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ABSTRACT
More than 15% of the US population is currently >65 y old. As populations age there is a
concomitant increase in age-related chronic diseases. One such disease is chronic kidney disease
(CKD), which becomes more prevalent with age, especially over age 70 y. Individuals with CKD
are at increased risk of cardiovascular disease, in part because arterial calcification increases as
kidney function declines. Vitamin K is a shortfall nutrient among older adults that has been
implicated in arterial calcification. Evidence suggests CKD patients have low vitamin K status, but
data are equivocal because the biomarkers of vitamin K status can be influenced by CKD. Animal
studies provide more compelling data on the underlying role of vitamin K in arterial calcification
associated with CKD. The purpose of this review is to evaluate the strengths and limitations of
the available evidence regarding the role of vitamin K in CKD. Curr Dev Nutr 2019;3:nzz077.

An Aging Population at Greater Risk of Chronic Kidney Disease

In the 1950s, the largest demographic of the world population was children under age 5 y. Adults
over the age of 65 y represented <6% of the global population (Figure 1). With advances in
medical therapies, there has been a radical shift in the global population and predictions are now
that by the year 2050, there will be more adults over the age of 65 y than there are children below
the age of 18 y (1). Age is recognized as the number 1 risk factor for multiple chronic diseases,
including chronic kidney disease (CKD) (2, 3).

Declines in renal function are related to the aging process and to age-related comorbidities that
can also lead to renal impairment (3). To understand the impact of a growing aging population
on the number of individuals afflicted with CKD, one must first consider how CKD is defined.
Chronic kidney disease is evaluated using the glomerular filtration rate (GFR), which is ameasure
of the rate at which blood is filtered through glomeruli in the kidney. A normal GFR is defined
as ≥60 mL · min−1 · 1.73m−2. Individuals with an estimated GFR (eGFR) <60 mL · min−1 ·
1.73m−2 for≥3mo or an eGFR>60with kidney damage (as indicated by elevated urine albumin)
are considered to have CKD (4). There are 5 stages of CKD with stage 1 indicating some kidney
damage but normal kidney function and stage 5 indicating end-stage kidney disease (ESKD,
corresponding to a GFR ≤ 15 mL · min−1 · 1.73m−2). Individuals with ESKD usually require
dialysis or kidney transplant shortly after diagnosis.

The overall prevalence of CKD worldwide ranges from 8% to 16% (5). Much of this variation
in prevalence is attributed to measurement differences in serum creatinine and albumin that are
used to calculate GFR. This measurement variation notwithstanding, when considered by stages
of life (Figure 2), there is a marked increase in CKD above age 70 y, especially among females,
non-Hispanic blacks, and persons with diabetes or hypertension (6). As the global population
ages, the impact of this marked increase in CKD on the health care system is staggering. In the
United States alone, ∼14% of all adults have CKD, costing almost $80 billion/y in Medicare
expenditures in 2016 (7).
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FIGURE 1 World population by age from 1950 to 2100 (projected). Reproduced from reference 1 with permission.

CKD Patients Are at Greater Risk of Cardiovascular Disease

There is an emerging realization that many chronic diseases coexist
owing to common pathological factors that disrupt the biology of indi-
vidual organs, including the kidney. Such factors include inflammation,
molecular damage, and metabolic alterations (2, 8). Therefore, it is not
unexpected that individuals with CKD are at increased risk of other
chronic diseases, such as cardiovascular disease (CVD). In 1 study,
it was estimated that the age-adjusted rate of cardiovascular events
increases from 2.11 events per 100 person-years for individuals with
normal GFR (i.e., ≥60 mL · min−1 · 1.73m−2) to 3.65 for those with
CKD stage 1, to 36.60 for individuals with ESKD (9). Indeed, at all stages
of CKD, CVD mortality is disproportionately high, compared to the
general population (10). Patients with CKD are also far more likely to
die from CVD than progress to ESKD (11). One proposed mechanism

FIGURE 2 Prevalence of chronic kidney disease stages 1–4 by
age, NHANES 2015–2016 (6).

by which these patients have increased CVD is through altered mineral
metabolism that affects the vasculature (12, 13), resulting in vascular
calcium deposition. CKD patients frequently develop calcification in
the coronary arteries [coronary artery calcium (CAC)], which reflects
atherosclerotic plaque, as well as calcification in peripheral arteries,
indicative of more systemicmineral imbalances, that can lead to arterial
stiffening (14, 15). Both CAC and arterial stiffening are strong risk
factors for CVD events and mortality (16–24). In a meta-analysis
of community-dwelling adults with normal kidney function, arterial
stiffness was associated with an 8–16% higher risk of developing CKD
(24) and in patients with moderate to severe CKD, arterial stiffness was
associated with further declines in kidney function (25). This suggests
arterial calcification and stiffeningmay contribute to or exacerbateCKD
as well. Vascular calcification is apparent in coronary arteries in CKD
patients before ESKD (22, 26). Pathways that inhibit calcification and
which normally protect against vascular calcification appear to be less
functional inCKD, particularly in later stages (27). In theChronic Renal
Insufficiency Cohort (CRIC, a prospective observational study of adults
with CKD), participants without a history of CVD and an Agatston
score (a quantitative measure of CAC) of >0 to 100 (indicative of some
calcification) had a 60% higher risk of CVD, defined as myocardial
infarction, stroke, and heart failure, over 6 y of follow-up (HR: 1.60;
95% CI: 1.01, 2.53). For those with a moderate to severe burden
of calcification (i.e., an Agatston score >100), the HR (95% CI) for
CVD only modestly increased to 1.81 (1.16, 2.82) (28). This suggests
that even modest amounts of CAC increase CVD in CKD patients.
Accordingly, interventions targeted at reducing vascular calcification
could offer tremendous therapeutic benefits to CKD patients. One
potential intervention is vitamin K. A critical research gap in our
knowledge regarding vitamin K and CKD has been identified by the
international Kidney Disease: Improving Global Outcomes (KDIGO)
initiative, which recommended “experimental and clinical research …
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FIGURE 3 Percentage of men and women who meet the
recommended Adequate Intakes for vitamin K, by age group,
according to NHANES 2011–2012 (33).

to evaluate and focus on vitamin K-dependent proteins” with respect to
vascular calcification in CKD (29).

Vitamin K Is an Essential Fat-Soluble Vitamin

The fat-soluble vitamin K has 11 known forms that share a naptho-
quinone ring, but vary in the length and saturation of their side chain.
The form best characterized in terms of diet and human health is
phylloquinone, also known as vitamin K-1. Phylloquinone is the plant-
based form of vitamin K and is abundant in leafy vegetables and
plant oils. Emerging data indicate that the menaquinones (10 known
forms that are also referred to as vitamin K-2) are also abundant in
the food supply, particularly in animal meats and fermented foods.
However, knowledge of their content in foods is still very limited and
there are no validated questionnaires from which to estimate usual
intakes. Moreover, phylloquinone is the primary form of vitamin K in
the circulation, and circulating phylloquinone responds to changes in
intake (30). Although menaquinones are more abundant in the food
supply than previously thought, menaquinone forms are not typically
detected in the circulation (31).

The current dietary recommendations for vitaminKwere developed
in 2001 based on estimatedmean intakes of phylloquinone as estimated
fromNHANES III (1988–1994) (32). At the time, therewere insufficient
data from which to develop an estimated average requirement, so
median phylloquinone intakes were used to develop an adequate intake
(AI) of 90 and 120 µg/d for women and men, respectively, regardless
of age. In a recent re-evaluation of phylloquinone intakes in the 2012
NHANES, the percentage of men consuming intakes of phylloquinone
thatmeet the AIs declines with age such that only one-third ofmen aged
≥70 y are considered to meet the AI of this vitamin. Whereas women
consume more phylloquinone than men there is also a similar decline
with age, such that ∼56% of all women over the age of 70 y consume
intakes that meet the AI (Figure 3) (33). The mean phylloquinone
intake of NHANES participants who were 20 y or older with CKD
[defined as having an eGFR <60 mL · min−1 · 1.73m−2 or albu-
min/creatinine ratio≥30mg/g (albuminuria)] was 97.5µg/d, but>72%
did not meet the recommended AI (34). The median phylloquinone
intake of hemodialysis patients from Italy was 71.6 µg/d. Over 70%

did not meet the US recommended AI and >80% did not meet the
Italian RDA (which is 140 µg/d for adults <60 y old and 170 µg/d for
adults ≥60 y old) (35). This may be related to CKD patients reducing
their vegetable intake owing to being advised to restrict dietary
potassium (36), which is found in many vegetables that are also sources
of phylloquinone.

Vitamin K functions as an enzyme cofactor for the carboxylation
of vitamin K–dependent proteins involved in various physiological
processes (Figure 4), including vascular calcification. Although several
vitamin K–dependent proteins have been identified in vascular tissue
and have also been implicated in arterial calcification and CVD
(37–39), themost studied is matrix gla protein (MGP). This is primarily
due to the availability of animal models and biochemical assays that
directly measure the protein in tissue and circulation.

Like all vitamin K–dependent proteins, MGP is synthesized in its
uncarboxylated form (ucMGP) (40). In the presence of vitamin K, it
is posttranslationally carboxylated (cMGP) (Figure 4). It is only the
cMGP form that inhibits vascular calcification (41). When the gene
encodingMGPwas deleted in a mouse model, of those that were viable,
the animals survived <8 wk owing to rupture of the aorta, which
was completely calcified (42). Given that MGP is a critical protein in
inhibiting abnormal calcification in the vasculature and that vitamin K
is critical for MGP function, it has been proposed that vitamin K has
a role in the complications of CKD that are associated with abnormal
calcification, including arterial calcification, arterial stiffening, and
CVD (Figure 5). Because arterial calcification and stiffening have
been associated with incident CKD and declines in kidney function
(24, 25), it is also possible vitamin K influences CKD development
and progression indirectly through mechanisms linked to abnormal
calcification.

Evidence of Vitamin K’s role in Vascular Calcification and
CKD

Animal studies
Rodent studies using warfarin provide indirect evidence that vitamin
K–dependent pathways are involved in vascular calcification. Warfarin
is used as an anticoagulant because it antagonizes the carboxylation
of vitamin K–dependent proteins. In addition to interfering with the
carboxylation of clotting proteins, warfarin also rendersMGP and other
vitamin K–dependent proteins in extrahepatic tissues uncarboxylated
and thus less functional. In rodents, high doses of warfarin induce
vascular calcification (41, 43), which has been shown to be attenuated
with high intakes of vitamin K (44). In rats with CKD, warfarin
increased renal artery, carotid artery, and thoracic and abdominal
aortic calcium deposition, whereas high vitamin K intake attenuated
calcium accumulation in these same tissues (45). In a subsequent
experiment conducted by the same research group, rats with mild
and severe CKD had lower vitamin K concentrations in the kidney,
liver, spleen, and heart than rats without CKD. The enzymes involved
in vitamin K metabolism were also altered in the rats with CKD.
More specifically, vitamin K epoxide reductase (VKOR) expression in
the kidney and thoracic aorta was decreased and MGP expression in
the kidney and thoracic aorta was increased. In contrast, γ -glutamyl
carboxylase (GGCX) expression did not differ in any tissue and there
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FIGURE 4 The vitamin K cycle: carboxylation of vitamin K–dependent proteins. The vitamin K hydroquinone is reduced to the vitamin K
quinol, which serves as a cofactor to the γ -glutamyl carboxylase enzyme that carboxylates vitamin K–dependent proteins. As a result, the
quinol is oxidized to vitamin K epoxide, which is reduced back to the quinone form.

were no differences in the expression of any enzyme in the liver
(46). In a similar experiment, aortic GGCX expression also was not
different between rats with and without CKD, but aortic GGCX activity
was reduced in those with CKD (47). Although VKOR expression
was not measured, renal VKOR activity did not differ in the rats
with CKD. Collectively, these experiments suggest CKD can lead to
decreases in tissue vitamin K and increases in arterial calcification, as
well as potential alterations in vitamin K enzyme expression and/or
activity. However, the precise mechanisms underlying these metabolic
disturbances related to calcification and vitamin K in CKD need
further clarification. It is also uncertain whether CKD causes vitamin

K deficiency or if the disease is exacerbated by a vitamin K deficiency
created by other mechanisms.

Observational and clinical studies
Warfarin studies.
Similar to animal models, studies of patients using warfarin have been
proposed as indirect evidence that vitamin K–dependent pathways are
involved in vascular calcification. Patients with CKD are frequently
treated with warfarin because they are at increased risk of atrial
fibrillation, which is associated with an increased risk of thromboem-
bolism (48). In humans, it is currently uncertain whether therapeutic

FIGURE 5 A working model depicting the role of vitamin K in CKD and CVD. CKD, chronic kidney disease; CVD, cardiovascular disease.
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doses of warfarin cause vascular calcification. In an analysis based on
retrospective chart review, lower-extremity arterial calcification was
44% greater in warfarin users than in controls matched on age, sex,
and diabetes status (49). In patients with aortic valve disease, those
treated with warfarin had more CAC and valvular calcium than those
not treated with warfarin (50). In a study of hemodialysis patients, those
treated with warfarin had >2-fold higher odds of iliac artery and aortic
calcification than patients not treated with warfarin (51). However, not
all studies have found arterial calcification to be higher in warfarin users
(52, 53). Moreover, because the available studies are cross-sectional, the
temporal relation betweenwarfarin therapy and vascular calcification in
humans remains unclear (54). Because people treated with warfarin are
typically at increased risk of CVD, it is possible the vascular calcification
existed before warfarin initiation. Therefore, although suggestive, the
evidence from clinical studies of warfarin patients is limited in its utility
to understand if low vitamin K increases risk of vascular calcification
in CKD patients or if the CKD patient has underlying pathologies that
result in treatment strategies which reduce vitamin K status.

CKD patients have subclinical vitamin K deficiency.
To evaluate subclinical deficiency in the CKD patient, whether they are
on warfarin or not, one needs robust biomarkers of status. In contrast
to other micronutrients, there is no single circulating biomarker
that is considered the gold standard for evaluating vitamin K status.
Rather, multiple biomarkers that reflect different aspects of vitamin K
metabolism are used to provide a more thorough estimation of vitamin
K status, as reviewed elsewhere (55).

Circulating phylloquinone, a global indicator of vitamin K status,
has been inversely associated with CAC progression in community-
dwelling adults, most notably in those treated for hypertension,
which is common in people with CKD (56). However, circulating
phylloquinone has not been studied in relation to vascular calcification
or CVD in a CKD population. This is unfortunate because plasma
phylloquinone would capture variance in dietary intakes of vitamin
K, which is critical in a patient population that follows a wide
range of dietary recommendations/restrictions. Moreover, circulating
phylloquinone also reflects absorption, which may be suboptimal given
the high prevalence of vitamin K subclinical deficiency in CKD patients
(57–59). Like any single biomarker, plasma phylloquinone has its limi-
tations, primarily its dependence on circulating lipids. In CKD patients,
lipid abnormalities, especially elevated triglycerides, are common (60).
This may influence the interpretation of the plasma phylloquinone
results because phylloquinone is transported on triglyceride-rich
lipoproteins. Hypertriglyceridemia is associated with an increased risk
of CVD (61). Therefore, triglycerides should be considered in studies
evaluating plasma phylloquinone in relation to CVD, especially in CKD
patients.

To capture vitamin K function in vascular tissue, the uncarboxylated
(inactive) fractions of MGP can also be measured in circulation.
Although there are 4 isoforms of MGP, only the dephosphorylated
uncarboxylatedMGP [(dp)ucMGP] form reflects vitamin K status (62).
Several studies have reported that higher (dp)ucMGP, reflecting lower
vitamin K status, was associated with more vascular calcification in
CKD patients (63–68). Because these studies are all cross-sectional, we
do not knowwhether elevated (dp)ucMGP is an independent risk factor
for vascular calcification and CVD [as some suggest (69)] or whether

vascular calcification leads to higher plasma (dp)ucMGP. Because the
synthesis of MGP can be upregulated in response to calcium (70), and
circulating (dp)ucMGP and total MGP are highly correlated (55), the
latter is also plausible. In this case, the positive association between
(dp)ucMGP and vascular calcification could reflect an increase inMGP
synthesis in response to vascular calcification, and not only vitamin K
insufficiency. Unfortunately, there is no commercial assay to measure
total MGP in circulation, so one is unable to correct for changes in
total MGP irrespective of vitamin K status, which is the practice with
other vitamin K–dependent proteins (71). In a post hoc analysis of
a randomized controlled trial (RCT) in healthy community-dwelling
adults, in which vitamin K supplementation reduced CAC progression
[among those adherent to the intervention (72)] and reduced circulating
(dp)ucMGP, the change in (dp)ucMGP was not correlated with the
change in Agatston score in the vitamin K–supplemented group. In
the placebo group, the baseline (dp)ucMGP did not predict the change
in Agatston score (73). The generalizability of these findings to the
CKDpatient population is uncertain. Larger prospective studies ofCKD
patients are needed to clarify the temporal relation between (dp)ucMGP
and vascular calcification in CKD.

An additional limitation in interpreting the (dp)ucMGP data in-
volves assay changes. The original data for (dp)ucMGP were generated
using a noncommercial assay that was only available in the laboratory
of origin. This assay is now automated and commercially available. The
lower limit of detection (300 pM) for the commercial assay suggests
lower sensitivity than originally reported (62). Differences in assay
sensitivity challenge the ability of investigators to directly compare data
generated from the commercial assay with data generated from the
original assay.

In the context of these strengths and limitations of vitamin K
biomarkers, CKD patients appear to have a subclinical vitamin K
deficiency. In a series of 3 studies in CKD patients (57–59), those
with end stage renal disease (defined as stage 4 CKD, hemodialysis,
or peritoneal dialysis) had a higher prevalence of subclinical vitamin
K deficiency (as defined by serum phylloquinone concentrations
<0.4 nmol/L) than those patients with earlier stages of CKD. A similar
finding was noted with measurements of the percentage of the vitamin
K-dependent protein (VKDP) osteocalcin that was undercarboxylated,
which is also an indication of vitamin K status (57–59). To capture
vitaminK function once in the tissues, the undercarboxylated (inactive)
fractions of certain vitamin K–dependent proteins are also measurable
in serum or plasma, and higher concentrations reflect lower vitamin
K status (55). The caveat to the interpretation of the percentage of
undercarboxylated osteocalcin (%ucOC data) is that osteocalcin is
cleared by the kidney, and impaired kidney function is associated
with increased concentrations of total OC and ucOC (74, 75), which
challenges the use of ucOC as a vitamin K biomarker in CKD patients.
In contrast, less is known about the renal clearance of MGP but
evidence suggests the kidney is able to extract some MGP from the
circulation, and this appears to be independent of renal function (75).
However, additional studies are needed to clarify the renal handling
of MGP and (dp)ucMGP. Finally, 2 studies used a third biomarker,
PIVKA-II (protein induced in vitamin K absence or antagonism - II),
which measures the undercarboxylation of the coagulation protein,
prothrombin (also referred to as factor II). When CKD patients were
compared with peritoneal dialysis patients, there were no differences
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in PIVKA-II (57, 58). In contrast, others have reported that PIVKA-II
is higher (indicative of poorer vitamin K status) among CKD patients
receiving warfarin therapy and who have calciphylaxis (76).

Vitamin K status, vascular calcification, and CVD in CKD patients.
When it comes to relating vitamin K status to vascular calcification,
CVD, or other clinical outcomes in CKD patients, the current literature
is limited to the use of single biomarkers of vitamin K status. This
presents a critical barrier to establishing the importance of vitamin K
to CKD patients for all the aforementioned reasons. Indirect evidence
of the role of VKDPs in coronary calcification and survival in CKD was
provided in a genetic analysis of 86 CKD patients with data on CAC
and 4-y survival rates (77). The gene of interest was VKOR, which is a
critical enzyme in the recycling of vitamin K (see Figure 4). The CC/CG
genotype at rs8050894 has been associated with a blunted response to
warfarin requiring higher warfarin doses to maintain anticoagulation
(78). In the study of CKD patients, the CG/GG genotype was associated
with a 4-fold increase inCACAgatston score> 50units and a significant
increase in mortality (77). This could be related to greater VKOR
function, but this needs to be confirmed.

Randomized trials of vitamin K supplementation and cardiovascular
outcomes.
RCTs are considered the “gold standard” study design to establish
causation between an exposure and a health outcome. At this time,
to the best of our knowledge there are only a few complete RCTs that
evaluated vitamin K supplementation and cardiovascular outcomes.
Phylloquinone supplementation (500 μg/d) reduced CAC progression
over 3 y, compared with placebo, in generally healthy community-
dwelling adults who were adherent to the intervention (72). In a sub-
sequent post hoc analysis, the effect of phylloquinone supplementation
on CAC progression appeared to be more pronounced in those with
hypertension, suggesting a beneficial effect in higher-risk groups (79).
RCTs designed to test the effect of phylloquinone supplementation on
CAC in renal patients have not been completed, but are underway
(80, 81). The results will provide important evidence regarding the
cardiovascular benefit of vitamin K supplementation in patients with
kidney disease. There have been smaller studies using a different form
of vitamin K, menaquinone-7 (MK7), to examine the role of vitamin K
supplementation in improving vascular health. In an RCT of healthy
postmenopausal women, 180 μg MK7/d supplementation for 3 y
improved arterial stiffness in a subgroupofwomenwith stiffer arteries at
baseline (82). In a single-arm intervention in renal transplant patients,
arterial stiffness improved after 8 wk of supplementation with 360 μg
MK7/d (83). Given the small sample size and lack of control group, any
effect of MK7 must be cautiously interpreted. Moreover, until trials are
designed to compare the effects of phylloquinone and menaquinone on
CAC and other cardiovascular outcomes, it is not known if one form
of vitamin K is superior to any other form of the vitamin in terms of
cardiovascular health.

Concluding Comments

With the current dramatic shift towards an aging population, the
number of individuals afflicted with CKD has concomitant increases.
The current literature consistently reports that 1) vitamin K–dependent

mechanisms are implicated in vascular calcification and arterial
stiffness in rodent CKD models (45–47); 2) vascular calcification
and arterial stiffness are common in nondialysis CKD (22, 84); 3)
low vitamin K status is associated with CVD, arterial calcification
progression, and arterial stiffness in community-dwelling men and
women (56, 72, 85); and 4) vitamin K insufficiency is prevalent in CKD
(57–59). This suggests CKD patients could be a high-yield population
likely to benefit from improved vitamin K status. This is a critical
research area identified by the international KDIGO initiative because
there are gaps in understanding the underlying mechanisms, hence
causalities, that link this nutrient with 2 chronic diseases, i.e., CKD and
CVD. Prospective cohort trials and RCTs are needed to determine if
improving vitamin K status will reduce the risk of vascular calcification
in CKD patients.
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