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ABSTRACT Infections by multidrug-resistant Gram-negative bacteria are increas-
ingly common, prompting the renewed interest in the use of colistin. Colistin specifi-
cally targets Gram-negative bacteria by interacting with the anionic lipid A moieties
of lipopolysaccharides, leading to membrane destabilization and cell death. Here, we
aimed to uncover the mechanisms of colistin resistance in nine colistin-resistant
Escherichia coli strains and one Escherichia albertii strain. These were the only
colistin-resistant strains of 1,140 bloodstream Escherichia isolates collected in a ter-
tiary hospital over a 10-year period (2006 to 2015). Core-genome phylogenetic anal-
ysis showed that each patient was colonized by a unique strain, suggesting that
colistin resistance was acquired independently in each strain. All colistin-resistant
strains had lipid A that was modified with phosphoethanolamine. In addition, two E.
coli strains had hepta-acylated lipid A species, containing an additional palmitate
compared to the canonical hexa-acylated E. coli lipid A. One E. coli strain carried the
mobile colistin resistance (mcr) gene mcr-1.1 on an IncX4-type plasmid. Through
construction of chromosomal transgene integration mutants, we experimentally de-
termined that mutations in basRS, encoding a two-component signal transduction
system, contributed to colistin resistance in four strains. We confirmed these obser-
vations by reversing the mutations in basRS to the sequences found in reference
strains, resulting in loss of colistin resistance. While the mcr genes have become a
widely studied mechanism of colistin resistance in E. coli, sequence variation in
basRS is another, potentially more prevalent but relatively underexplored, cause of
colistin resistance in this important nosocomial pathogen.

IMPORTANCE Multidrug resistance among Gram-negative bacteria has led to the
use of colistin as a last-resort drug. The cationic colistin kills Gram-negative bacteria
through electrostatic interaction with the anionic lipid A moiety of lipopolysaccha-
rides. Due to increased use in clinical and agricultural settings, colistin resistance has
recently started to emerge. In this study, we used a combination of whole-genome
sequence analysis and experimental validation to characterize the mechanisms
through which Escherichia coli strains from bloodstream infections can develop colis-
tin resistance. We found no evidence of direct transfer of colistin-resistant isolates
between patients. The lipid A of all isolates was modified by the addition of phos-
phoethanolamine. In four isolates, colistin resistance was experimentally verified to
be caused by mutations in the basRS genes, encoding a two-component regulatory
system. Our data show that chromosomal mutations are an important cause of colis-
tin resistance among clinical E. coli isolates.
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Escherichia coli is a Gram-negative opportunistic pathogen that is a common cause
of bloodstream, urinary tract, and enteric infections (1). The rising prevalence of

antibiotic resistance in E. coli, in part due to the increasing global spread of the
successful multidrug-resistant clade C lineage of ST131, may limit options for future
treatments of infections (2, 3). Due to the emergence and spread of multidrug-resistant
clones of E. coli and other Enterobacteriaceae, and the lack of new antibiotics targeting
Gram-negative bacteria, colistin (polymyxin E) is increasingly used, despite its neuro-
and nephrotoxic side effects, in the treatment of clinical infections with multidrug-
resistant and carbapenem-resistant E. coli and other Enterobacteriaceae (4–6).

Colistin is a cationic amphipathic molecule consisting of a nonribosomal synthesized
decapeptide and a lipid tail (7, 8). Colistin specifically targets Gram-negative bacteria by
binding to the anionic phosphate groups of the lipid A moiety of lipopolysaccharides
(LPS) through electrostatic interactions (7–9). Colistin destabilizes the outer membrane,
but the subsequent disruption of the inner membrane ultimately leads to cell death (9,
10). Acquired colistin resistance has been reported in various Gram-negative bacteria
that were isolated from clinical, veterinary, and environmental sources (11–13). The
best-documented mechanism of colistin resistance involves the modification of lipid A
with cationic groups to counteract the electrostatic interactions between colistin and
lipid A (9). Lipid A modifications in Enterobacteriaceae may be mediated by the
acquisition of mutations in chromosomally located genes or the acquisition of a mobile
genetic element carrying one of the mobile colistin resistance (mcr) genes, which
encode phosphoethanolamine transferases that catalyze the addition of a cationic
phosphoethanolamine group to lipid A (14–16).

Among Enterobacteriaceae, colistin resistance has been most intensively studied in
Salmonella and Klebsiella pneumoniae, in which mutations in the regulatory genes
mgrB, phoPQ, and pmrAB are important mechanisms leading to resistance (15, 17–19).
In E. coli, however, mutations in mgrB and phoPQ have not been reported to lead to
colistin resistance. This may be caused by the increased rate of dephosphorylation of
PmrA (BasR in E. coli) by PmrB (BasS in E. coli) in E. coli compared to that in other
Enterobacteriaceae, which effectively negates the possible activating effects of muta-
tions in phoPQ or mgrB, through PmrD, on the levels of phosphorylated BasR. This may
explain why not all of the previously described mutations reported to lead to colistin
resistance in Salmonella and Klebsiella confer resistance in E. coli (14, 20–22). In addition,
phoPQ expression in E. coli is controlled not only by MgrB but also by the small RNA
(sRNA) MicA, adding to the mechanisms controlling PhoPQ activation and making it less
likely that the deletion or inactivation of mgrB can contribute to colistin resistance in E.
coli (14, 23). This may explain why colistin resistance in clinical E. coli strains has only
been linked to mutations in basRS (24–28), although experimental validation of the role
of these mutations in colistin resistance is currently mostly lacking.

The PmrAB (BasRS) two-component system plays a crucial role in mediating the
modification of LPS that leads to colistin resistance in Gram-negative bacteria (14, 17).
Normally, this two-component system is activated by environmental stimuli, such as
the presence of antimicrobial peptides or a low pH. Activation can increase virulence
and survival through evasion of the host immune system by upregulating genes
associated with modification of LPS, which is the predominant immunogenic molecule
of Gram-negative bacteria (29, 30). In E. coli, the activation of BasRS leads to increased
expression of various operons, including its own. This operon also includes eptA, which
encodes a lipid A-specific phosphoethanolamine transferase (11, 14, 31).

Relatively little is known about colistin resistance mechanisms in E. coli other than
the acquisition of mcr genes (32). Therefore, we studied a collection of colistin-resistant
E. coli strains from bloodstream infections by a combination of whole-genome sequenc-
ing and matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) analysis
of their lipid A to identify colistin resistance mechanisms in E. coli. The role of mutations
in basRS was investigated through the construction of chromosomal integration mu-
tants of different basRS alleles.
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RESULTS
Low prevalence of colistin resistance in invasive Escherichia bloodstream iso-

lates. A total of 1,140 bloodstream isolates (collected from January 2006 to December
2015) for which species identification and automated antibiotic susceptibility testing
had previously been performed, were available for this study. Twelve isolates were
deemed resistant to colistin through routine diagnostic procedures. Two of those
isolates were isolated from the same patient, on the same day, and were thus
considered duplicates, and only one of these was included in this study. In 10 of the 11
remaining isolates, colistin resistance, defined as an MIC of �2 �g/ml colistin, was
confirmed through broth microdilution (Table 1). Strain A783 was a false positive for
colistin resistance during automated susceptibility testing in routine diagnostic proce-
dures and was excluded from subsequent analyses, leaving ten isolates for further
investigation.

The estimated prevalence of colistin resistance in E. coli strains causing bloodstream
infections isolated from January 2006 to December 2015 was thus determined to be
0.88%. Three patients had received colistin in the 3 months before isolation of the
colistin-resistant strain (Table 1). Two of these patients received colistin to treat
infections, but all three patients were also administered colistin as part of selective
digestive or oropharyngeal decontamination (SDD/SOD), a prophylactic antibiotic treat-
ment widely used in Dutch intensive care units (33). The ten colistin-resistant strains
were analyzed further in this study to determine their relatedness and mechanism
through which they had developed colistin resistance.

Colistin resistance was independently acquired by each individual blood-
stream E. coli isolate. To assess the phylogenetic relationships between the colistin-
resistant strains, a phylogenetic tree was generated based on the genome assemblies
of the colistin-resistant strains and 210 publicly available complete genome sequences
(see Table S1 in the supplemental material). Based on a core genome alignment of 874
kbp, we did not observe direct transmission of colistin-resistant strains between
patients (Fig. 1A). Three colistin-resistant strains (strains I1121, H2129, and G821)
belonged to the globally disseminated ST131 clone, and all three were dispersed
throughout the multidrug-resistant clade C of ST131 (Fig. 1A and B) (3, 34). This
indicates that the ST131 strains in this study have independently acquired colistin
resistance. Strain A2361 clustered among Escherichia albertii (Fig. 1A), although it had
been typed as E. coli in routine diagnostic procedures.

By screening for acquired antibiotic resistance genes through ResFinder 3.2, we
found that only strain E3090 carried the mcr gene mcr-1.1 (0.086% of all bloodstream
isolates) (Fig. 1C). After long-read sequencing and hybrid assembly, the mcr-1.1 gene in
this strain appeared to be located as the sole antibiotic resistance gene on a 32.7-kbp
IncX4-type plasmid. This mcr-1.1-carrying IncX4-type plasmid from E3090 shares 99%
identity to the previously reported mcr-1.1-carrying IncX4-type plasmid pMCR-1_Msc

TABLE 1 Colistin-resistant Escherichia strains isolated from bloodstream infectionsa

Strain Colistin MIC (�g/ml)b MLST Date of isolation History of colistin use

I1121 16 131 22 April 2015 Yes; inhalation and oral
H2129 8 131 22 July 2014 No
G821 16 131 19 March 2013 No
F2745 4 73 2 November 2012 No
E3090 8 10 12 November 2011 No
E2372 4 59 25 August 2011 No
E650 8 162 11 March 2011 No
D2373 8 6901 20 October 2010 Yes; oral
A2361 8 5268 3 November 2007 No
Z821 4 167 2 April 2006 Yes; oral
aOverview of colistin-resistant bloodstream isolates, including the MIC of colistin, MLST type determined
through whole-genome sequencing, date of isolation, and information on the use of colistin 3 months
before the isolation of the colistin-resistant isolate, and if applicable, route of administration.

bThe MIC values represent the medians from three independent replicate experiments performed in
triplicates.
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FIG 1 Colistin-resistant strains are not clonally related and carry diverse acquired antibiotic resistance genes. (A) The phylogenetic tree represents the
core-genome alignment (874 kbp) of the colistin-resistant strains and 210 publicly available E. coli and E. albertii genome sequences. One representative
reference strain per E. coli phylogroup is indicated (65). For E. albertii, the LMG20976 type strain is indicated (66). The different phylogroups of E. coli are
indicated with colored backgrounds. Phylogroup A is yellow; B1, gray; B2, orange; D, blue; E, purple; F, green. The ST131 lineage of E. coli in phylogroup B2
is indicated by a dark orange background. The E. albertii branch is indicated by a pink background. The colistin-resistant strains characterized in this study are
depicted in red and highlighted by a red filled circle. (B) The phylogenetic tree represents the core-genome alignment (3.55 Mbp) of the three colistin-resistant
ST131 strains and 19 publicly available ST131 E. coli strains genome sequences. The colistin-resistant strains characterized in this study are depicted in red.
Clades A, B, and C of ST131 are indicated by purple, blue, and orange backgrounds, respectively. (C) Antibiotic resistance genes in the genome sequences were
detected by ResFinder 3.2 (56). Classes of antibiotic resistance genes are abbreviated as follows: PMX, polymyxin resistance; AGC, aminoglycoside resistance;
TET, tetracycline resistance; BLA, beta-lactam resistance; SUL, sulfonamide resistance; TMP, trimethoprim resistance; PHE, phenicol resistance; QLN, quinolone
resistance; MCL, macrolide resistance.
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(GenBank accession MK172815.1) harbored by E. coli isolated from patients in Russia
(35), confirming the global dissemination of this plasmid (36). In all strains studied here,
a variety of acquired resistance genes was observed (Fig. 1C), reflecting the nonclonal
nature of the colistin-resistant strains. The three colistin-resistant ST131 strains pos-
sessed different repertoires of acquired resistance genes, further excluding recent
transmission between patients of the ST131 strains studied here. Strains F2745 and
E2372 carried only one and two resistance genes, respectively, while the E. albertii strain
A2361 did not possess any acquired resistance genes.

Escherichia isolates exclusively acquire colistin resistance by modification of
phosphate groups of lipid A. To determine which modifications to lipid A are
affecting colistin resistance in E. coli, we extracted lipid A from the clinical strains and
the colistin-susceptible control E. coli strain MG1655 and subjected them to MALDI-TOF
mass spectrometry. The lipid A produced by all E. coli strains showed lipid A species
with a mass-to-charge ratio (m/z) of 1,797 (Fig. 2a), corresponding to the canonical
unmodified E. coli hexa-acylated lipid A (Fig. 2b). Colistin-resistant strains showed
additional lipid A species at m/z 1,921, consistent with the addition of phosphoetha-
nolamine (m/z 124) to the hexa-acylated species. Additional species were detected in
the lipid A produced by strains E650 and Z821. The species at m/z 2,036 indicated the
addition of palmitate (m/z 239) to the hexa-acylated species at m/z 1,797, whereas the
species at m/z 2,160 was consistent with the addition of palmitate to the hexa-acylated
lipid A species containing phosphoethanolamine (m/z 1,910).

The E. albertii strain A2361 produced lipid A distinct from that by E. coli. The species
at m/z 1,825 is likely to represent a hexa-acylated species corresponding to two
glucosamines, two phosphates, four 3-OH-C14, and two C14 (Fig. 2c). The species at m/z
1,948 is consistent with the addition of phosphoethanolamine to the hexa-acylated
species, with a further addition of palmitate to produce lipid A species at m/z 2,187.
Species at m/z 1,868 and m/z 2,107 could correspond to the loss of the second
phosphate group, compared to those at m/z 1,948 and m/z 2,187.

Identification of mutations in basRS as candidate mutations involved in colistin
resistance. Because chromosomal mutations in basRS, but not in other regulatory
systems, were previously suggested to cause colistin resistance in E. coli (24–28), we
next aimed to establish the contribution of the basRS alleles in the colistin-resistant
phenotype of these bloodstream isolates. Due to the multidrug-resistant nature of the
clinical isolates (Fig. 1C), we were unable to generate targeted mutations in these
strains. Therefore, we made chromosomal transgene insertion mutants of the different
basRS alleles in the attTn7 site in the BW25113-derived ΔbasRS strain BW27848 using
the Tn7 transposon system. By making chromosomal transgenes insertions rather than
using an in trans complementation method, we excluded copy number effects by
plasmids and the need to use antibiotics to select for the presence of a plasmid used
for in trans complementation. Since BW27848 still possesses the gene encoding the
phosphoethanolamine transferase EptA, we constructed sequences that consisted of
the fused sequences of the promoter region of the eptA-basR-basS operon and the
basRS coding sequences in order to prevent eptA gene dosage-dependent effects. We
were unable to generate the construct for strain E650, presumably due to the toxicity
of the insert.

The colistin MIC determination of the generated basRS chromosomal transgene
insertion mutants from strains I1121, H2129, G821, and Z821 had higher colistin MIC
values than the BW27848::Tn7-empty strain, with observed MIC values �16-fold higher
than that of the BW27848::Tn7-empty strain (Table 2). As expected, the basRS allele of
the mcr-1.1-positive strain E3090 did not lead to colistin resistance. We were unable to
show the contribution of basRS to colistin resistance in the additional four colistin-
resistant strains (F2745, E2372, D2373, and A2361) that lacked mcr-1.1.

Mutations in the basRS genes contribute to colistin resistance in E. coli. By
construction of the chromosomal transgene insertion mutants, we identified the ability
of the basRS sequences of four strains (I1121, H212, G821, and Z821) to cause colistin
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FIG 2 MALDI-TOF spectra of lipid A from colistin-resistant nosocomial Escherichia strains. (a) Negative ion MALDI-TOF mass spectrometry spectra of lipid A
purified from colistin-resistant strains and colistin-susceptible MG1655. Data represent the mass to charge (m/z) ratios of each lipid A species detected and are
representative of three extractions. (b) Proposed lipid A structures of the species produced by E. coli strains. (c) Proposed lipid A structures of E. albertii strain
A2361. Modifications to unmodified lipid A are depicted in red.
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resistance in BW27848. To identify the mutations in the basRS alleles of these strains
that contribute to resistance, we compared the basRS sequences of those strains
causing resistance to the phylogenetically most closely related publicly available E. coli
genome sequences used in the construction of Fig. 1A. None of these reference strains
were reported to be colistin resistant or carried any of the mcr genes. This comparison
revealed four distinct mutations: an L10R substitution in BasS in I1121, a G53S substi-
tution in BasR in H2192, the duplication of the HAMP-domain in BasS in G821, and an
A159P substitution in BasS in Z821 (Fig. 3). As expected, in the mcr-1.1-positive strain
E3090, no mutations in basRS were identified.

We hypothesized that the observed mutations were impacting the normal func-
tioning of the BasRS two-component system. To assess whether the mutations in basRS
identified by comparing the basRS sequences of the clinical strains I1121, H2129, G821,
and Z82, and their closest match in the set of 178 publicly available E. coli genome
sequences (Fig. 3) were causal to the development of colistin resistance, the identified
mutations were reversed through site-directed inverse PCR mutagenesis to match the

TABLE 2 Colistin MICs of strains generated in this studya

Strain Colistin MIC (�g/ml)b

BW25113 0.25
BW27848 0.125
BW25113::Tn7 empty 0.25
BW27848::Tn7 empty 0.125
BW27848::Tn7 BW25113 0.125
BW27848::Tn7 I1121 2
BW27848::Tn7 I1121m 0.25
BW27848::Tn7 H2129 4
BW27848::Tn7 H2129m 0.25
BW27848::Tn7 G821 4
BW27848::Tn7 G821m 0.25
BW27848::Tn7 F2745 0.25
BW27848::Tn7 E3090 0.125
BW27848::Tn7 E2372 0.25
BW27848::Tn7 D2373 0.5
BW27848::Tn7 A2361 0.125
BW27848::Tn7 Z821 2
BW27848::Tn7 Z821m 0.125
aE. coli strain BW27848 is the ΔbasRS mutant of BW25113 (49). The basRS alleles of colistin-resistant strains
from this study were inserted into the attTn7 site of BW27848. The addition of “m” to a strain name
indicates that the construct has been modified through inverse PCR site-directed mutagenesis to reverse
the mutation associated with colistin resistance.

bThe values represent the medians from three independent replicate experiments performed in triplicates.

FIG 3 Conservation and prediction of functional effects of mutations in basRS. Comparison of the basRS
sequences of colistin-resistant strains and publicly available genome sequences led to the identification
of mutations in basRS that could have a role in colistin resistance. Domains of BasR and BasS were
predicted using SMART (55). The domains are as follows: REC, CheY-homologous receiver domain; TRC,
transcriptional regulatory protein, C terminal (Trans_reg_c); HAMP, histidine kinases, adenylyl cyclases,
methyl binding proteins, phosphatases domain; HisKA, His kinase A (phosphoacceptor) domain; HAT-
Pase, histidine kinase-like ATPases (HATPase_c). The two transmembrane regions (TMR) in BasS are
highlighted in blue.
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basRS alleles of the publicly available genome sequences. The MIC values of these
mutants returned to levels similar to that of the colistin-susceptible BW27848::Tn7-
empty strain (Table 2). These experiments support the involvement of basRS sequence
variation in colistin resistance in E. coli.

DISCUSSION

In the present study, we set out to characterize the mechanisms through which E.
coli bloodstream isolates can develop colistin resistance through a combination of
whole-genome sequence analysis and experimental validation. We did not find evi-
dence for transfer of colistin-resistant strains between patients, suggesting that colistin
resistance was acquired independently in all cases. In seven patients, colistin-resistant
strains were isolated without the patients being previously exposed to the drug. All
colistin-resistant strains had LPS that was modified by the addition of phosphoetha-
nolamine to the lipid A moiety of LPS. Resistance in one of the bloodstream isolates
could be explained by the acquisition of mcr-1.1. In four other strains, we identified
mutations in basRS that contribute to colistin resistance. Although colistin-susceptible
strains that were isogenic to the resistant strains were not available, we were able to
pinpoint the mutations in basRS leading to resistance in these strains by matching the
genomic sequences of our nosocomial isolates with publicly available genomes, none
of which were reported to be colistin resistant, and subsequent construction of
chromosomally integrated basRS transgene alleles in the ΔbasRS strain BW27848. The
mechanisms of colistin resistance in the remaining five strains remain to be character-
ized.

Some of the mutations we experimentally link to colistin resistance in this study
have previously been associated with colistin resistance or the functioning of the BasRS
two-component system. In this study, we demonstrated that the amino acid change
L10R in BasS (strain I1121) also confers colistin resistance. An amino acid substitution
in the same position of BasS (L10P) was previously experimentally proven to cause
colistin resistance in E. coli (26). The glycine in position 53 of BasR was previously
reported to be altered in colistin-resistant Enterobacteriaceae (37, 38), including in E. coli
(39). The G53S change specifically, as in isolate H2192, has been experimentally proven
to contribute to colistin resistance in Klebsiella (previously Enterobacter) aerogenes (40,
41) and Salmonella enterica subsp. enterica serovar Typhimurium (42), and we extend
those findings to E. coli here. The previously unidentified duplication of 162 nucleotides
in basS (strain G821) leads to the introduction of a second HAMP domain in BasS and
confers colistin resistance in the BW27848 background. The HAMP domain is wide-
spread in bacteria and is commonly involved in signal transduction as part of two-
component systems (43). We hypothesize that the addition of an extra HAMP domain
in BasS may change signal transduction in the protein, leading to the constitutive
activation of the histidine kinase domain of BasS, increased phosphorylation of BasR,
and upregulated expression of eptA, ultimately resulting in the addition of phosphoe-
thanolamine to lipid A. Finally, we demonstrate that the A159P substitution in BasS
(observed in strain Z821) contributes to colistin resistance. A mutation leading to an
A159V substitution was found in an in vitro evolution study in which E. coli was evolved
toward colistin resistance (44) and in clinical colistin-resistant E. coli isolates (45), but
experimental confirmation of the role of alterations in A159 in colistin resistance in E.
coli was so far lacking. Our data suggest that the basRS alleles of three E coli strains
(F2745, E2372, and D2373) and the E. albertii strain A2361 do not confer resistance in
the BW25113 E. coli background. Because E. albertii is phylogenetically distinct from E.
coli, its basRS allele may not function optimally in an E. coli background, explaining the
inability of the transgene insertion complementation in the basRS deletion of BW25113
E. coli strain to cause colistin resistance (46). We are unable to explain the colistin
resistance mechanisms of the clinical isolates F2745, E2372, and D2373. It is likely that
these strains have become resistant to colistin through other mutations that finally lead
to the modification of lipid A by phosphoethanolamine.

The observed modification of lipid A with phosphoethanolamine in all isolates
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underlines the crucial role of phosphoethanolamine transferases in the ability of
Escherichia to become resistant to polymyxins (14). The lipid A of three of the colistin-
resistant strains was also modified with palmitate, but the contribution of lipid A
palmitoylation to colistin resistance in clinical E. coli strains is currently unknown. We
did not observe modifications of lipid A by 4-amino-4-deoxy-L-arabinose in the colistin-
resistant isolates. While this modification was shown to contribute to polymyxin B
resistance under low Mg2� conditions in a laboratory isolate of E. coli (20), it may
be rare in clinical E. coli isolates. Indeed, Sato et al. also exclusively found
phosphoethanolamine-modified lipid A in colistin-resistant clinical E. coli isolates (24).
The reliance of Escherichia on the modification of lipid A by phosphoethanolamine to
acquire colistin resistance, suggests that the inhibition of this class of enzymes by
blocking the conserved catalytic site (31) could be a target for future drug development
and opens the possibility of combination therapy with colistin and an inhibitor of
phosphoethanolamine transferase (47). With the increasing clinical issues posed by
infections with multidrug-resistant Gram-negative bacteria, there is an urgent need to
better understand resistance mechanisms to last-resort antibiotics such as colistin.
While the discovery of the mcr genes has generated considerable interest in transfer-
able colistin resistance genes, our data suggest that chromosomal mutations remain an
important cause of colistin resistance among clinical isolates in the genus Escherichia.

MATERIALS AND METHODS
Ethical statement. Approval to obtain data from patient records was granted by the Medical Ethics

Review Committee of the University Medical Center Utrecht, in Utrecht, The Netherlands (project
numbers 16/641 and 18/472).

Colistin-resistant E. coli strains were isolated as part of routine diagnostic procedures. This aspect of
the study did not require consent or ethical approval by an institutional review board.

Bacterial strains, growth conditions, and chemicals. Colistin-resistant E. coli strains from blood-
stream infections were obtained retrospectively from the strain collection of the clinical microbiology
laboratory of the University Medical Center Utrecht in Utrecht, The Netherlands. In initial routine
diagnostic procedures, blood cultures were plated on tryptic soy agar (TSA) plates with 5% sheep blood.
Strains collected up to 2011 were identified and their antibiogram was determined using the BD Phoenix
automated identification and susceptibility testing system (Becton, Dickinson, Vianen, The Netherlands).
From 2011 onwards, species determination was performed by MALDI-TOF on a Bruker microflex system
(Leiderdorp, The Netherlands). E. coli strain BW25113 and the BW25113-derived ΔbasRS strain BW27848
from the Keio collection were obtained from the Coli Genetic Stock Center (48, 49). Strains were grown
in lysogeny broth (LB; Oxoid, Landsmeer, The Netherlands) at 37°C with agitation at 300 rpm unless
otherwise noted, with exception of strains containing pGRG36, which were grown at 30°C (50). When
appropriate, kanamycin (50 mg/liter; Sigma-Aldrich, Zwijndrecht, The Netherlands) and ampicillin
(100 mg/liter; Sigma-Aldrich) were used. Colistin sulfate was obtained from Duchefa Biochemie (Haarlem,
The Netherlands). L-(�)-Arabinose was obtained from Sigma-Aldrich. Plasmids were purified using the
GeneJET Plasmid Miniprep kit (Thermo Fisher Scientific, Landsmeer, The Netherlands). PCR products were
purified from gels using GeneJET Gel Extraction and DNA Cleanup Micro kits (Thermo Fisher Scientific).

Determination of MIC. MICs to colistin were determined as previously described (51), in line with the
recommendations of a joint working group of the Clinical & Laboratory Standards Institute and the
European Committee on Antimicrobial Susceptibility Testing (EUCAST) (67), using BBL Mueller-Hinton II
(cation-adjusted) broth (MHCAB; Becton, Dickinson), untreated Nunc 96-well round-bottom polystyrene
plates (Thermo Scientific), and Breathe-Easy sealing membranes (Sigma-Aldrich). The breakpoint value of
an MIC of �2 �g/ml for colistin resistance in E. coli was obtained from EUCAST (http://www.eucast.org/
clinical_breakpoints/).

Genomic DNA isolation and whole-genome sequencing. Genomic DNA was isolated using the
Wizard Genomic DNA purification kit (Promega, Leiden, The Netherlands) according to the manufactur-
er’s instructions. DNA concentrations of the genomic DNA preparations were measured with the Qubit
dsDNA Broad Range assay kit and the Qubit 2.0 fluorometer (Life Technologies, Bleiswijk, The Nether-
lands) and were all higher than 20 ng/�l.

Sequence libraries for Illumina sequencing were prepared using the Nextera XT kit (Illumina, San
Diego, CA) according to the manufacturer’s instructions with 1 ng genomic DNA as input. Libraries were
sequenced on an Illumina MiSeq system with a 500-cycle (2 � 250 bp) MiSeq reagent kit v2.

For strain E3090, we performed long-read sequencing using the MinION platform (Oxford Nanopore
Technologies) to fully resolve the mcr-1.1 plasmid. MinION library preparation for barcoded two-
dimensional (2D) long-read sequencing was performed using the SQK-LSK208 kit (Oxford Nanopore
Technologies, Oxford, United Kingdom), according to the manufacturer’s instructions, with G-tube
(Covaris, Woburn, MA, USA) shearing of 1 �g chromosomal DNA for 2 � 120 s at 1,500 � g. Sequencing
was performed on the MinION sequencer (Oxford Nanopore Technologies) using 2D barcoded sequenc-
ing through a SpotON Flow Cell Mk I (R9.4; Oxford Nanopore Technologies).
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Genome assembly, MLST, and identification of antibiotic resistance genes. The quality of
Illumina sequence data was assessed using FastQC v0.11.5 (https://github.com/s-andrews/FastQC). Raw
Illumina sequencing reads were trimmed for quality using nesoni v0.115 (https://github.com/Victorian
-Bioinformatics-Consortium/nesoni) using standard settings with the exception of a minimum read
length of 100 nucleotides. De novo genome assembly of the trimmed Illumina short-read data was
performed using SPAdes v3.6.2 with the following settings: kmers used, 21, 33, 55, 77, 99, or 127; “careful”
option turned on, and cutoffs for final assemblies for a minimum contig/scaffold size of 500 bp and
minimum contig/scaffold average nucleotide coverage at 10-fold (52).

MinION sequence read data in FastQ format was extracted from Metrichor base-called raw FAST5
read-files using Poretools (53). A hybrid assembly for strain E3090 was generated with trimmed Illumina
short-read data and Oxford Nanopore Technologies MinION long-read data by using SPAdes v3.6.2 with
the same settings as the Illumina short-read assemblies and specifying the long-read data with the
–nanopore flag.

Gene prediction and annotation was performed using Prokka (54), using standard settings. Protein
domains were predicted using the SMART server (55). Multilocus sequence typing (MLST) was performed
using the mlst package v2.10 (https://github.com/tseemann/mlst), using standard settings. Assembled
contigs were assessed for antibiotic resistance genes using ResFinder 3.2 (56), using standard settings.

Core genome phylogenetic analysis and determination of mutations in candidate colistin
resistance determinants. Genome assemblies generated in this study with Illumina data were aligned
with 178 complete E. coli genomes and 32 E. albertii genomes that were available from NCBI databases
on 24 June 2016 (see Table S1 in the supplemental material) using ParSNP v1.2 (57). MEGA6 was used
to midpoint root and visualize the phylogenetic tree (58). We identified whether nonsynonymous
mutations were present in basRS by pairwise comparison of the gene sequences of colistin-resistant
isolates to their closest matching publicly available genome from the phylogenetic tree using BLAST (59).
Mutations that were identified in the genome sequences were confirmed through PCR (oligonucleotide
primer sequences are provided in Table S2) and subsequent Sanger sequencing of the PCR product by
Macrogen (Amsterdam, The Netherlands).

Isolation and analysis of lipid A. Isolation of lipid A molecules and subsequent analysis by
negative-ion MALDI-TOF mass spectrometry was performed as previously described (19, 60, 61). Briefly,
Escherichia strains were grown in LB (Oxoid), and the lipid A was purified from stationary cultures using
the ammonium hydroxide-isobutyric acid method described earlier (62). Mass spectrometry analyses
were performed on a Bruker autoflex speed TOF/TOF mass spectrometer in negative reflective mode with
delayed extraction using as matrix equal volumes of dihydroxybenzoic acid matrix (Sigma-Aldrich)
dissolved in (1:2) acetonitrile-0.1% trifluoroacetic acid. The ion-accelerating voltage was set at 20 kV. Each
spectrum was an average of 300 shots. A peptide calibration standard (Bruker) was used to calibrate the
MALDI-TOF. Further calibration for lipid A analysis was performed externally using lipid A extracted from
E. coli strain MG1655 grown in LB medium at 37°C.

Construction of chromosomal basRS transgene insertions. Chromosomal transgene insertions of
basRS were constructed in BW27848 by utilizing the Tn7 transposon system on the pGRG36 plasmid (50).
The promoter of the eptA-basRS operon was fused to the basRS coding sequence by separate PCRs for
the promoter region and the basRS amplicon, with high fidelity Phusion Green Hot Start II DNA
polymerase (Thermo Fisher Scientific) using strain-specific primers (Table S2) (oligonucleotides were
obtained from Integrated DNA Technologies, Leuven, Belgium). The promoter and the basRS amplicon
were subsequently fused by overlap PCR. Fused PCR products were cloned into pCR-Blunt II-TOPO using
the Zero Blunt TOPO PCR Cloning kit (Thermo Fisher Scientific) and subsequently subcloned into pGRG36
(50). Electrocompetent BW25113 and BW27848 E. coli cells were prepared as described previously (63)
and transformed using the following settings: voltage, 1,800 V; capacitance, 25 �F; resistance, 200 �; with
a 0.2-cm cuvette using the Gene Pulser Xcell electroporation system (Bio-Rad Laboratories, Veenendaal,
The Netherlands). Transformants were grown at 30°C. After confirming integration of the Tn7 transposon
at the attTn7 site by PCR (primers listed in Table S2) and Sanger sequencing (Macrogen), the pGRG36
plasmid was cleared by culturing at 37°C.

Inverse PCR site-directed mutagenesis was performed on amplicons cloned in pCR-Blunt II-TOPO to
reverse the mutations that were identified in colistin-resistant strains to the sequences of basR or basS
in the closest matching publicly available genome (64). After gel purification of the amplified fragments,
(hemi)methylated fragments were digested using DpnI (New England BioLabs [NEB], Ipswich, MA, USA).
Subsequently, the vector was recircularized using the Rapid DNA Ligation kit (Thermo Fisher Scientific)
after phosphorylation using T4 polynucleotide kinase (NEB). The constructs were then transformed into
chemically competent DH5� E. coli cells (Invitrogen, Landsmeer, The Netherlands). Mutated sequences
were subsequently subcloned to pGRG36 as described above.

Data availability. Sequence data have been deposited in the European Nucleotide Archive (acces-
sion number PRJEB27030).

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
TABLE S1, DOCX file, 0.1 MB.
TABLE S2, DOCX file, 0.1 MB.
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