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Abstract

Site-specific recombinases (SSRs) are valuable tools for genetic engineering due to their
ability to manipulate DNA in a highly specific manner. Engineered zinc-finger and TAL
effector recombinases, in particular, are two classes of SSRs composed of custom-
designed DNA-binding domains fused to a catalytic domain derived from the resolvase/
invertase family of serine recombinases. While TAL effector and zinc-finger proteins can
be assembled to recognize a wide range of possible DNA sequences, recombinase cata-
lytic specificity has been constrained by inherent base requirements present within each
enzyme. In order to further expand the targeted recombinase repertoire, we used a genetic
screen to isolate enhanced mutants of the Bin and Tn21 recombinases that recognize tar-
get sites outside the scope of other engineered recombinases. We determined the specific
base requirements for recombination by these enzymes and demonstrate their potential
for genome engineering by selecting for variants capable of specifically recombining target
sites present in the human CCRS5 gene and the AAVS1 safe harbor locus. Taken together,
these findings demonstrate that complementing functional characterization with protein
engineering is a potentially powerful approach for generating recombinases with expanded
targeting capabilities.

Introduction

Genome engineering has emerged as a powerful approach for introducing custom alterations
within biological systems [1]. Clinical applications of genome engineering, for instance, have
the unique potential to treat the underlying causes of many diseases, ranging from monogenic
disorders to the genetically complicated states associated with cancer. Recent advances in the
field have focused on the development and application of site-specific nucleases. In particular,
zinc-finger nucleases (ZFNs) [2-5], TAL effector nucleases (TALENS) [6-8] and CRISPR/Cas9
[9-12] have surfaced as tools capable of modifying both human cells and model organisms
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with high efficiency and flexibility. These enzymes induce targeted DNA double-strand breaks
(DSBs), which stimulate the DNA damage response machinery and lead to the introduction of
small insertions or deletions via non-homologous end joining (NHE]) [13] or integration/cor-
rection by homology-directed repair (HDR) [3-5, 14]. However, despite their broad success,
the utility of nuclease-based technologies is hampered by the formation of DSBs, which can be
toxic to cells and lead to unknown and deleterious mutations at off-target sites [15-18]. Addi-
tionally, high rates of modification via HDR can be difficult to achieve in post-mitotic cell
types. Together, these limitations underscore the need for the development of new technologies
capable of inducing robust and safe genomic modifications.

Site-specific recombinases (SSRs; e.g., Cre and Flp) are a viable alternative to targeted nucle-
ases for many applications of genome engineering [19]. SSRs are specialized enzymes that pro-
mote site-specific DNA rearrangements (i.e., integration, excision or inversion) between
defined DNA segments [20]. SSRs cleave and re-ligate DNA autonomously and thus do not
rely on the DNA repair machinery to introduce genomic modifications. However, because of
their strict recognition capabilities, recombinase-mediated genome engineering has been lim-
ited to cells that contain either pre-introduced target sites or rare pseudo-recombination sites
[21]. To overcome this, numerous protein engineering strategies have been developed to alter
recombinase specificity [22]. Yet despite several successes [23, 24], these approaches have rou-
tinely led to enzymes with relaxed recognition specificities [25, 26], stemming from the fact
that many recombinases display an intricate and overlapping network of catalytic and DNA-
binding interactions.

In contrast to the SSRs described above, the resolvase/invertase family of serine recombi-
nases [27] are modular in both structure and function, allowing the DNA-binding domains of
these enzymes to be replaced without impairing catalytic function [28, 29] (Fig 1). Indeed, pre-
vious studies have shown that customizable Cys,-His, zinc-finger [30-33] and TAL effector
[34, 35] DNA-binding domains, which can be engineered to recognize a wide range of possible
DNA sequences, can be fused to serine recombinase catalytic domains to generate synthetic
enzymes with unique targeting capabilities [29, 36, 37]. In particular, zinc-finger recombinases
(ZFRs) have shown the ability both to excise transgenic elements in a unidirectional manner
[36] and to catalyze highly specific integration into the human genome [38]. We previously
reported that substrate specificity profiling and selection of the recombinase DNA binding arm
region could be used to generate a suite of catalytic domains with defined targeting capabilities
that are capable of modifying user-defined target sites [39, 40]. While this approach was highly
successful in creating recombinase variants with unique properties, conserved base constraints
imposed by the recombinase catalytic domain prevented reprogramming toward all possible
DNA sequences. However, as shown with the Sin and  recombinases [41], the use of catalytic
domains with distinct base requirements offers an approach to circumvent those constraints
and expand the suite of targetable sequences.

We thus set out to further expand the targeted recombinase repertoire by identifying cata-
lytic domains compatible with our chimeric recombinase technology. We searched for enzymes
that are homologous to prototypical serine recombinases, including B [42], Gin[43], Hin [44],
Sin [45], Tn3 [46], and yd [47], but exhibit distinct target site specificity. We hypothesized that
such enzymes would be compatible with designed DNA-binding domains and amenable to
specificity reprogramming. Our search led to the identification of two candidate enzymes, the
Tn21 [48] and Bin [49] recombinases. However, in order to use these enzymes in the context of
ZFRs, we set out to identify mutations that enable unrestricted recombination between mini-
mal recombination sites.

Here we describe the generation of Bin and Tn21 recombinase variants that are capable of
catalyzing unrestricted recombination between minimal crossover sites. We employed a
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Fig 1. Serine recombinase structure. Important regions within each recombinase monomer (red and blue)
are labeled. DNA shown in grey sticks. Native DNA-binding domains can be replaced with customizable zinc-
finger or TAL effector domains to generate chimeric recombinases (PDB ID: 1GDT) [65].

doi:10.1371/journal.pone.0139123.g001

genetic screen to determine the specific base requirements for these recombinases, and show
that saturation mutagenesis and selection can be used to isolate unique variants capable of
recombining target sites derived from the human CCR5 gene and the AAVS1 safe harbor
locus. These results demonstrate that functional characterization and protein engineering can
be used in tandem to generate recombinase variants with expanded targeting capabilities.

Materials and Methods

Plasmid construction

All ZFR target sites used in this study were introduced into the split gene reassembly plasmid
(pBLA) as previously described [40, 50]. Briefly, GFPuv (Clontech), used as a stuffer fragment,
was PCR amplified with the primers GFP-ZFR-Xbal-Fwd and GFP-ZFR-HindIII-Rev and
digested with Xbal and HindIII. PCR products were ligated into the Spel and HindIII restric-
tion sites of pBLA to generate pBLA-ZFR substrates. All primer sequences are provided in
Table A in S1 Document. Correct construction of each plasmid was verified by sequence
analysis.

Recombination assays

The genes encoding the Bin (UniProt ID: P19241) and Tn21 (UniProt ID: P04130) recombi-
nase catalytic domains were synthesized (GeneArt) and fused to the H1 zinc-finger protein by
overlap PCR (Table B in S1 Document), as previously described [51]. PCR products were
digested with SacI and Xbal and ligated into the same restriction sites of pBLA. Ligations were
transformed by electroporation into E. coli TOP10F (Life Technologies). After 1 hr recovery in
Super Optimal Broth with Catabolite suppression (SOC) medium, cells were incubated with 5
mL of Super broth (SB) medium containing 30 pg/mL of chloramphenicol and cultured at
37°C with shaking (250 rpm). At 16 hr, cells were harvested by miniprep (Life Technologies)
and 200 ng of pBLA plasmid was used to transform E. coli TOP10F’ cells. After 1 hr recovery in
SOC, cells were plated on solid lysogeny broth (LB) medium with 30 ug/mL of chlorampheni-
col or 30 pg/mL of chloramphenicol and 100 pg/mL of carbenicillin, an ampicillin analogue.
Recombination frequency was calculated as the number of colonies on chloramphenicol/
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carbenicillin plates divided by the number of colonies on chloramphenicol-only plates. Colony
numbers were measured by automated colony counting using the GelDoc XR Imaging System
(Bio-Rad).

Selections

Bin and Tn21 catalytic domains were randomly mutagenized by error-prone PCR as described
elsewhere [36, 52] and ligated into the SacI and Xbal sites of pBLA for selections. The BinQ
arm region was mutagenized by overlap extension PCR as previously described [40]. Mutations
were introduced into positions 122, 125, 129, 138 and 139 with the degenerate codon NNK (N:
A, T, Cor G; and K: G or T), which encodes all 20 amino acids. PCR products were digested
with SacI and Xbal and ligated into the same restriction sites of pBLA. All library ligations
were ethanol precipitated and used to transform E. coli TOP10F'. Library sizes were routinely
measured to be ~5 x 10°. After 1 h recovery in SOC, cells were incubated in 100 mL of SB
medium containing 30 pg/mL of chloramphenicol and cultured at 37°C with shaking. At 16 hr,
cells were harvested and plasmid DNA was isolated by miniprep, followed by transformation
of E. coli TOP10F' with 3 pg of plasmid DNA. After 1 hr recovery in SOC, cells were incubated
with 100 mL of SB medium containing 30 pg/mL of chloramphenicol and 100 pg/mL of carbe-
nicillin and cultured at 37°C with shaking. At 16 hr, cells were harvested and plasmid DNA
was purified by maxiprep (Life Technologies). Selected ZFRs were isolated by Sacl and Xbal
digestion and ligated into fresh vector for additional selection. Sequence analysis was per-
formed on individual carbenicillin-resistant clones and recombination assays were performed
on clones as described above.

Specificity Profiling

GFPuv was PCR amplified using the primers GFP-mutant-ZFR-Xbal-Fwd, which contained
randomized base substitutions at the 10-7, 6-4 or 3-2 base positions in the “left” 10-bp half-
site of the ZFR target site, and GFP-ZFR-HindIII-Rev. PCR products were digested with Xbal
and HindIII and ligated into Spel and HindIII restriction sites of pBLA. Transformations were
grown overnight for 16 hr in SB medium with 30 ug/mL chloramphenicol and harvested by
miniprep to obtain a small library of substrates. BinQ and Tn21S were then cloned into pBLA
substrate libraries and transformed as previously described. These cultures were allowed to
grow in 30 ug/mL chloramphenicol for 4 hr before plating on solid LB medium with 30 pg/mL
of chloramphenicol or 30 ug/mL of chloramphenicol and 100 ug/mL of carbenicillin. Chloram-
phenicol and carbenicillin resistant colonies were then sequenced for resolved ZFR target sites.

Results
Selection of active Bin and Tn21 catalytic domains

We began by analyzing the activity of the wild-type Bin and Tn21 catalytic domains on mini-
mal crossover sites derived from their native recombination sites. These sites consist of a
pseudo-symmetric 20-bp core sequence that contains two inverted 10-bp half-site regions. Spe-
cifically, we selected Bin and Tn21 for directed evolution due to their: (i) high sequence similar-
ity to other serine recombinases, and (ii) unique core sites that address “gaps” within the
targeted recombinase repertoire. Unlike Gin or any of its evolved variants, the recombination
site recognized by Bin contains a TA base combination at positions 3-2, while the crossover
site recognized by Tn21 includes G nucleotides at positions 6-4, a region typically restricted to
A or T bases for other serine recombinases (Table 1). To measure activity, we used split gene
reassembly, a method that directly links recombinase activity to antibiotic resistance in a
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Table 1. Minimal core sites for select serine recombinases. Within the “left” 10-bp half-site, positions 6—4 are indicted by bold font and positions 3-2 are
underlined.

Recombinase Target Sequence Abbreviation Reference

B CAAT AGA GT AT AC TTA TTTC 20B [42]
Bin CAGA AAA TA AC CA TTT TCTG 20-Bin [49]
Gina CTGT AAA CC GA GG TTT TGGA 20G [43]
Gin 8 CTGT AAA GC GA GG TTT TGGA = [40]
Giny CTGT ARA GT GA GG TTT TGGA - [40]
Gin & CTGT AAA CA GA GG TTT TGGA - [40]
Gin ¢ CTGT ARA TT GA GG TTT TGGA - [39]
Hin TCAA AAA CC TT GG TTT TCAA - [44]
Sin AATT TGG GT AC AC CCT AATC 20S [45]
Tn21 GGTT GAG GC AT AC CCT AACC 20-Tn21 [48]
Tn3 CGAA ATA TT AT AA ATT ATCG 20T [46]
%) CGAA ATA TT AT AA ATT ATCG - [47]

doi:10.1371/journal.pone.0139123.t001

bacterial host (Fig 2A) [41]. Both Bin and Tn21 demonstrated low levels of recombination
(~0.1%) on their intended core sequences. Cross-comparative analysis revealed that hyperacti-
vated variants of the Gin, Tn3, Sin and p catalytic domains also displayed negligible recombina-
tion on these substrates, while Sin showed ~10% recombination on the Tn21 core (Fig 2B and
2C). We next used antibiotic selection to identify mutations that enable unrestricted Bin- and
Tn21-mediated recombination on their cognate core sequences. Similar approaches have been
used to discover hyperactivating mutations for other serine recombinases, including Gin and
Hin [53], Tn3 [54], v8 [55], Sin [41, 56] and B [41]. We used error-prone PCR to introduce
~2.5 and ~6 amino acid mutations into the Bin and Tn21 catalytic domains, respectively. We
then fused each recombinase library to an unmodified copy of the H1 zinc-finger protein [57],
which binds the sequence 5-GGAGGCGTG-3’ and, in the split gene reassembly selection sys-
tem, flanks the 20-bp core sequence recognized by the recombinase. After four and five rounds
of selection with the Tn21 and Bin libraries, respectively, we observed a >1,000-fold increase
in recombination via split gene reassembly (Fig 2C and 2D). We sequenced ~15 clones from
each library and observed a number of recurrent mutations that were also commonly found
together within singular clones. Among sequenced Bin variants, 65% contained the substitu-
tion G103D; 41% contained D97G and M70V/T; and 35% contained H34R (Fig 3A). For Tn21,
68% contained the mutation F14S; 56% contained M63T/V/I; 37% contained F51L/S; and 18%
contained H86R/Y (Fig 3B). Hyperactivating mutations have previously been found to cluster
near the recombinase E helix and have been proposed to either stabilize the active tetrameric
configuration or destabilize the recombinase dimer. Surprisingly, only a few of the resulting
Bin and Tn21 mutations were found to reside near the E helix (Fig 3C and 3D), with the major-
ity of the mutations instead located near adjacent loops or the active site.

We next used split gene reassembly to measure the ability of individually selected Bin and
Tn21 variants to recombine both cognate core sites (i.e., 20-Bin and 20-Tn21) and non-cognate
(i.e., 20B, 20G, 20S and 20T) 20-bp core sites (Table 1). Among all analyzed Bin clones, BinQ
(H34R, N78S, F871, D97G and K143E) displayed the highest level of specificity for its intended
DNA target (Fig 4A). In contrast to past studies, subtracting any single selected BinQ mutation
dramatically reduced enzyme specificity and/or efficiency, indicating that the

BinQ mutations might work in concert to promote recombination (Fig 4A). Analysis of
the selected Tn21 population revealed that all selected variants efficiently recombined their
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Fig 2. Selection of hyperactived Bin and Tn21 catalytic domains. (A) Schematic representation of the
split gene reassembly system used to evaluate recombinase activity. Expression of an active recombinase
leads to excision of the stuffer fragment (GFPuv), restoration of the B-lactamase reading frame and host cell
resistance to carbenicillin (right, bottom). Full-length ZFR target site is shown and consists of a 20-bp core
sequence recognized by the recombinase catalytic domain flanked by zinc-finger binding sites. Core
positions are numbered. (B, C) Recombination activity of the native Bin, Tn21, and hyperactivated 8, Gin, Sin
and Tn3 catalytic domains in the context of ZFRs. Activity was measured on 20-bp core sites flanked by zinc-
finger binding sites. Each core site was derived from the native (B) Bin and (C) Tn21 recombination sites
(referred to as 20-Bin and 20-Tn21, respectively). Recombination was determined by split gene reassmbley
as the percentage of recombined carbenicillin and chloremphenicol resistant clones versus total
chloremphenicol resistant clones. Error bars indicate standard deviation (n = 3). (D, E) Selection of (D) Bin
and (E) Tn21 variants that recombine 20-bp core sites derived from their native recombination sites, 20-Bin
and 20-Tn21, respectively. Each recombinase catalytic domain was randomly mutated by error-prone PCR
and analyzed for activity as a ZFR on a 20-bp core site-flanked by zinc-finger binding-sites. Asterisks indicate
selection steps in which incubation time was deceased from 16 to 4 hr.

doi:10.1371/journal.pone.0139123.g002

intended DNA targets (Fig 4B). Specifically, Tn21S (F14S, F51L and M63V) was selected for
additional analysis because it efficiently recombined its cognate 20-bp core and it possesses the
three most recurrent mutations identified within the selected Tn21 population. Interestingly,
each evaluated Tn21 variant efficiently recombined the Sin and B core sites (Fig 4B), likely due
to the presence of target site overlap and relaxed catalytic specificity.

Specificity profiling of the BinQ catalytic domain

We next set out to develop a more detailed understanding of the determinants underlying
BinQ and Tn21S target specificity. Based on previous reports utilizing split gene reassembly to
identify the specific base requirements of the Sin and B recombinases at every position within a
10-bp half-site [41], we created Bin and Tn21 substrate libraries containing fully randomized
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Bin Mutations 20B 20G 208 20T 20-Bin  20-Tn21
Native None <0.1 <0.1 <0.1 <0.1 <0.1
A M70T, D97G 0.4 0.4
B 149V, F87L, G103D 0.6 0!5) 0.03
C H34R, M70V, G103D 0.1 24 0.1
F F51S, H88R, G103D 0.2 0.4
| G11R, R47, D97G 0.2 0.2
Q H34R, N78S, F871, D97G, K143E 0.2 0.2 <0.1
Q-R34H N78S, F871, D97G, K143E 0.6 0.2 <0.1
Q-S78N H34R, F871, D97G, K143E 0.8 3 <0.1
Q-187F H34R, N78S, D97G, K143E 0.4 6 <0.1
Q-G97D H34R, N78S, F871, K143E 1 q <0.1 1 8 <0.1
Q-K143E H34R, N78S, F871, D97G 0.8 ‘ 0.6 <0.1 <0.1 3 <0.1

B Tn21 Mutations 20B 20G 208 20T 20-Bin  20-Tn21
Native None <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
A 19T, F14S, E19G, H86R, F96L 0.4 <0.1 <0.1
B E23G, M63I, A120T 0 <0.1 <0.1 <0.1
G F14S, K41R, H86R, K91E 8 <0.1 <0.1 <0.1
S F148S, F51L, M63V <0.1 <0.1 <0.1

(= o [

Recombination (%)

Fig 4. Recombination efficiency of selected Bin and Tn21 catalytic domain variants. The activity of
selected (A) Bin and (B) Tn21 catalytic domains was evaluated against a panel of cognate and non-cognate
target sites. Red highlighted variants were selected for further analysis. Recombination was determined by
split gene assembly.

doi:10.1371/journal.pone.0139123.g004
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base combinations within three regions: positions 10-7, 64, and 3-2 (Fig 5A). To ensure effi-
cient recombination and sequencing of recombined products, mutations were introduced only
within the “left” half-site of the recombinase target site. This approach facilitates straightfor-
ward retrieval of tolerated/recombined core sites by DNA sequencing, as the catalytic domain
excises the two half-sites adjacent to the stuffer sequence during recombination. We began by
evaluating the ability of BinQ to recombine DNA substrate libraries after 4 hr incubation in lig-
uid culture, followed by antibiotic selection on LB agar plates. We sequenced the recombined
substrates from ~20 individual transformants from each library in order to identify tolerated
DNA substrates. Mutations in positions 6-4 were the most deleterious to activity, leading to a
~8-fold decrease in recombination, while substitutions within positions 10-7, and 3-2 reduced
activity by less than 2-fold (Fig 5B). Sequence analysis revealed that BinQ possesses a specificity
profile similar to the Gin recombinase, with no base determinants between positions 10-7 and
a strong preference toward A or T at positions 6-4 (Fig 5C). However, unlike Gin or any of its
evolved variants, BinQ demonstrated a bias for A or T bases at position 3 and T at position 2,
indicating that its catalytic specificity can potentially fill gaps within the Gin targeting reper-
toire. Surprisingly, no consensus emerged for Tn21 (data not shown), suggesting that activa-
tion might have deleteriously broadened its catalytic specificity, as indicated by its off-target
recombination on the Sin and f substrates (Fig 2C). Overall, these findings indicate that BinQ
displays a distinct specificity profile that could complement existing recombinase for genomic
targeting, and could be aided by more comprehensive studies in the future.

Redesigning BinQ specificity for safe-harbor sites in the human genome

Within the human genome, there are several “safe harbor sites” that are capable of providing
long-term gene expression in the absence of side effects [58], including the human chemokine
(C-C motif) receptor 5 (CCR5) gene [59] and the AAVS1 locus (also known as the PPP1R12C
locus) [60]. Because one potential application of engineered recombinases is site-specific inte-
gration of therapeutic factors into the human genome, we set out to re-engineer the specificity
of the activated BinQ variant for both the human CCR5 and AAVSI loci. We started by search-
ing both the CCR5 and AAVS1 gene sequences for pseudo-recombination sites with: (i) simi-
larity to the native BinQ target sites, particularly at positions 6-4, and (ii) potential flanking
zinc-finger and TAL effector binding sites for eventual downstream studies. Using Zinc Finger
Tools (http://scripps.edu/barbas/zfdesign/ztdesignhome.php) [61], we identified one possible
target site within each locus composed primarily of high-scoring GNN and ANN triplets, with
no predicted target site overlap (S1 Fig). Because Bin has a high sequence similarity to the Gin
recombinase, we elected to modify the residues corresponding to those previously used to alter
Gin specificity [40]. We constructed recombinase libraries by randomly mutagenizing five resi-
dues predicted to contact DNA at positions 3-2: Leu 122, Ser 125, Arg 129, Tyr 138 and Gly
139 (Fig 6A). Notably, these amino acid residues are located within the C-terminal arm region
of the recombinase (Fig 1), which lies between the catalytic and DNA-binding domains, and
mediates substrate recognition through direct interaction with the DNA.

Past studies have indicated that directed evolution on asymmetrical core sites promotes the
selection of “generalist” recombinases with relaxed target specificity, as the enzyme must
simultaneously recognize two dissimilar half-sites [36, 50, 62]. We thus hypothesized that
when creating new recombinases for asymmetric sites, it might be necessary to generate a pair
of “left” and “right” enzymes, each specific for half of the native genomic target, with the expec-
tation that each individually evolved recombinase will function as a heterodimer with its part-
ner in order to recombine the full-length target site. We therefore split the AAVS1 and CCR5
target sites at the dinucleotide core and created two asymmetrical, “left” and “right” DNA
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Fig 5. Specificity analysis of the BinQ catalytic domain. (A) Randomization strategy used for specificity
profiling. Only “left” half-site bases were randomized. (B) Recombination by BinQ on each half-site library.
“20-Bin” indicates the native 20-bp core site recognized by BinQ. Recombination was determined by split
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doi:10.1371/journal.pone.0139123.9005

sequences for each genomic target, referred to as AAVSI L, AAVSI R, CCR5 L, and CCR5 R
(Fig 6B and 6C). For selections, we fused the BinQ library to the H1 zinc-finger protein and
cloned the subsequent ZFR library into substrate plasmids containing each recombinase target
site, selecting for active variants by split gene reassembly. After four rounds of selection, we
found that the activity of the BinQ population increased >1,000-fold on all DNA targets (Fig
6B and 6C). Sequencing revealed a high level of diversity for each library at BinQ positions 122
and 138, and strong conversion for hydrophobic residues at positions 125 and 129 (S2 Fig).
Clonal analysis further revealed that the majority of selected recombinases displayed high
(>25%) activity on their intended core sites (Fig 7). The most active variants are hereafter
referred to as BinQ-AAVS1 L and R, and BinQ-CCR5 L and R (where “L” and “R” indicate
the “left” and “right” symmetrical core sites the recombinase variant was evolved against,
respectively).

In order to more fully characterize the activity of each selected recombinase variant, we next
evaluated the substrate specificity profile of BinQ-AAVSI L and R, and BinQ-CCR5 L and R.
This was achieved by introducing each possible weak base (A or T) substitution into positions
6-4, and each possible two-base combination into positions 3-2 within the 20-bp core site rec-
ognized by each BinQ variant. Compared to the parent clone, both BinQ-AAVS1 L and
BinQ-CCR5 L displayed increased specificity for their intended target site, demonstrating low
levels of recombination (<0.1%) on substrates containing even a single T substitution any-
where within positions 6-4 (Fig 8A). BinQ-AAVS1 L and BinQ-CCR5 L also exhibited mini-
mal amounts of recombination when tested on core sites containing the dinucleotide core (+1)
substitution GG. Similarly, both BinQ-AAVS1 R and BinQ-CCR5 R displayed a 10-fold
decrease in recombination on substrates harboring any weak substitutions within positions
6-4 (Fig 8A). For positions 3-2, all evolved variants demonstrated some off-target activity,
with substrates containing CA, GA, CT and GT substitutions yielding the highest levels of
non-specific recombination (Fig 8B). Additionally, both BinQ-AAVS1 R and BinQ-CCR5 R
showed increased off-target recombination for each substrate harboring a weak two-base sub-
stitution at positions 3-2. Together, these results demonstrate that enzyme variants capable of

PLOS ONE | DOI:10.1371/journal.pone.0139123 September 28,2015 9/16



@‘PLOS | ONE

Redesigning Recombinase Specificity

B 100
S
s 10
k]
k=
€ * *
S 1
o
[
[
0.1
1 2 3 4
Selection round
AAVS1 L [l

52 - AAAAAAAAAATTTTTTTTTT-3?
3° —TTTTTTTTTATAAAAAAAAAA— 5°

AAVS1R [@

57 -GGCTAAATTTAAATTTAGCC-3’
3’ -CCGATTTAAATTTAAATCGG-5
A

0.1

Selection round

ccrsL M v
57 -GACGAAACATATGTTTCGTC-3?
37 -CTGCTTTGTATACAAAGCAG-5°
A

CCRsR [l

57 -ATAATAAAAATTTTTATTAT-3’
37 -TATTATTTTTAAAAATAATA-5’
A

Fig 6. Redesigning BinQ catalytic specificity for the human CCR5 gene and AAVS1 safe harbor locus.
(A) Structure of the y resolvase arm region (blue) in complex with DNA (PDB ID: 1ZR4) [65]. Residues
selected for mutagenesis are shown as blue sticks and labeled with the corresponding residues in BinQ.
Surrounding density is highlighted as space-filling blue. DNA positions within the 20-bp core half-site are
indicated. (B, C) Selection of BinQ mutants that recombine the symmetrical versions of the “left” (blue) and
“right” (red) (B) AAVS1 and (C) CCRS target sites. Asterisks indicate selection steps in which incubation time
was decreased from 16 to 4 hr. Sequences of the symmetrical AAVS1 L and R, and CCR5 L and R target
sites are shown. Black arrows indicate DNA cleavage sites.

doi:10.1371/journal.pone.0139123.g006

AAVS1 L variants
C:L122G, 8125V, R129M, Y138T, G139L
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B: L1228, 5125V, R129L, Y1388, G139L
1: L1228, 8125V, R1291, Y138K, G139H
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Fig 7. Recombination of the CCR5 and AAVS1 core sites by the selected BinQ variants. (A) Three BinQ
mutants were evaluated for their ability to recombine the symmetrical AAVS1 L and R, and CCR5 L and R
target sites that they were selected against. Selected mutations for each variant are shown. Red highlighted
variants were selected for further analysis. Recombination was determined by split gene assembly.

doi:10.1371/journal.pone.0139123.g007
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Positions 6-4 +1
Variant TAA ATA AAT ATT TAT TTA GG
BinQ 4 7 2 2 1 0.6 2
AAVS1 L <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
AAVS1 R - 2 2 1 6 <0.1 -
CCRs5 L <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
CCR5R 0.2 3 - 2 10 1 1
B
Positions 3-2
Variant AA AT TA AC AG CA GA CT GT TC TG cC CG GC GG
BinQ 2
AAVS1 L 97
AAVS1 R 78 25
CCR5L ~100 69
CCR5 R ~100 ~100

<0.1

o [

Recombination (%)

Fig 8. Specificity analysis of redesigned BinQ variants. Recombination by BinQ-CCR5 L and R, and BinQ-AAVS1 L and R on 20-Bin core sites
containing (A) all posssible weak (W: A or T) substitutions within positions 6—4, or the dinucleotide core (+1) substitution GG and (B) all possible two-base
combinations within positions 3—2. Recombination was determined by split gene assembly.

doi:10.1371/journal.pone.0139123.g008

specific recombination of target sites from the CCR5 gene and AAVSI locus can be generated
by protein engineering methods.

Discussion

In order for clinical and industrial applications of genome engineering to reach their full poten-
tial, improved methods capable of introducing targeted modifications in both a safe and effi-
cient manner are needed. Most contemporary genome engineering processes rely on the use of
targeted nucleases, such as ZFNs, TALENs and CRISPR/Cas9; however, these tools have the
potential to introduce potentially toxic off-target DSBs and rely on the host cell machinery to
facilitate targeted integration, a feature that could prevent their use in post-mitotic cells. SSRs,
however, offer a potential solution to these problems, particularly for applications of therapeu-
tic gene integration [63]. Yet despite their potential, new approaches for reconfiguring their
specificity are needed.

Toward this goal, we incorporated two new recombinases, Bin and Tn21, into our chimeric
recombinase repertoire. These enzymes show sequence similarity to prototypical serine resol-
vase/invertase family members but exhibit orthogonal target specificity, indicating their poten-
tial as tools capable of addressing gaps in the targeted recombinase sequence space. We used a
positive antibiotic-based selection approach to isolate the hyperactivated variants BinQ and
Tn21S, and showed that these mutants are capable of recombining minimal core sites on plas-
mid DNA with high efficiency in bacterial cells. To our knowledge, these are the first Bin and
Tn21 variants shown to catalyze recombination between core sequences derived from their
native recombination sites. Surprisingly, the majority of activating mutations selected in this
study lie outside of the E helix, previously identified as a key region for altering enzyme stability
and activity. This indicates that indirect effects between the selected mutations and the dimeric
and tetrameric configurations may play a larger role in these recombinases compared to previ-
ously studied enzymes. Specifically, both BinQ and Tn21S contain substitutions at positions
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that encode large hydrophobic residues (F871 and F51L, respectively). In addition to these
unique activating substitutions, we also identified an enhancing mutation within the Tn21
active site (F14S), suggesting that hyperactivation could be a product of an enhanced rate of
catalysis. Future mutational studies could shed further light on the cooperative nature of the
BinQ substitutions.

Site-specific integration of therapeutic factors into human safe harbor sites, such as CCR5
and AAVSI, could allow for long-term transgene expression without the risk of activating or
inactivating other genes or regulatory elements. Despite previous advances made in expanding
the targeted recombinase repertoire, conserved base requirements within the Gin, Tn3, Sin and
B recombinase catalytic domains prevented their reprogramming for target sites present in
such regions. Due to the finding that BinQ could recombine 20-bp core sites containing weak
(WW) two-base combinations at positions 3-2, we hypothesized that it also could serve as an
effective starting template for specificity reprogramming, as the only potential recombinase tar-
get sites within CCR5 and AAVSI contained similar base compositions. This is in contrast to
the Gin recombinase, which although amenable to protein engineering [38-40], has not yielded
an evolved variant capable of recombining most WW base combinations at positions 3-2
within its 20-bp core. Compared to the parent enzyme, half of our BinQ variants selected for
activity on the CCR5 and AAVS1 core sites showed improved specificity at positions 6-4 and
the dinucleotide core. In contrast, all selected BinQ variants demonstrated reduced specificity
at positions 3-2, indicating that: (i) more sophisticated mutagenesis strategies may be neces-
sary to absolutely reprogram base specificity at these positions, and (ii) a complex interplay
might exist between the targeted arm region residues and DNA. Future studies will be focused
on using these catalytic domains with custom zinc-finger or TAL effector DNA-binding
domains for site-specific integration into the endogenous CCR5 and AAVSI target sites in
human cells.

In conclusion, we show that specificity profiling in tandem with directed selection is an
effective approach for generating recombinases with new properties with potential utility for
genome engineering applications.
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