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Maternal microchimerism, which
occurs naturally during gestation
in hemochorial placental mammals upon
transplacental migration of maternal cells
into the fetus, is suggested to signifi-
cantly influence the fetal immune system.
In our previous publication, we explored
the sensitivity of quantitative polymerase
chain reaction and flow cytometry to
detect cellular microchimerism. With
that purpose, we created mixed cells sus-
pensions iz vitro containing reciprocal
frequencies of wild type cells and cells
positive for enhanced green fluorescent
protein or CD45.1%, respectively. Here,
we now introduce the H-2 complex,
which defines the major histocompatibil-
ity complex in mice and is homologous
to HLA in human, as an additional target
to detect maternal microchimerism
among fetal haploidentical cells. We
envision that this advanced approach to
detect maternal microchimeric cells by
flow cytometry facilitates the pursuit of
phenotypic, gene expression and func-
tional analysis of microchimeric cells in
future studies.

The presence of a small population of
cells in a genetically different individual is
referred to as microchimerism (MC). In
humans, mice, and other eutherian mam-
mals, MC occurs naturally during gesta-
tion, by cell trafficking from the fetus to
the mother (fetal MC) and from the
mother to the fetus (maternal MC).'?
Despite the low frequencies of maternal
and fetal MC cells, experimental evidence
suggests that these forms of MC signifi-
cantly influence the host’'s immune
responses.” For example, fetal MC cells
may affect the course of disease in women
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suffering from multiple sclerosis” or rheu-
matoid arthritis.”” In turn, maternal MC
plays a role in the generation of regulatory
T (Treg) cells,"®? tolerance to allog-

8,10,11
rafts,

and even in susceptibility to
asthma'? in the offspring,

A major technical challenge faced in
research endeavors aiming to understand
the functional role of MC in various set-
tings is the difficulty to distinctly identify
chimeric cells due to their generally
extremely low frequencies. Mouse models
allow to overcome these limitations, since
transgenic or congenic markers can be
employed for MC identification. To date,
quantitative polymerase chain reaction
(qPCR)*>" and flow cytometry™"’!
ing such transgenic or congenic markers
enable to effectively identify MC cells in
different settings. However, a thorough
validation of the sensitivity of these

tar gc t-

approaches was long elusive.

In our recent publication, we explored
the sensitivity of 2 methods, qPCR and
flow cytometry, to detect cellular MC.'
We generated MC cell suspensions iz vitro
by combining murine wild-type (wt) and
genetically modified cells expressing either
the enhanced green fluorescent protein
(eGFP) or the congenic leukocyte cell sur-
face receptor CD45.1 in various ratios.
The lowest detection limit of MC cells by
flow cytometry was 0.05% for eGFP and
0.2% for CD45.1, and the detection limit
of eGFP by qPCR was 0.2%. The sensitiv-
ity rates in relation to the transgenes and
tissues in which the techniques were
applied and related sensitivity limitations
are thoroughly discussed in our'® and
others publications."”” While both PCR
and flow cytometry proved to reliably
detect low numbers of chimeric cells with
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high sensitivity, our observations sug-
gested the presence of potentially false
positive cells among the MC population.
This could result from intrinsic limita-
tions of the flow cytometry technique
such as cell auto-fluorescence, unspecific
antibody binding or high spectral overlap
in the fluorescent signal emission, as dis-
cussed in our previous publication.'*

In the present work we aimed to
address these technical limitations by add-
ing a second independent marker to phe-
notypically identify naturally occurring
maternal MC haematopoietic cells among
haploidentical fetal cells in mice.

Similar to our previous approach, we
used the model of CD45.2% C57Bl/6
mated to CD45.17 BALB/c
males.'* Here, we took advantage of the

females

natural polymorphism between mouse
inbred strains with regard to their H-2D
gene, one of the subclasses comprised in
the major histocompatibility complex
(MHC) class I. This is H-2D" in the
females of the C57Bl/6 strain and H-2D
in Balb/c males. Figure 1 illustrates the
mating combination we used, including
the parental and fetal genotypes.

Maternal cells were harvested from
uterus-draining lymph nodes or bone
marrow (BM) on gestational day (GD)
18.5, fetal cells were obtained from

thymus and BM of the respective

offspring. Paternal cells were harvested
from BM of adult male mice and served as
an aid for the gating strategies in the sub-
sequent flow cytometric analyses. Cells
were stained according to our standard
protocol* and frequencies were acquired
using a BD LSRFortessa analyzer. Gate
thresholds

‘fluorescence minus one’ (FMO) controls

were set following  the
for each fluorescent dye one by one.
Figure 2 depicts the gating strategy used
to identify maternal cells among fetal leu-
kocytes. This gating strategy allows the
identification of maternal CD45.21H-
2D" (Fig. 2A), paternal CD45.1"H-2D¢
(Fig. 2B), feal CD45.271TH-2D"
(Fig. 2C) haematopoietic cells as well as
CD452"H-2D" MC  cells
among  the  haploidentical fetal
CD45.27 1 H-2D" cells (Fig. 2C). To
note, while the H-2 complex is expressed
in virtually all leukocytes obtained from

maternal

adult organisms (Fig. 3A and B), a gradi-
ent from H-2D"¢ high expression over
dim expression to negativity was observed
in leukocytes obtained from fetal BM
(Fi%. 3C). Thus, the high frequency of H-
2D" negative fetal cells may further
enhance the scrutiny of detecting maternal
H-2D" single positive cells among fetal
BM-derived cells.

As shown in Table 1, the use of H-2D
as a second marker for detecting MC cells

C57BI/6

H-2D%®
CD45.2**

BALB/c

/5 \d

H-2D4/d
CD45.1**

CDA45.2%1" H-2D%4

H-2Db/®
CD45.2++

CD45.2+1+ H-2D,

Figure 1. Mating combination to detect maternal cells in fetal organs. Wt C57BI/6 females express-
ing CD45.2 and major histocompatibility complex (MHC) class | haplotype H-2D° were mated to
MHC | H-2D%expressing BALB/c males congenic for CD45 (CD45.1). This mating combination allows
the identification of maternal cells positive for CD45.2 and H-2D° among fetal cells expressing
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improved the specificity of the detection
as it permitted to exclude false positive
CD45.2" cells among the maternal MC
population. Interestingly, the purity of
maternal cells among CD45.27 cells was
higher in cells derived from fetal BM com-
pared to thymus-derived cells (Fig. 2C;
Table 1). The reasons for this organ
dependent cell differences are unknown.
We hypothesize that they could result
from the different tissue processing meth-
ods applied in solid and non-solid tissues.
Here, the thymus, as a solid tissue, was
processed mechanically to prepare the sin-
gle cell suspensions. This constitutes a
challenge for cell homeostasis which could
enhance the unspecific antibody binding,
when compared to non-solid BM isolated
simply by flushing the bone cavity. Fur-
ther, differences in the phenotype and
consequently in the gene expression of the
maternal MC cells localized in each organ
could also account for the differences in
detection efficiencies. Indeed, we were
able to identify different populations of
haematopoietic cells among CD45.2" H-
2DP MC cells, including stem cells and
terminally differentiated immune cells
(data not shown), suggesting that MC cell
phenotype does not influence the detec-
tion significantly in the present set up.
Similarly, we could demonstrate that vir-
tually all the haemaropoietic CD45™ cells
in the maternal samples express H-2D
(Fig. 2A; Table 1), suggesting that these 2
markers can be efficiently used to detect
maternal cells among haploidentical fetal
cells. In contrast, we envision these
markers not to be efficient to detect fetal
MC cells among maternal cells, as fetal
CD45 and H-2D gene expression follows
a maturation pattern (Fig. 3C), which
could signify that more immature CD45
and H-2D negative fetal cells could not be
distinguished among maternal cells, lead-
ing to false negative results.

Fetal BM not only revealed a more pre-
cise identification of maternal MC but
also showed higher frequencies of MC
cells when compared to fetal thymus (Fig
2C; Table 1). This observation is in line
with earlier reports, showing that the
major haematopoietic organs in prenatal
immune development, liver and BM, are
concomitantly prominent sites for MC
cell localization during fetal life.>'® These
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different frequencies could be explained
by an enhanced migration or proliferation
of maternal MC cells in the fetal BM,
compared to fetal thymus. However, dif-
ferences in blood flow could be also a
potential explanation for the differences in
MC cell frequencies between tissues, as no
perfusion could be conducted in these
fetal organs and therefore the maternal
MC cells could be both tissue resident and
blood cells. These hypotheses shall be
tested in future endeavors employing this
experimental set up to analyze for example
migration or proliferation markers by flow
cytometry or PCR after cell sorting to
enrich MC cells.

In summary, we here introduce H-2D
gene expression as an additional marker
that significantly improves the specificity
of MC cell detection by minimizing the
false positive results. We could demon-
strate that this technique is suitable to reli-
ably detect and quantify low frequencies
of maternal MC cells among fetal haploi-
dentical cells. H-2D could also be used to
further verify the maternal origin of
microchimeric cells by qPCR after cell
sorting, as H-2D? can be specifically
detected among other H-2D subclasses.'”
In our experimental setting, a positive H-
2D signal among the sorted H-2D” MC
cells could only derive from contaminat-
ing fetal H-2D"? cells. However, this
approach would be technically challenging
to verify the purity of MC cells by PCR
determination of the CD45 haplotype.
CD45.2 and CD45.1 genes differ in only
12 nucleotides,'” which makes it very dif-
ficult to distinguish them by genomic
PCR. Previously, maternal MC had also
been studied in mice by differentiating
MC and fetal cells by transgenic markers,
such as eGFP,'>'® luciferase'® or neoR,?°
upon adoptive transfer of labeled, trans-
genic leukocytes into the mother,”" by
using antigen-specific T cell mouse mod-
els,””** or adoptively transferring blasto-
cysts from normal matings into LacZ™*
transgene-tagged mothers.”* All of these
approaches can be considered as interven-
tions that may have immunogenic proper-
ties. In contrast, this experimental setup
takes advantage of the natural genomic
variation between mouse strains to detect
MC cells, minimizing the interventions
during pregnancy and prenatal life which
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Figure 2. Approach used for detection of maternal MC cells among fetal cells by flow cytometry.
Living cells were detected in lymph nodes from C57BI/6 females (A), bone marrow of BALB/c males
(B) and in fetal thymus and bone marrow in offspring of BALB/c-mated C57BI/6 females (C), based
on their 7AAD negativity (not shown) and gated for CD45 positivity (left panel). Within the respec-

(right panel). Maternal MC was identified based on the frequency of CD45.27H-2D® cells among
CD45.271H-2D fetal cells (stippled squares in C, right panel).

of cells expressing H-2DP or H-2D¢ was detected

could also play a role on microchimerism.
Here, the use of an allogeneic mating
combination results in fetuses that are
semiallogeneic to the mother, which
resembles human pregnancies. This is of

note since maternal MC has been shown
to differ between syngeneic, allogenic and
outbred offspring.]é‘24 MC is higher in
syngeneic fetuses, indicating that the
capacity of microchimeric cells to migrate

Table 1. Frequencies of CD45.2* and CD45.2*H-2DP in 10° living cells per organ

CD45.2" in 10°li

Cells ving cells CD45.2" H-2D" in 10° living cells
organ (n) (mean + SEM) (mean + SEM)

fetal thymus (4) 216 £ 76 27 +12

fetal bone marrow (4) 9102 + 2250 5192 + 1046

maternal lymph node (1) 984572 983321
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Figure 3. H-2D expression on adult and fetal bone marrow cells. Representative examples for
frequencies of respective H-2D-positive cells among maternal (H-2DP, marked by the solid gate in
(A), paternal (H-2D%, marked by the solid gate in (B) and fetal (H-2D"¢, marked by the solid gate in
(C) CD45™ BM-derived leukocytes. Fetal cells were obtained from offspring according to the mating
combination shown in Figure 1. Note that a gradient ranging from H-2D" high expression (solid
square in (C) to H-2DY¢ dim expression (marked by stippled gate) and H-2D" negativity (marked
by dotted gate) was observed among the fetal leukocytes.

into or reside in fetal tissue is dependent

on

inherited antigen differences. Further,

opposed to experimental setups using lit-

ter

homozygote mutant mice,

comprised of wt, heterozygote and
131620 5o

set-up we developed, all fetuses are geneti-
cally identical. Hence, no genotyping of

the

offspring is required. This saves a con-

siderable amount of resources and allows
experimenting with freshly isolated MC
cells, which may be critical to study MC

cell function. This—along with the great
potential of flow cytometry to identify
various markers on a single cell basis and

to separate cells according to their pheno-

typ

e - provides significant progress in the

phenotypic, gene expression and func-

tional analysis of maternal MC cells, i.e.

upon cell sorting.
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