastatic medullary thy-
roid	carcinoma	and	refractory	metastatic	soft-	tissue	sarcoma	(STS)	
progressed after anthracycline- based chemotherapy, naïve from 

angiogenesis inhibitor.132,144,145 Interestingly, the incidence of grade 
3	or	higher	side	effects	is	much	lower	than	that	of	other	TKIs.142

4.3.2 | Derazantinib

Derazantinib	(ARQ	087)	is	an	ATP-	competitive	inhibitor	of	FGFR1-	3	
and also shows similar activity against FGFR4 and VEGFR2 with 
the values of IC50 around 30 nM.93 It inhibits the growth of 

F I G U R E  3   Antitumour mechanisms of FGFR/VEGFR inhibitors. (Created with BioRender.com)
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FGFR- addicted cancer cell lines and tumours in preclinical models.146 
Two phase I clinical trials which have been published demonstrated 
the safety and efficacy of derazantinib in FGFR2 fusion- positive in-
trahepatic cholangiocarcinoma and urothelial cancer with FGFR2 
and FGF19 amplification.147,148

4.3.3 | Dovitinib

Dovitinib	 (TKI258)	 is	 a	 non-	selective	 and	ATP-	competitive	TKI	 that	
targets VEGFR1- 3, FGFR1- 3 and PDGFRβ in the nM range of con-
centration.149 Dovitinib has made attempts to target the FGF- FGFR 
pathway. In preclinical studies, dovitinib showed the ability to inhibit 
FGFR1-  and FGFR2- amplified, but not FGFR- normal breast cancer 
cell lines in vitro and inhibit tumour growth in FGFR1- amplified breast 
cancer in vivo.150 In phase II clinical trials, dovitinib prolonged DCR 
and	median	PFS	from	3%	and	5.5	months	to	25%	and	10.9	months	
in patients with FGFR1- amplified/HR- positive breast cancer, respec-
tively.151 However, dovitinib did not show clinical benefit in endome-
trial cancer with FGFR2 mutations, glioblastoma with FGFR3- TACC3 
gene fusion and urothelial carcinoma with FGFR3 mutations or over-
expression.63,152 Besides, dovitinib failed to show superiority over 
sorafenib in a phase III study of third- line therapy for metastatic RCC 
after failure of anti- angiogenic therapies and a phase II study of front-
line therapy for advanced HCC.153,154

4.3.4 | E7090

E7090 is an orally non- selective inhibitor of FGFR1- 3 and has a 
slightly lower inhibitory activity on VEGFR2.155 Phase I clinical trial 
has demonstrated its safety, but more clinical studies are needed to 
prove its efficacy in FGFR- altered tumours.156

4.3.5 | Lenvatinib

Lenvatinib	 (E7080)	 is	 an	 oral	 multikinase	 inhibitor	 that	 targets	
VEGFR1- 3, FGFR1- 4, RET, c- kit and PDGFRa, obtained consider-
able success in clinical trials of different cancer types, including 
NSCLC,	thyroid	cancer,	gastric	cancer,	HCC,	RCC	and	endometrial	
cancer.134,157- 161 Remarkably, lenvatinib has been approved in dif-
ferentiated thyroid cancer (DTC), RCC and HCC as a single agent 
or in combination.134,157,160 Lenvatinib broke the situation that 
sorafenib was the only targeted therapy for radioiodine refrac-
tory differentiated thyroid cancer and unresectable HCC in 2015 
and	 2018,	 respectively.157,160	 The	 median	 PFS	 of	 DTC	 prolonged	
from	3.6	months	 in	 the	placebo	group	 to	18.3	months	 in	 the	 len-
vatinib group (HR 0.21; 99% CI: 0.14 to 0.31; P <.001) in phase III 
SELECT	trial.157 In addition, phase III REFLECT trial demonstrated 
that	median	OS	with	 lenvatinib	was	13.6	months	 vs	 12.3	months	
with	 sorafenib	 (HR	 0.92;	 95%	 CI:	 0.79	 to	 1.06)	 and	 median	 PFS	
7.3 months vs 3.6 months (HR 0.64; 95%CI: 0.55 to 0.75; P <.001) 

in unresectable HCC.160	 What’	 more,	 lenvatinib	 plus	 everolimus	
also showed promising results in a phase II trial, leading to the FDA 
approval of this combination in advanced RCC following one prior 
anti- angiogenic therapy.134 Interestingly, many efforts have been 
made to find the relationship between the outcome and biomarkers 
based on the REFLECT trial. For example, baseline Ang2, upregu-
lated FGF23 and treatment- emergent hypertension correlated with 
improved	PFS,	and	diarrhoea	were	significantly	associated	with	OS	
in lenvatinib- treated patients.160 In other words, the factors men-
tioned above may predict the efficacy of lenvatinib. Nowadays, 
as lenvatinib was reported to decrease tumour- associated mac-
rophages	 and	 increase	 infiltration	 of	 CD8+ T cells, many clinical 
trials combining the immune checkpoint inhibitors with lenvatinib 
are ongoing, and some of them have already got positive results 
(NCT03609359, NCT02501096).161,162

4.3.6 | Lucitanib

Lucitanib	 (E3810	 or	 AL3810)	 is	 a	 reversible,	 ATP-	competitive	 TKI	
that targets FGFR1- 2 and VEGFR1- 3 in the nM range and exerts 
antitumour activity in multiple preclinical models, including colon, 
ovarian, renal and thyroid carcinoma and breast cancer.40,163,164 
Soria	JC	demonstrated	the	clinical	benefit	of	lucitanib	used	in	both	
FGF- aberrant and angiogenesis- sensitive populations, with 50% (six 
of 12) achieved partial response (PR) in FGF- aberrant breast can-
cer patients.165	 Subsequently,	 the	 phase	 II	 FINESSE	 study	 found	
the ORRs in lucitanib- treated HR+/HER2-  metastatic breast cancer 
with FGFR1 amplification or 11q13 amplification or no amplification 
were 19%, 0%, and 15%, respectively.39	What	 is	more,	the	follow-
ing analyses showed that the ORR in patients with high- level FGFR1 
amplification was higher in patients without high- level FGFR1 ampli-
fication (22% vs 9%), indicating that FGFR1 may be a biomarker for 
FGFR inhibitor therapy.39

4.3.7 | Nintedanib

Nintedanib	(BIBF1120)	is	a	non-	selective	FGFR	TKI	that	competitively	
and reversibly blocks the ATP- binding pocket of FGFR1- 3, VEGFR1- 3 
and PDGFR.166 This inhibitor has obtained promising results on dif-
ferent cancers in preclinical studies as a single agent or combination 
with standard chemotherapies, including lung, prostate, colorectal, 
pancreatic,	ovarian	cancer	and	STS.166-	168 Based on these results, nin-
tedanib has been or is being tried in various tumour types in clinical 
trials. Most phase I studies have shown nintedanib to be safe and ef-
ficacious at 200mg bid,42,136,169,170 but it frequently showed limited 
efficacy in most phase II and III studies.171- 175 Fortunately, nintedanib 
was approved by EMA for its second- line use in combination with doc-
etaxel in patients with lung adenocarcinoma based on the results of 
the	phase	III	LUME-	Lung	1	study	in	November	2014.176 To get better 
results, molecular biomarkers concerning FGFR1, FGF23 and VEGFR2 
deserve to be considered.177
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4.3.8 | Ponatinib

Ponatinib	(AP24534)	is	a	multi-	TKI	targeting	SRC,	ABL,	FGFR,	PDGFR	
and VEGFR, while the inhibition of BCR- ABL is the primary clinical 
use.178 The FDA has approved it to treat patients with heavily pre- 
treated CML and Philadelphia chromosome- positive acute lympho-
blastic leukaemia based on the encouraging outcomes of phase II 
PACE clinical trial.179,180 However, the subsequent clinical trials 
were blocked because of its severe vascular toxicity.181 Currently, 
researchers are trying to discover novel FGFRs inhibitors according 
to the structure of ponatinib, which have already displayed signifi-
cant	antitumour	activities	in	FGFR1-	amplificated	H1581	and	FGFR2-	
amplificated	SNU-	16	xenograft	models.178

In total, some non- selective FGFR/VEGFR inhibitors have al-
ready got great success in the clinic by simultaneously blocking 
multiple	TKs	 and	 concomitantly	 inhibiting	 redundant	 or	 bypassing	
pathways. Because of the multiple targets of non- selective FGFR/
VEGFR inhibitors, their antitumour effects are not limited to FGFR- 
addicted tumours. On the other hand, they also bring unexpected 
side effects and weaken the antitumour effects only by inhibiting 
FGFR and VEGFR.

4.4 | Selective FGFR/VEGFR TKIs

Nowadays, dual inhibitors of FGFR and VEGFR have been devel-
oped. In addition to the basic information listed in Tables 2 and 3, 
distinct features of these drugs are discussed as follows.

4.5 | AZD4547

AZD4547	is	a	selective	and	reversible	TKI	of	FGFR1-	3	and	also	shows	
activity against VEGFR2 at nM concentration with IC50 equal to 
24 nM.182 Its antitumour effect has been confirmed in some preclini-
cal tumour models, including oesophageal squamous, non- small- cell 
lung, breast, endometrial and colorectal tumours characterized by 
different kinds of FGFR alterations.182 Recently, clinical trials showed 
that	AZD4547	was	well	 tolerated.	However,	minimal	activities	were	
achieved against tumours harbouring actionable aberration(s) in 
FGFR1-	3,	 including	FGFR1-	amplified	SqCLC	and	gastric	adenocarci-
noma with FGFR2 polysomy or gene amplification.183,184 Two reasons 
may explain this phenomenon, one is considerable intratumour het-
erogeneity existed in gene amplification, and the other is gene ampli-
fication cannot stand for gene expression.185 Taken together, the need 
for alternative predictive biomarkers is extremely urgent.

4.6 | ASP5878

ASP5878	 is	 a	 selective	 pan-	FGFR	 inhibitor	 that	 exerts	 its	 an-
titumour activity towards tumours with FGFR genetic altera-
tions.186	 Researchers	 have	 demonstrated	 the	 role	 of	 ASP5878	 in	

FGFR3- dependent urothelial cancer and FGF- 19- expressing HCC in 
the xenograft mouse model.186,187	Clinical	trials	concerning	ASP5878	
are	limited,	and	only	one	phase	I	clinical	trial	showed	that	ASP5878	
was well tolerated.188

4.6.1 | Brivanib

Brivanib	 (BMS-	540215)	 is	a	selective	dual	 inhibitor	against	VEGFR	
and FGFR, with its main clinical trials focused on HCC.189 Brivanib 
successively received positive results in second- line and first- line 
therapy for advanced HCC in phase II clinical trials,190,191 while in 
phase III clinical trials, brivanib failed without exception.192- 195 In 
second- line treatment for patients who were intolerant to sorafenib 
or for whom sorafenib failed, brivanib did not significantly im-
prove	OS	compared	to	placebo	with	median	OS	9.4	months	 in	bri-
vanib	 group	 vs	 8.2	 months	 in	 placebo	 (HR,0.89;95.8%	 CI,0.69	 to	
1.15; P =.3307).194	It	also	did	not	meet	the	primary	endpoint	of	OS	
non-	inferiority	for	brivanib	vs	sorafenib	(median	OS:	9.5	months	vs	
9.9	months	HR,	1.06;	95.8%	CI,	0.93	to	1.22)	in	phase	III	BRISK-	FL	
study.195 In addition, when brivanib was used as adjuvant therapy to 
transarterial chemoembolization in unresectable intermediate- stage 
HCC,	 it	 still	did	not	 improve	OS.193	 It	also	 failed	 to	 improve	OS	 in	
wild-	type	K-	RAS	CRC	in	combination	with	cetuximab.192

4.6.2 | Erdafitinib

Erdafitinib	(JNJ-	42756493)	is	a	highly	selective	and	reversible	inhibi-
tor of FGFR1- 4 and can inhibit VEGFR2 with IC50 equal to 37 nM.196 
In phase I clinical trials, it showed clinical benefits in glioblastoma, 
cholangiocarcinoma, urothelial and endometrial cancer with FGFR 
mutations or fusions, while ORRs in other tumour types were below 
10%.6,197,198 In April 2019, erdafitinib received accelerated approval 
by the FDA to treat patients with FGFR3 mutated or FGFR2/3 
fusion- positive advanced or metastatic urothelial carcinoma after at 
least one prior platinum- based regimen. The ORR reached 40%, and 
a	median	PFS	was	5.5	months.	At	the	same	time,	treatment-	related	
grade 3 or higher adverse events also happened in nearly half the 
patients, including hyponatremia, stomatitis and asthenia in phase 
II BLC2001 clinical trial.6 Erdafitinib also received three black- box 
warnings	by	Janssen	pharmaceutical	company	for	the	risks	of	ocular	
disorders, hyperphosphataemia and embryo- foetal toxicity.199

4.6.3 | Ly2874455

Ly2874455	is	a	selective	pan-	FGFR	inhibitor,	with	similar	values	of	
IC50 in inhibiting FGFR1- 4, which also has inhibitory activity towards 
VEGFR2 with IC50 equal to 7 nM.200 Interestingly, as the inhibition 
of	FGF-	induced	Erk	phosphorylation	by	Ly2874455	 is	much	easier	
than	that	of	VEGF-	mediated	target	signalling	in	vivo,	LY2874455	can	
avoid VEGFR2- mediated hypertension at efficacious doses.201	Until	
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now, a phase I clinical trial has published its results demonstrating 
the excellent tolerability and activity in patients with advanced can-
cer,	especially	for	patients	with	gastric	cancer	and	NSCLC.201

In addition, some drugs are in the preclinical development stage. 
For example, ODM- 203 is a selective and equipotent inhibitor of 
FGFR and VEGFR, which exhibits its equal inhibitory activity towards 
FGFR and VEGFR families in biochemical assays, cellular assays and 
in vivo.141	SOMCL-	286	starting	from	the	structure	of	lucitanib	is	an-
other FGFR and VEGR2 dual inhibitor and showed significant anti-
tumour	effects	in	SNU-	16	xenograft	model	harbouring	aberration	in	
FGFR and VEGFR2.202

Overall, only a few selective FGFR/VEGFR inhibitors have en-
tered into phase III clinical trials and subsequently got approved. The 
clinical effects of these drugs vary with different types of FGFR ge-
netic alterations. The effect of drugs targeting FGFR gene fusion and 
mutations seems to be better than that of gene amplification, prob-
ably mainly because gene amplification does not imply high protein 
expression. Biomarkers predicting the efficacy of selective FGFR/
VEGFR inhibitors deserve explored.

4.6.4 | Conclusion	and	future	perspective

FGF- FGFR signalling can be abnormally triggered by FGF and FGFR 
alterations.5 Besides, both FGF- FGFR and VEGF- VEGFR signal-
ling pathways can promote angiogenesis and induce immune eva-
sion.127,140 By inhibiting these two signalling cascades, we can both 
target tumour cells and TME. FGFR/VEGFR dual inhibitors have 
already received encouraging results in clinical trials, and some of 
them have already received approval for certain cancers, especially 
for non- selective FGFR/VEGFR inhibitors. In order to avoid unex-
pected side effects of non- selective FGFR/VEGFR inhibitors and 
optimize the effect of selective FGFR/VEGFR inhibitors, suitable 
biomarkers need to be developed to predict the efficacy of selective 
FGFR/VEGFR inhibitors.203,204

Besides, FGF and VEGF induce immunosuppressive microenvi-
ronment by inhibiting immune effector cells and recruiting immuno-
suppressive cells, and FGFR/VEGFR dual inhibitors can revert the 
TME from immunologically ‘cold’ tumours into ‘hot’ tumours.205 At 
the same time, immune checkpoint inhibitors (ICIs) have been ap-
proved in many types of tumours, working through restoring antitu-
mour T- cell functions.206 However, lacking pre- existing immune cells 
in TME leads to inadequate response to monotherapy with ICIs. The 
combination of lenvatinib and pembrolizumab has received acceler-
ated approval in patients with advanced endometrial cancer and is 
undergoing phase III clinical trial in HCC and RCC (NCT03713593, 
NCT02811861).161,207,208 Combining FGFR/VEGFR dual inhibitors 
with ICIs is a promising treatment in the future.
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