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Abstract

Diffusion magnetic resonance imaging (dMRI) datasets are susceptible to several

confounding factors related to data quality, which is especially true in studies

involving young children. With the recent trend of large-scale multicenter stud-

ies, it is more critical to be aware of the varied impacts of data quality on mea-

sures of interest. Here, we investigated data quality and its effect on different

diffusion measures using a multicenter dataset. dMRI data were obtained from

691 participants (5–17 years of age) from six different centers. Six data quality

metrics—contrast to noise ratio, outlier slices, and motion (absolute, relative,

translation, and rotational)—and four diffusion measures—fractional anisotropy,

mean diffusivity, tract density, and length—were computed for each of 36 major

fiber tracts for all participants. The results indicated that four out of six data

quality metrics (all except absolute and translation motion) differed significantly

between centers. Associations between these data quality metrics and the diffu-

sion measures differed significantly across the tracts and centers. Moreover,

these effects remained significant after applying recently proposed harmoniza-

tion algorithms that purport to remove unwanted between-site variation in diffu-

sion data. These results demonstrate the widespread impact of dMRI data quality

on diffusion measures. These tracts and measures have been routinely associated

with individual differences as well as group-wide differences between neuro-

typical populations and individuals with neurological or developmental disorders.

Accordingly, for analyses of individual differences or group effects (particularly in

multisite dataset), we encourage the inclusion of data quality metrics in dMRI

analysis.
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1 | INTRODUCTION

Diffusion magnetic resonance imaging (dMRI) is a noninvasive neuro-

imaging tool for probing the microstructural architecture of the brain

(Basser, Mattiello, & LeBihan, 1994; Merboldt, Hanicke, &

Frahm, 1985). In recent years, several dMRI-based models like Diffu-

sion Tensor Imaging (DTI; Basser, Mattiello, & LeBihan, 1994; Pie-

rpaoli, Jezzard, Basser, Barnett, & Di Chiro, 1996), Diffusion Kurtosis

Imaging (DKI; Jensen & Helpern, 2010; Lu, Jensen, Ramani, &

Helpern, 2006), Diffusion Spectrum Imaging (DSI; Wedeen, Hagmann,

Tseng, Reese, & Weisskoff, 2005), q-ball imaging (QBI; Tuch, Reese,

Wiegell, & Wedeen, 2003), and high angular resolution diffusion imag-

ing (HARDI; Tuch et al., 2002; Webster & Descoteaux, 2015) have

been developed to index white matter alterations (Chanraud, Zahr,

Sullivan, & Pfefferbaum, 2010; Koirala et al., 2019), neural density

(Koirala, Perdue, Su, Grigorenko, & Landi, 2021; Zhang, Schneider,

Wheeler-Kingshott, & Alexander, 2012), and estimates of white mat-

ter fiber tracts (Jbabdi & Johansen-Berg, 2011; Koirala et al., 2016).

However, as diffusion and the generated indices (e.g., Fractional

anisotropy, mean diffusivity) are influenced by several anatomical fac-

tors such as fiber arrangements, degree of myelination, cell mem-

branes, microtubules, and axonal integrity, caution must be taken for

interpreting the changes associated with these indices (Alba-Ferrara &

de Erausquin, 2013; Beaulieu, 2009; Jones & Cercignani, 2010; Jones,

Knosche, & Turner, 2013).

Each of these techniques has expanded our understanding of

structure–function relationships and various neurological and psycho-

logical disorders in both adults and children. Over the last decade,

dMRI techniques have been increasingly employed in studies of neu-

rodevelopmental disorders (e.g., attention deficit hyperactivity disor-

der (ADHD) (Ameis et al., 2016; van Ewijk, Heslenfeld, Zwiers,

Buitelaar, & Oosterlaan, 2012; Wu et al., 2017), dyslexia

(Vandermosten, Boets, Wouters, & Ghesquiere, 2012; Wang

et al., 2017; Yeatman, Dougherty, Ben-Shachar, & Wandell, 2012),

autism spectrum disorder (ASD; Andrews et al., 2019; Ismail

et al., 2016; Travers et al., 2012), and obsessive–compulsive disorder

(OCD; Gruner et al., 2012; Jayarajan et al., 2012; Silk, Chen, Seal, &

Vance, 2013, among others). While such studies have been helpful in

elucidating differences in microstructural properties in these

populations, there has been no systematic evaluation of how variable

signal to noise ratio (SNR) and/or the presence of artifact relates to

any of the dependent variables of interest, despite the fact that

reports consistently note more motion and artifacts among children,

especially those with neurodevelopmental disorders (Afacan

et al., 2016; Dosenbach et al., 2017; Greene et al., 2018).

In general, compared to other structural imaging techniques,

dMRI datasets are often characterized by low signal to noise ratio

(SNR; Chilla, Tan, Xu, & Poh, 2015; Polders et al., 2011) and are fre-

quently corrupted by multiple artifacts typically originating from eddy

currents, insufficient fat-suppression, B0 inhomogeneity, physiologi-

cally related factors (e.g., respiratory motion, cardiac pulsation, partici-

pant motion), and Gibbs ringing (Le Bihan, Poupon, Amadon, &

Lethimonnier, 2006; Perrone et al., 2015; Pierpaoli, 2012; Tournier,

Mori, & Leemans, 2011). Understandably, these artifacts, and particu-

larly motion-related artifacts, are even more significant for the studies

involving young children and individuals with neurological develop-

mental disorders (Tamnes, Roalf, Goddings, & Lebel, 2018; Theys,

Wouters, & Ghesquiere, 2014). Moreover, it is increasingly common

for studies to acquire data from multiple scanners and centers to

increase sample size and sample diversity [i.e., Human Connectome

Project (Van Essen et al., 2012), Adolescent Brain Cognitive Develop-

ment study (Casey et al., 2018), etc.]. Pooling data collected from dif-

ferent centers brings new challenges of harmonizing data collection

techniques, and data quality from different scanners may be differen-

tially impacted by variations in hardware, scanning sequences, envi-

ronmental factors, and human factors, as well as other sources of

variability (Fortin et al., 2017; Mirzaalian et al., 2016; Ning

et al., 2020; Pinto et al., 2020). This is especially relevant when

pooling data from existing datasets in which data collection was not

optimized for combination with data from other sources. Thus,

accounting for cross-scanner differences in image quality when ana-

lyzing data collected at multiple centers is a critical step in data

analysis.

Over the years, there have been several advances in the attempt

to overcome scanning artifacts with different protocols (Bammer,

Holdsworth, Veldhuis, & Skare, 2009; Nana, Zhao, & Hu, 2008; Nolte,

Finsterbusch, & Frahm, 2000), motion correction techniques

(Alhamud, Taylor, Laughton, van der Kouwe, & Meintjes, 2015; Chan

et al., 2014; Truong, Chen, & Song, 2011), and better processing algo-

rithms (Andersson et al., 2017; Bastiani et al., 2017; Li et al., 2014).

However, there is no consensus on how to compensate for differ-

ences in acquisition protocol, artifact handling, data quality control,

reconstruction algorithm, visualization approach, or quantitative anal-

ysis methodology. Moreover, previous studies have shown that diffu-

sion measures such as the apparent diffusion coefficient (ADC) and

fractional anisotropy (FA) vary substantially with different vendors,

coil systems, imagers, field strengths, and sequence parameters

(Helmer et al., 2016; Sasaki et al., 2008; Schmeel, 2019). The inter-

subject, inter-session, inter-site, and between-visits variability were

also shown to be significant for these measures with varying degree

of significance (Huo et al., 2016; Veenith et al., 2013). In addition, the

assumptions made during the acquisition (e.g., perfect field homoge-

neity, infinitely fast gradient changes, perfectly shaped RF pulses) and

processing (e.g., complete correction of susceptibility-induced distor-

tion and eddy current effects, perfect alignment of regions of interests

during registration) of DWI data have many pitfalls, and these short-

comings have been shown to effect the computed diffusion measures

(Baliyan, Das, Sharma, & Gupta, 2016; Hrabe, Kaur, & Guilfoyle, 2007;

Jones & Cercignani, 2010). Even though it is generally accepted that

image quality has an impact on the computed measures (Bastin,

Armitage, & Marshall, 1998; Soares, Marques, Alves, & Sousa, 2013)

and on diffusion measures specifically (Baum et al., 2018; Landman

et al., 2007; Ling et al., 2012), research investigating the full range of

diffusion measures1 and the extent of the impact of image quality is

still sparse. Here, we investigate (a) several data quality metrics (the

ones most relevant to diffusion imaging data: different components of
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motion during scanning—absolute, translational, rotational, and

relative—as well as contrast to noise ratio and signal drop in different

slices, or the number of outlier slices) obtained from children of age

range of 5–17 years with varying disability status, and (b) the associa-

tion of these quality metrics with computed diffusion (fractional

anisotropy and mean diffusivity) and tractography (tract density and

length) measures obtained from a multicenter dataset with different

diffusion modalities and magnetic strength.

2 | METHODS

2.1 | Data acquisition

To assess the relationships between data quality and diffusion mea-

sures, we analyzed 708 dMRI data sets of 691 participants who

were between 5 and 17 years of age (17 participants in the Italy

dataset were scanned twice with two different protocols). Data

were obtained from six different centers, using four different models

of scanner, five different scanning sequences, two different mag-

netic strengths (1.5 Tesla [T] and 3 T), and containing two different

diffusion models (DTI and DKI). dMRI datasets were obtained from

Haskins Laboratories (HL), Boston Children Hospital (BCH), IRCCS

Eugenio Medea Italy (ITA), and the Healthy Brain Network Biobank

(L. M. Alexander et al., 2017), which includes data from three cen-

ters: CitiGroup Cornell Brain Imaging Center (CBIC), Rutgers

University Brain Imaging Center (RU) and Staten Island (SI). Sample

sizes, demographic information, and data acquisition parameters are

presented in Table 1 and Figure 1. All participants included in the

study were participating in a multisite study as part of the Florida

Learning Disabilities Research Center project VI: Imaging genetics in

SRD: Mega- and meta-analyses. The data acquisition procedure was

approved by the Chesapeake Institutional Review Board (https://

www.chesapeakeirb.com/) for the Healthy Brain Network dataset

and respective ethics commission for each center. Prior to acquiring

the data, written assent obtained from the participant, and written

informed consent was obtained from their legal guardians

(L. M. Alexander et al., 2017).

2.2 | Reproducibility and data availability

All the raw data (Neuroimaging) used in the study from sites CBIC,

RU, and SI are freely available via Healthy Brain Network Biobank

(https://childmind.org/center/healthy-brain-network/). The pheno-

typical data used could be available upon request. The toolbox used in

the study (FSL) is an open-access toolbox that can be downloaded

from https://fsl.fmrib.ox.ac.uk/fsldownloads_registration. For specific

processing protocols used in the study, please refer to Section 2 and

contact the corresponding author for any further queries. Scripts used

to conduct the analyses reported in this article have been made avail-

able on the Open Science Framework (OSF) at https://osf.io/9s27f.

TABLE 1 Details of scanning parameters from all centers

Centers
Number of
participants

Mean age
(years)

Scanner (field
strength)

Diffusion
model

Diffusion
directions

b values
(s/mm2)

Voxel
size (mm)

CBIC 228 9.98 ± 2.96 Siemens Prisma (3 T) DKI 64 0, 1,000, 2,000 2.0 � 2.0 � 2.0

RU 233 9.36 ± 2.86 Siemens TrioTim (3 T) DKI 64 0, 1,000, 2,000 2.0 � 2.0 � 2.0

SI 117 10.96 ± 3.10 Siemens Avanto (1.5 T) DKI 64 0, 1,000, 2,000 2.0 � 2.0 � 2.0

HL 37 6.91 ± 0.89 Siemens TrioTim (3 T) DTI 32 0, 1,000 2.0 � 2.0 � 3.0

BCH 32 5.39 ± 0.27 Siemens TrioTim (3 T) DTI 30 0, 1,000 2.0 � 2.0 � 2.0

ITA_1 34 13.19 ± 1.94 Philips Achieva (3 T) DTI 32 0, 300, 1,100 1.7 � 1.7 � 2.0

ITA_2 27 12.90 ± 1.79 Philips Achieva (3 T) DTI 32 0, 1,100, 2,500 1.7 � 1.7 � 2.0

Note: Here, ITA_1 and ITA_2 is separately shown to highlight the data acquisition difference in scanning parameters (b values) used for subanalysis.

F IGURE 1 Age and sex distribution
of all the participants. All participants
were selected without limitations on sex
or gender, race, or ethnicity, or age other
than as scientifically justified. Here M and
F indicates male and female and the black
dash shows the median line
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2.3 | Data analysis

The MRI scans primarily obtained in DICOM format were first

converted into Brain Imaging Data Structure (BIDS) format using the

dcm2bids toolbox available freely at https://github.com/cbedetti/

Dcm2Bids (Gorgolewski et al., 2016). Data quality metrics were com-

puted for all participants using an automated quality control frame-

work (named QUAD—QUality Assessment for DMRI; Bastiani

et al., 2019) available as an open-source toolbox FSL (ver. 6.0.3). The

diffusion data quality metrics (dMRIqc) include average-absolute

motion (AAM), average-relative motion (ARM), average-translational

motion (ATM), and average-rotational motion (AOM) motion, contrast

to noise ratio (CNR), and the number of outlier slices (outlier_dwi).

Average absolute motion (with respect to a reference volume) and rel-

ative motion (with respect to the previous volume) were calculated as

the average voxel displacement across all voxels within a brain mask

summarizing both translations and rotations at each voxel (Bastiani

et al., 2019). The number of outlier slices indexed how many single

slices got distorted during data acquisition because of participant

motion that caused signal drop (Andersson & Sotiropoulos, 2016).

Here, we computed the total percentage of slices that were distorted

within a given volume for each participant.

To obtain the diffusion and tract measures, the images were

preprocessed using inbuilt functionality in the open-source toolbox FSL

(ver. 6.0.3) described in detail elsewhere (Jenkinson, Bannister, Brady, &

Smith, 2002; Jenkinson & Smith, 2001). In brief, data collected with

reversed phase-encode blips (except for site BCH) were used for esti-

mating and correcting the susceptibility-induced artifacts using topup

(Andersson, Skare, & Ashburner, 2003; Smith et al., 2004). Corrections

of motion artifacts (eddy currents and head movements) were per-

formed using the eddy toolbox (Andersson & Sotiropoulos, 2016), and

individualmasksweregenerated for eachbrainusing theBrainExtraction

Toolkit (BET; Smith, 2002) to isolate the brain from the skull anddiffusion

tensormodeling for obtaining diffusionmeasures. Fractional anisotropy

(FA) andMeandiffusivity (MD)were calculatedusing theFDT toolbox. In

addition, the distribution of crossing fibers was estimated using

BEDPOSTX (T. Behrens, Berg, Jbabdi, Rushworth, & Woolrich, 2007;

T. E.Behrenset al., 2003), and theprobability ofmajor (f1) and secondary

(f2) fiber directions was calculated (Koirala et al., 2017; Koirala

et al., 2019). The obtained crossing fiber modeled diffusion data were

further processed using the automatic tractography scheme using

XTRACT toolbox in FSL (Warrington et al., 2020). Here, tractography

masks are defined in standard space; these masks were then warped to

each participant's native space using the participant-specific, nonlinear

warp fields; and probabilistic tractographywas performed in the partici-

pant's native space. The resultant tract was then stored in standard

space and overlaid on the FSL_HCP1065 FA atlas (Warrington

et al., 2020). Finally, tract density, tract length, FA, andMD values were

extracted fromeachof the36major tracts as detailed inTable2.

Using the obtained parameters, statistical analyses were con-

ducted to detect differences between these data quality metrics

across centers and brain regions (tracts) and to determine the relation-

ship between these data quality metrics and diffusion measures, as

detailed in Section 2.4. In recent years, different harmonization algo-

rithms have been proposed for removing unwanted inter-site variabil-

ity from multi-site diffusion data (Fortin et al., 2017; Mirzaalian

et al., 2016; Ning et al., 2020; Pinto et al., 2020). These algorithms

reduce/remove the systematic differences between scanner manufac-

turers, field strength, and other scanner characteristics that systemati-

cally affect the diffusion images and introduce inter-scanner variation.

A recent study (Fortin et al., 2017) attempted to address this issue by

comparing five statistical harmonization techniques for diffusion data:

global scaling, functional normalization (Fortin et al., 2014), removal of

artificial voxel effect by linear regression (RAVEL; Fortin et al., 2016),

surrogate variable analysis (SVA; Leek & Storey, 2007), and ComBat

(Johnson, Li, & Rabinovic, 2007). Of these, the ComBat model, which

uses an empirical Bayes (EB) framework to improve the variance of

the parameter estimates, was shown to be the most effective in

removing unwanted variation induced by site in diffusion data.

Accordingly, to evaluate whether applying a harmonization technique

in our multi-site dataset would affect the results of our study, we har-

monized our data using the ComBat model. To do this, we applied the

Matlab-based algorithm (open access availability at https://github.

com/Jfortin1/ComBatHarmonization) to harmonize the obtained

TABLE 2 All tracts where the diffusion parameters—tract—
density, length, fractional anisotropy (FA), and mean diffusivity (MD)
values were extracted

Tract Abbreviation

Anterior commissure AC

Arcuate fasciculus (left and right) Left AF, right AF

Acoustic radiation AR

Anterior thalamic radiation (left and right) Left ATR, right ATR

Dorsal cingulum (left and right) Left CBD, right CBD

Peri-genual cingulum (left and right) Left CBP, right CBP

Temporal cingulum (left and right) Left CBT, right CBT

Corticospinal tract (left and right) Left CST, right CST

Forceps major FMA

Forceps minor FMI

Fornix (left and right) Left FX, right FX

Inferior longitudinal fasciculus (left and right) Left ILF, right ILF

Inferior fronto-occipital fasciculus (left and

right)

Left IFO, right IFO

Middle longitudinal fasciculus (left and right) Left MdLF, right

MdLF

Optic radiation (left and right) Left OR, right OR

Superior longitudinal fasciculus 1 (left and

right)

Left SLF1, right SLF1

Superior longitudinal fasciculus 2 (left and

right)

Left SLF2, right SLF2

Superior longitudinal fasciculus 3 (left and

right)

Left SLF3, right SLF3

Uncinate fasciculus (left and right) Left UF, right UF

Vertical occipital fasciculus (left and right) Left VOF, right VOF
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diffusion measures—tract density, tract length, FA, and MD—across

sites. A second set of statistical analyses was run using the data har-

monized via ComBat.

2.4 | Statistical analysis

Four sets of analyses were conducted in R (v. 3.6.1; R Core Team, 2019)

to examine the relationships between six data quality metrics (AAM,

ARM, ATM, AOM, CNR, and outlier_dwi) and four diffusion measures

(tract density, tract length, FA, and MD) within and across centers. To

examine the effects of interest for each set of analyses, post hoc con-

trastswereapplied totheparametersestimatedbythestatisticalmodels.

2.4.1 | Analysis 1

To determine whether data quality metrics differed by center, six mul-

tiple regressions were conducted—one for each data quality metric—

to compute effects of center on that metric (the dependent variable).

To explore differences in these metrics between centers in more

detail, pairwise comparisons were conducted between centers for

each metric, with the Tukey method used to control family-wise error

rate when the main effect of center was significant.

2.4.2 | Analysis 2

To determine whether diffusion measures differed by center and

across brain regions, four linear mixed-effects regression models

(Baayen, Davidson, & Bates, 2008) were fit—one for each diffusion

measure—to compute effects of center, tract, and their interaction on

that diffusion measure (the dependent variable).2 Contrasts measured

the extent to which centers differed in diffusion measures at each of

the fiber tracts obtained.

2.4.3 | Analysis 3

To determine the relationship between data quality metrics and diffu-

sion measures as well as any modulation of this relationship by center

and brain region, 24 mixed-effects models were fit—one for each

combination of data quality metric (6) and diffusion measure (4)—to

compute effects of center, tract, data quality metric, and their interac-

tions on that diffusion measure (the dependent variable). Contrasts

examined the relationship between each pair of data quality and diffu-

sion measures at each of the fiber tracts obtained.

2.4.4 | Analysis 4

To determine the impact of different scanner models, magnetic

strength, diffusion model, and sequence on the relationship between

data quality metrics and diffusion measures, we performed contrasts

on the statistical models fitted for Analysis 3 (no new models were fit

for this analysis). Each contrast compared two centers (or two groups

of centers), examining the extent to which the (groups of) centers dif-

fered on the relationship between data quality metrics and diffusion

measures—both across all tracts, separately at each individual tract.

These contrasts examined the effects of several variables:

A. Scanner models (Siemens Prisma vs. TrioTim): By comparing CBIC

(N = 228, Siemens Prisma) with RU (N = 233, Siemens TrioTim).

B. Magnetic strength (3 vs. 1.5 T): By comparing CBIC (N = 228, 3 T)

and RU (N = 233, 3 T) with SI (N = 117, 1.5 T).

C. dMRI models (DKI vs. DTI): By comparing CBIC (N = 228, DKI) with

HL (N = 37, DTI) and BCH (N = 32, DTI).

D. dMRI sequence (higher vs. lower b values3): By comparing ITA_1 and

ITA_2, where ITA_2 was a partially overlapping subset of partici-

pants (overlapping n = 17) who were scanned during the same

acquisition period but using higher b values acquisition sequence

(Table 1).

We note that although the centers in each contrast were selected

to maximize the relevant difference while holding other variables as

constant as possible, all between-center contrasts (A, B, and C)

likely captured the joint influences of several variables on diffusion

metrics.

All analyses included fixed effects of age and sex, both as main

effects and in interactions with all other fixed effects. Including

these effects in every model ensured that wherever the dependent

variable covaried with age and/or sex, that variance was not attrib-

uted to critical predictors (e.g., effects of center or tract or data

quality metric). Also, for all analyses, contrast weightings for the

effect of center were selected to weight each center in proportion

to the number of participants tested at that center (a form of

weighted effects coding; cf. [te Grotenhuis et al., 2017]). This means

that, for example, when evaluating the main effect of tract, the data

from each participant was weighted the same regardless of whether

they were tested at center RU (n = 233) or center HL (n = 32)—

which in turn means that, overall, the data from RU was weighted

7.3 times as much as from HL (because 7.3 times as many partici-

pants were tested there).

For Analysis 1, which used multiple regressions, significance tests

for each factor were conducted via model comparison using the

ANOVA function. For Analysis 2 and Analysis 3, which used mixed-

effects models, significance tests were conducted using the con-

testMD function in the lmerTest package (v. 3.1-2; Kuznetsova, Bro-

ckhoff, & Christensen, 2017), using the Satterthwaite method to

approximate denominator degrees of freedom. (These methods of sig-

nificance testing were used because they preserved the contrast

weights for each center during significance testing.) The mixed-effects

models themselves were conducted using the lme4 package (v. 1.1–

21; Bates, Machler, Bolker, & Walker, 2015), employing a two-step

model fitting strategy. First, a model was fit with a maximal random

effects structure by adding a random intercept for participants, as well
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as all within-participant random slopes and their interactions.

(Correlations between random slopes were not added because this

would have caused the number of random effects parameters to equal

the number of observations, making the model unidentifiable. Also, as

674/691 participants (97.5%) were tested at one center each—that is,

the entire sample except for the 17 participants tested at the Italy site

with two b values acquisition sequences—all scans were treated as

independent for analytic purposes.) If this model did not converge, all

random slopes accounting for less than 1% of the random variance

were removed simultaneously (Bates et al., 2015), which always

resulted in convergence. Contrasts were computed using the

emmeans package (v. 1.4; Lenth & Love, 2018). To control Type I error

rate, corrections for multiple comparisons were applied. Within each

analysis, except as noted below, the Benjamini–Yekutieli method

(Benjamini & Yekutieli, 2001) was used to set the false discovery rate

(FDR) at 0.05 across all diffusion measures, data quality metrics, and

tracts. This correction was applied separately to each effect of interest

because each effect represents a different hypothesis. For example,

we conducted 24 tests of the hypothesis that there is a main effect of

data quality metric on diffusion measures (one test for each combina-

tion of six metrics and four measures), so we applied a correction for

24 tests to those p values. Separately, we conducted 24 tests of the

hypothesis that the effect of data quality metric on diffusion measures

interacts with center, so we applied a correction for 24 tests to the

p values of that two-way interaction. (For each hypothesis test, the

number of comparisons corrected for that test is included in the

Supporting Information.)

2.5 | Testing the effect of data harmonization

We then ran a second set of analyses on the ComBat-harmonized

metrics, including the analyses examining relationships between data

quality metrics and diffusion metrics at different centers and tracts.

These analyses were identical to our normal analyses—including

effects of age and sex on top of the harmonization—except that we

also removed the data from center ITA2 to avoid harmonizing data

from a subset of participants twice.

3 | RESULTS

3.1 | Analysis 1

We found that four data quality metrics (all except for AAM and

ATM) significantly differed between centers, as indicated by a signifi-

cant main effect of center in four of the six models. Test statistics for

each data quality metric are given in Table 3. To explore differences in

these metrics between centers in more detail, pairwise comparisons

were conducted between centers for each metric, with the Tukey

method used to control family-wise error rate when the main effect

of center was significant. These pairwise comparisons are shown in

Figure 2.

3.2 | Analysis 2

We found that all analyzed diffusion measures significantly differed

between centers and between tracts, and that these effects inter-

acted. Test statistics for each diffusion measure are presented in

Table 4. Descriptively, centers differed most strongly on MD, followed

by tract density, tract length, and FA (Figure 3), whereas tracts dif-

fered most strongly on tract length and FA, followed by MD and tract

density. All 36 tracts significantly differed across centers on FA, MD,

and tract length; and 11/36 tracts significantly differed across centers

on tract density (Figure 4).

3.3 | Analysis 3

Associations between diffusion measures and data quality metrics var-

ied across tracts to different degrees at different centers. This was

indicated by significant three-way interactions between center, tract,

and data quality metrics for 13/24 (54%) combinations of diffusion

measures and data quality metrics (Figure 5, bottom row). Relation-

ships with MD were the most influenced, showing significant three-

way interactions with center and tract on 5/6 data quality metrics,

followed by tract density (4/6 data quality metrics). The least

impacted relationships were with FA and tract length, for which cen-

ter and tract jointly modulated relationships with 2/6 data quality

metrics each (both average CNR and ARM). Relatedly, we found that

relationships with ARM were significantly modulated by center and

tract for 4/4 diffusion measures, and relationships with CNR were sig-

nificantly modulated by center and tract for 3/4 diffusion measures

(all except tract density).

Although the presence of three-way interactions qualifies the

interpretation of two-way interactions, we note for completeness that

for MD and tract length, relationships with several data quality met-

rics significantly differed across both centers and tracts. For the

remaining diffusion measures, however, significant relationships with

one or more data quality metrics were observed either across centers

(FA) or across tracts (tract density; see Figure 5, middle rows).

A small number of significant relationships (11/864, after cor-

recting for multiple comparisons) were observed between diffusion

TABLE 3 Details of the results obtained from Analysis 1—To
determine whether data quality metrics differed by center

Image quality metric Between centers

Average relative motion (ARM) F (6,687) = 30.2, p < .001

Contrast-to-noise ratio (CNR) F (6,687) = 25.2, p < .001

Outlier slices (outlier_dwi) F (6,687) = 13.8, p < .001

Average rotational motion (AOM) F (6,687) = 4.7, p < .001

Average absolute motion (AAM) F(6,687) = 0.8, p = 1.00

Average translation motion (ATM) F(6,687) = 0.5, p = 1.00

Note: The Benjamini–Yekutieli method was used to control FDR across

image quality metrics; adjusted p values are reported. Significant results

are shown in bold.
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measures and image quality metrics within individual tracts. Positive

relationships were observed between CNR andMD in right optic radia-

tion, left superior longitudinal fasciculus 1, and bilateral uncinate fascic-

ulus; and between CNR and tract length in left corticospinal tract, left

inferior fronto-occipital fasciculus, right superior longitudinal fasciculus

1, left superior longitudinal fasciculus 2, and bilateral uncinate

fasciculus; in addition, a negative relationship was observed between

the number of outlier slices and MD in the forceps major. The results

obtained from these analyses provide further evidence that the rela-

tionships between data quality metrics and diffusion measures are

irregularly modulated across different tracts (even if they are only sig-

nificant at a few individual tracts) and vary significantly across centers.

F IGURE 2 Data quality
metrics for all centers. For
metrics that significantly differed
across centers, letters above each
center show the results of Tukey-
corrected pairwise comparisons:
Centers that do not share a letter
significantly differed on the
metric after regressing out age

and sex. For example, center
CBIC significantly differed from
centers SI and ITA2, but not any
other center, on contrast-to-
noise ratio

TABLE 4 Details of the results
obtained from Analysis 2—To determine
whether diffusion measures differed by
center and across brain regions

Diffusion
measure Between centers Between tracts Center � tract

FA F (6,687) = 17.7,
p < .001

F (35,1,352) = 136.4,
p < .001

F (210,1,352) = 35.7,
p < .001

MD F (6,687) = 595.0,
p < .001

F (35,1,604) = 71.6,
p < .001

F (210,1,604) = 48.0,
p < .001

Tract density F (6,687) = 188.3,
p < .001

F (35,2,746) = 53.3,
p < .001

F (210,2,746) = 99.3,
p < .001

Tract length F (6,687) = 64.0,
p < .001

F (35,1,159) = 170.6,
p < .001

F (210,1,159) = 37.9,
p < .001

Note: The Benjamini–Yekutieli method was used to control FDR across diffusion measures; adjusted p

values are reported. Significant results are shown in bold.
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3.4 | Analysis 4

3.4.1 | Scanner models (Siemens Prisma
vs. TrioTim)

When comparing centers differing in the scanner manufacturer (CBIC

vs. RU), we found several significant differences in the relationships

between diffusion measures and data quality metrics, both across

tracts and at individual tracts. Modulation across tracts was observed

for the relationship between MD and image quality metrics (ARM,

ATT, and CNR), as well as the relationships between FA and CNR, and

between tract length and ARM (Table 5). Moreover, the relationships

between the metrics varied between tracts, with the largest number

of significant effects (22) associated with MD, then tract length

(6) and FA (5) [and none with tract density]. All tracts at which a signif-

icant difference was observed between centers in the relationship

between diffusion measures and data quality metrics are shown in

Figure 6.

3.4.2 | Magnetic strength (3 vs. 1.5 T)

When comparing centers differing in magnet strength (CBIC and

RU vs. SI), no significant differences were observed when averag-

ing across tracts. Comparing centers at each tract, all three signifi-

cant differences were in the relationship between ARM and

various diffusion metrics in the temporal cingulum, with stronger

relationships observed for the 1.5 T scanner. The details of all

tracts showing significant differences are shown in Figure 6. (Note

that the centers in this contrast also varied on scanner model, as

shown in Table 1.)

3.4.3 | dMRI models (DKI vs. DTI)

When comparing centers that differed in the diffusion models (DKI

and DTI) used to acquire data (CBIC vs. HL and BCH), no significant

differences were observed when averaging across tracts. Comparing

centers at each tract, one significant difference was observed in the

relationship between outlier_dwi and MD at FMA, with a stronger

F IGURE 3 Diffusion measures for all
centers. For measures that significantly
differed across centers, letters above
each center show the results of Tukey-
corrected pairwise comparisons: Centers
that do not share a letter significantly
differed on the measure after regressing
out age and sex. For example, center
CBIC significantly differed from center SI,

but not any other center, on tract length.
As analyses controlled for participant age
and sex, centers that were outliers in
their distribution of participant ages
(e.g., center BCH) may show fewer
significant differences with other centers
here than their means would suggest

F IGURE 4 All tracts that differ significantly across centers on
Mean diffusivity (MD) (36/36), fractional anisotropy (36/36), tract
length (36/36), and tract density (11/36). Each line indicates a tract
with the height of it showing strength. Please refer to Supporting
Information for the details of all tracts shown here with the statistical
values
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relationship observed for the DTI model. (Note that the centers in this

contrast also varied on scanner model, the number of diffusion direc-

tions, b values, and voxel size, as shown in Table 1.)

3.4.4 | dMRI sequence (higher vs. lower b values)

For this dataset acquired during the same session with two different

b values (ITA1 vs. ITA2), we did not observe any significant differ-

ences when averaging across tracts, but significant differences did

emerge in the relationships between data quality metrics and two dif-

fusion measures—MD and tract density—at a small number of tracts

(Figure 6). These effects were not always more prominent for the

higher b values sequence (probably as one might assume) but were

rather dependent on the data quality metric and diffusion measures.

3.4.5 | The effect of harmonization

The analyses with ComBat-harmonized data revealed that the harmo-

nization did not eliminate or even reduce the number of significant

relationships observed between the six data quality metrics and the

four diffusion measures. In Analysis 3, those relationships

a. were significant (main effect) for 4/24 combinations of metrics

(vs. 2/24 for non-harmonized data);

F IGURE 5 Figure visualizing Analysis 3 effects of data quality metrics on diffusion measures. Each row corresponds to a different type of
effect (main effect of a data quality metric in the top row, two-way interactions with center or tract in the middle rows, three-way interaction
with both center and tract in the bottom row). Each column corresponds to a different diffusion measure. Within each panel, each colored bar
corresponds to a different data quality metric. The Y-axis represents the F-value of the given effect with the given data quality metric on the
given diffusion measure. Effects that were statistically significant after correction for multiple comparisons are shaded with diagonal slashes. (Bar
heights are directly comparable within a row but are not comparable between rows due to differences in degrees of freedom for different
effects.) As an example of how to interpret the figure, the prevalence of many shaded bars in the MD column means that multiple significant
relationships were observed between data quality metrics and MD, whereas the prevalence of many yellow shaded bars throughout the figure
means that CNR was significantly related to multiple diffusion measures in different ways. Please refer to Supporting Information for the details
of all tracts shown here with the statistical values. AAM, average absolute motion; AOM, average rotational motion; ARM, average relative
motion; ATM, average translational motion; CNR, contrast to noise ratio; FA, fractional anisotropy; MD, mean diffusivity
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b. significantly varied by center (two-way interaction) for 0/24 com-

binations of metrics (vs. 5/24 for non-harmonized data);

c. significantly varied by tract (two-way interaction) for 5/24 combi-

nations of metrics (vs. 6/24 for non-harmonized data); and

d. significantly varied jointly by center and tract (three-way interac-

tion) for 17/24 combinations of metrics (vs. 13/24 for non-

harmonized data)

Regarding tract-by-tract analyses, of all combinations of 36 tracts,

six data quality metrics, and four diffusion metrics, the relationship

between metrics was significant at an individual tract for 12/864

combinations (vs. 11/864 for non-harmonized data).

In general, ComBat harmonization did appear to reduce between-

center differences in diffusion metrics (the main effect of center and the

interaction between center and tract were each significant for 0/4 metrics

in Analysis 2, vs. 4/4 for non-harmonized data). However, perhaps surpris-

ingly, the number of significant interactions with age and sex in all analyses

was roughly comparable for harmonized and non-harmonized data.

All the statistical results from the Main as well as from ComBat

analysis have been provided as Supporting Information in the OSF

platform (https://osf.io/9s27f).

4 | DISCUSSION

In this study, involving a large multisite dataset of typically developing

children and children with neurodevelopmental disorders, we demon-

strated that the diffusion imaging data quality, assessed via multiple

metrics, differed significantly between data collection sites. Further-

more, the associations between these data quality indices and the

obtained diffusion measures differed non-uniformly across sites and

brain areas. Analyzing different components of data acquisition, we

found significant modulation of the relationship between data quality

metric and diffusion measures were significantly influenced by scan-

ner models, magnetic strength, diffusion models, and data collection

sequences.

Over the last two decades, dMRI has been established as an

effective technique for understanding various neurodevelopmental

conditions and disorders and psychological states and processes. Sev-

eral indices have been proposed encompassing a wide range of micro-

structural properties including anisotropy, diffusivity, fiber orientation,

and neurite features. These indices are known to be influenced by

several white matter properties such as fiber arrangements, degree of

myelination, and axonal integrity (Alba-Ferrara & de Erausquin, 2013;

Jones et al., 2013). Moreover, the contributions of these white matter

properties to computed diffusion measures are non-linear and not

well known. To give an example, in a recent study using animal models

treated with different drugs to trigger demyelination and axonal dam-

age, the FA values obtained could not distinguish between a demye-

lination group and those with both demyelination and axonal damage

(Boretius et al., 2012). Similar concerns have been raised for crossing

fibers (around 90% of white matter voxels contain crossing fibers) and

q-space (diffusion space), which have been shown to have a remark-

able impact on fiber tract estimation and anisotropy analysis

(Jeurissen, Leemans, Tournier, Jones, & Sijbers, 2013; Wilkins, Lee,

Gajawelli, Law, & Lepore, 2015). The susceptibility of dMRI data to

various artifacts (e.g., eddy currents, echo-planar distortions, rotation

errors, partial volume effects, and scanner artifacts) has been studied

to better understand how these artifacts impact the estimation of

eigenvalues and eigenvectors, which in turn influence the accuracy of

computed anisotropic measures and fiber tracking schemes

(Anderson, 2001; Skare, Li, Nordell, & Ingvar, 2000). Furthermore, one

of the largest confounds for studies in children and adolescents—head

motion—has been shown to have a significant impact on results

obtained in group comparison studies (Yendiki, Koldewyn, Kakunoori,

Kanwisher, & Fischl, 2014) or in studies investigating the relationship

to diffusion measures (Baum et al., 2018). Even though several studies

have highlighted these aspects and proposed new methods (Li

et al., 2014; Oguz et al., 2014), the consideration of data quality for

the analysis and a transparent, standardized estimate of quality assur-

ance is still rare. Most of the studies suggest either removing the arti-

facts during preprocessing steps or manually performing quality

control as a good practice for controlling for this issue. In this study,

we provide evidence that even after these standard preprocessing

steps for artifacts correction, the relationships between these data

quality measures and computed diffusion metrics are still widespread

across the brain and vary non-uniformly across tracts and data collec-

tion centers. This result has potentially important implications for the

inferences made by the clinical and neurobiological studies that use

these metrics.

The results from Analysis 1 and Analysis 2 illustrated that data

quality metrics (except for absolute and translational motion) and

computed diffusion measures varied across centers. This provides one

possible scientific explanation for differences in findings and

TABLE 5 Details of significant (p < .05) results from Analysis
4—To determine the impact of different scanner models, magnetic
strength, diffusion model, and sequence to the relationship of data
quality metrics and diffusion measures

Scanner models

Diffusion measure Data quality metric B ± SE

FA CNR �0.02 ± 0.004

MD ARM 1E�5 ± 3E�6

MD ATM 1E�5 ± 3E�6

MD CNR 1E�5 ± 5E�6

Tract length ARM 1.64 ± 0.513

Note: The Benjamini–Yekutieli method was used to control FDR across

diffusion measures. Here, B indicates the Beta coefficient representing the

mean effect of the predictor (data quality metrics) on the dependent

variable (DV; diffusion measures) for one center minus the effect of the

predictor on the DV for another center. The overall contrast for this

analysis was only significant for scanner models. See full results provided

at https://osf.io/9s27f.

Abbreviations: ARM, average relative motion; ATM, average translation

motion; CNR, contrast to noise ratio; FA, fractional anisotropy; MD, mean

diffusivity; SE, standard error.
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replication problems for studies conducted across different centers.

Moreover, we observed that the impact of these data quality metrics

on diffusion measures varies across centers and across different tracts

in the brain (Analysis 3). The tracts which showed the strongest varia-

tion across centers for different diffusion measures are commonly

studied in clinical populations and in relation to various neuropsycho-

logical parameters. In addition, we observed that MD, tract density,

tract length, and FA, which are some of the widely used parameters in

neurodevelopmental studies, were the parameters highly influenced

by the data quality metrics. However, to the best of our knowledge,

no prior neurodevelopmental study has accounted for these data

quality metrics in the statistical models. A failure to do so might lead

to unaccounted impacts on suboptimal tensor estimation, erroneous

partial volume effect computation, or estimation of boundary

threshold. Accordingly, we recommend computing these quality met-

rics and including them in analyses when reporting delicate micro-

structural changes.

In Analysis 4, the four subanalyses completed to quantify these

differences across different scanner models, magnetic strength, diffu-

sion models, and q-space sampling or b values, revealed significant

modulation of the relation between quality metrics and diffusion mea-

sures by these factors. For these comparisons, MD was the measure

that showed the largest number of significant relationships with data

quality measures, and ARM was the data quality metric that showed

the largest number of significant relationships with diffusion mea-

sures. More importantly, the impact of data quality varied

(e.g., direction of association,: positive or negative and strength of the

association) across different tracts and different diffusion measures,

F IGURE 6 All tracts that
showed statistically significant
differences between the centers
in the effects of each data quality
metric in each tract on each
diffusion measures. Please refer
to Supporting Information for the
details of all tracts shown here
with the statistical values. Here,

B indicates the Beta coefficient
representing the mean effect of
the predictor (data quality
metrics) on the dependent
variable (DV) (diffusion
measures) for one (group of)
center(s) minus the effect of the
predictor on the DV for another
(group of) center(s). AAM,
average absolute motion; AOM,
average rotational motion; ARM,
average relative motion; ATM,
average translational motion;
CNR, Contrast to noise ratio; FA,
fractional anisotropy; MD, mean
diffusivity
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making it impossible to process out one or more effects. For example,

the effect of CNR in FA values is higher in most tracts for Siemens Tri-

mTrio; however, the effect of the same in MD is higher for Siemens

Prisma. In addition, the strength of the relationship between the FA,

MD, tract length and tract density is not uniform for each of the data

quality metrics and for each tract (refer to Figure 6 for visualization of

these examples). This variation further highlights the importance of

using the quality metrics in statistical analysis while computing these

diffusion measures to capture this unseen influence. Moreover, for

multisite data, this might be a promising way to gauge differences in

the datasets and evaluate them for harmonization.

After harmonizing our data across centers using the ComBat algo-

rithm, we continued to observe significant relationships between data

quality metrics and diffusion metrics, both directly and varying across

centers and tracts. Of these effects, the total number of significant

effects was the same with vs. without harmonization (26/96 signifi-

cant). This further supports the necessity of considering data quality

metrics in data analysis even after harmonization.

In recent years, there have been several studies which have

highlighted the impact of quality assurance of dMRI data on computed

measures (Maximov, Alnaes, & Westlye, 2019; Roalf et al., 2016) and

have suggested various optimization methods (Liu et al., 2019) and

alternative diffusion measures less sensitive to the data quality

(Ozcan, 2010). With this study, we presented quantitative sets of data

quality metrics (that can be straightforwardly obtained using standard

toolboxes) and comprehensive details of their impact on the com-

puted diffusion measures. We suggest that moving forward, these

quality metrics should be considered in data analysis, particularly for

multisite studies and those involving populations prone to movement.

The dataset used for this analysis was aggregated post-hoc; thus, data

collected at each center consisted of a different set of participants.

Moreover, participant diagnoses for different neurodevelopmental

and neuropsychological disorders were not modeled during analysis

as this was outside the scope of the study. Although it is possible that

including diagnosis could change which specific relationships with

data quality metrics were statistically significant, we think that the

overall pattern of results—that is, the existence of significant relation-

ships between these metrics and diffusion measures, often modulated

by center and/or tract—would remain the same. Despite the aggre-

gated nature of the dataset, we showed strong effects of center and

influence of different components involved in data acquisition includ-

ing scanner model, magnetic strength, and diffusion models (though

some of these comparisons may reflect other between-center vari-

ables as well). We conclude that this assessment of image quality in

such a dataset is important as it most closely represents the types of

large-scale multisite studies that researchers currently draw upon for

conducting large-scale neuroimaging research. However, ongoing and

future multisite studies can and should further optimize harmonization

across sites through the use of concurrent acquisition models and

sequence where possible, evaluate the difference with the use of

phantoms beforehand, and use some of the harmonization techniques

(Fortin et al., 2017; Mirzaalian et al., 2016; Ning et al., 2020) for

closely related sequences.

5 | CONCLUSION

We provided evidence that several dMRI data quality metrics differ

between imaging data collection sites.More importantly, the relationship

between these data quality metrics and diffusion measures are wide-

spread across brain regions, though this too varied across center. The

obtained brain areas and diffusion measures have beenwidely employed

to discriminate neurotypical populations from individuals with neurologi-

cal or developmental disorders. Hence, these data quality metrics should

be considered for inclusion in dMRI analysis, which could be quantified

using available toolboxes. Taking these metrics into account would help

make data more comparable across testing sites, would provide more

reliable findings, and might be a key in producing replicable studies for

group comparison, identifying correlates of individual differences, and

carrying out large-scale multisite studies to identify neural markers for

different neurodevelopmental conditions and cognitive functions.
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ENDNOTES
1 All diffusion measures were computed based on the principle of diffu-

sion tensors, which describes the covariance of diffusion displacements

in three dimensions normalized by the diffusion time. The diffusion coef-

ficient (the primary index in this model) is a measure of the magnitude of

diffusion (of water molecules) within tissue, expressed in mm2/s, and is

proportional to the mean-squared displacement divided by the number

of dimensions and the diffusion time. For mathematical details, please

refer to A. L. Alexander, Lee, Lazar, and Field (2007), Basser et al. (1994),

Einstein, Fürth, and Cowper (1926) and Pierpaoli et al. (1996).
2 As diffusion measures are always computed for individual tracts, main

effects of center represent an overall shift in diffusion measure values

“across tracts”; that is, with each tract represented equally, though sig-

nificant interactions between center and tract would indicate that the

extent of this shift varied by tract.
3 b values measure the degree of diffusion weighting applied (in s/mm2),

thereby indicating the amplitude (G), time of applied gradients (δ), and
duration between the paired gradients (Δ), formulated as: b = γ2 G2 δ2

(Δ � δ/3) (Brown, Cheng, Haacke, Thompson, & Venkatesan, 2014).

DATA AVAILABILITY STATEMENT

All the raw data (Neuroimaging) used in the study from site CBIC, RU

and SI are freely available via Healthy Brain Network Biobank

KOIRALA ET AL. 1337



(https://childmind.org/center/healthy-brain-network/). The pheno-

typical data used could be available upon request. The toolbox used in

the study (FSL) is an open access toolbox which can be downloaded

from https://fsl.fmrib.ox.ac.uk/fsldownloads_registration. For specific

processing protocols used in the study, please refer to the Methods

section and contact the corresponding author for any further queries.

Scripts used to conduct the analyses reported in this paper have been

made available on the Open Science Framework (OSF) at https://osf.

io/9s27f.

ORCID

Nabin Koirala https://orcid.org/0000-0002-8261-8271

REFERENCES

Afacan, O., Erem, B., Roby, D. P., Roth, N., Roth, A., Prabhu, S. P., &

Warfield, S. K. (2016). Evaluation of motion and its effect on brain

magnetic resonance image quality in children. Pediatric Radiology,

46(12), 1728–1735. https://doi.org/10.1007/s00247-016-3677-9
Alba-Ferrara, L. M., & de Erausquin, G. A. (2013). What does anisotropy

measure? Insights from increased and decreased anisotropy in selec-

tive fiber tracts in schizophrenia. Frontiers in Integrative Neuroscience,

7, 9–9. https://doi.org/10.3389/fnint.2013.00009
Alexander, A. L., Lee, J. E., Lazar, M., & Field, A. S. (2007). Diffusion tensor

imaging of the brain. Neurotherapeutics, 4(3), 316–329. https://doi.
org/10.1016/j.nurt.2007.05.011

Alexander, L. M., Escalera, J., Ai, L., Andreotti, C., Febre, K., Mangone, A., …
Milham, M. P. (2017). An open resource for transdiagnostic research in

pediatric mental health and learning disorders. Scientific Data, 4,

170181. https://doi.org/10.1038/sdata.2017.181

Alhamud, A., Taylor, P. A., Laughton, B., van der Kouwe, A. J. W., &

Meintjes, E. M. (2015). Motion artifact reduction in pediatric diffusion

tensor imaging using fast prospective correction. Journal of Magnetic

Resonance Imaging, 41(5), 1353–1364. https://doi.org/10.1002/jmri.

24678

Ameis, S. H., Lerch, J. P., Taylor, M. J., Lee, W., Viviano, J. D., Pipitone, J., …
Anagnostou, E. (2016). A diffusion tensor imaging study in children

with ADHD, autism Spectrum disorder, OCD, and matched controls:

Distinct and non-distinct white matter disruption and dimensional

brain-behavior relationships. The American Journal of Psychiatry,

173(12), 1213–1222. https://doi.org/10.1176/appi.ajp.2016.

15111435

Anderson, A. W. (2001). Theoretical analysis of the effects of noise on dif-

fusion tensor imaging. Magnetic Resonance in Medicine, 46(6), 1174–
1188. https://doi.org/10.1002/mrm.1315

Andersson, J. L. R., Graham, M. S., Drobnjak, I., Zhang, H., Filippini, N., &

Bastiani, M. (2017). Towards a comprehensive framework for move-

ment and distortion correction of diffusion MR images: Within volume

movement. NeuroImage, 152, 450–466. https://doi.org/10.1016/j.

neuroimage.2017.02.085

Andersson, J. L. R., Skare, S., & Ashburner, J. (2003). How to correct sus-

ceptibility distortions in spin-echo echo-planar images: Application to

diffusion tensor imaging. NeuroImage, 20(2), 870–888. https://doi.org/
10.1016/S1053-8119(03)00336-7

Andersson, J. L. R., & Sotiropoulos, S. N. (2016). An integrated approach to

correction for off-resonance effects and subject movement in diffu-

sion MR imaging. NeuroImage, 125, 1063–1078. https://doi.org/10.
1016/j.neuroimage.2015.10.019

Andrews, D. S., Lee, J. K., Solomon, M., Rogers, S. J., Amaral, D. G., &

Nordahl, C. W. (2019). A diffusion-weighted imaging tract-based spa-

tial statistics study of autism spectrum disorder in preschool-aged chil-

dren. Journal of Neurodevelopmental Disorders, 11(1), 32. https://doi.

org/10.1186/s11689-019-9291-z

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects model-

ing with crossed random effects for subjects and items. Journal of

Memory and Language, 59(4), 390–412. https://doi.org/10.1016/j.jml.

2007.12.005

Baliyan, V., Das, C. J., Sharma, R., & Gupta, A. K. (2016). Diffusion

weighted imaging: Technique and applications. World Journal of Radiol-

ogy, 8(9), 785–798. https://doi.org/10.4329/wjr.v8.i9.785

Bammer, R., Holdsworth, S. J., Veldhuis, W. B., & Skare, S. T. (2009). New

methods in diffusion-weighted and diffusion tensor imaging. Magnetic

Resonance Imaging Clinics of North America, 17(2), 175–204. https://
doi.org/10.1016/j.mric.2009.01.011

Basser, P. J., Mattiello, J., & LeBihan, D. (1994). MR diffusion tensor spec-

troscopy and imaging. Biophysical Journal, 66(1), 259–267. https://doi.
org/10.1016/S0006-3495(94)80775-1

Bastiani, M., Cottaar, M., Dikranian, K., Ghosh, A., Zhang, H.,

Alexander, D. C., … Sotiropoulos, S. N. (2017). Improved tractography

using asymmetric fibre orientation distributions. NeuroImage, 158,

205–218. https://doi.org/10.1016/j.neuroimage.2017.06.050

Bastiani, M., Cottaar, M., Fitzgibbon, S. P., Suri, S., Alfaro-Almagro, F.,

Sotiropoulos, S. N., … Andersson, J. L. R. (2019). Automated quality

control for within and between studies diffusion MRI data using a

non-parametric framework for movement and distortion correction.

NeuroImage, 184, 801–812. https://doi.org/10.1016/j.neuroimage.

2018.09.073

Bastin, M. E., Armitage, P. A., & Marshall, I. (1998). A theoretical study of

the effect of experimental noise on the measurement of anisotropy in

diffusion imaging. Magnetic Resonance Imaging, 16(7), 773–785.
https://doi.org/10.1016/S0730-725x(98)00098-8

Bates, D., Machler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear

mixed-effects models using lme4. Journal of Statistical Software, 67(1),

1–48. https://doi.org/10.18637/jss.v067.i01
Baum, G. L., Roalf, D. R., Cook, P. A., Ciric, R., Rosen, A. F. G., Xia, C., …

Satterthwaite, T. D. (2018). The impact of in-scanner head motion on

structural connectivity derived from diffusion MRI. NeuroImage, 173,

275–286. https://doi.org/10.1016/j.neuroimage.2018.02.041

Beaulieu, C. (2009). The biological basis of diffusion anisotropy. In H.

Johansen-Berg & T. E. J. Behrens (Eds.), Diffusion MRI: From Quantitative

Measurement to In Vivo Neuroanatomy (pp. 105–126). New York, NY: Aca-

demic Press. https://doi.org/10.1016/B978-0-12-374709-9.00006-7

Behrens, T., Berg, H. J., Jbabdi, S., Rushworth, M., & Woolrich, M. (2007).

Probabilistic diffusion tractography with multiple fibre orientations:

What can we gain? NeuroImage, 34(1), 144–155.
Behrens, T. E., Woolrich, M. W., Jenkinson, M., Johansen-Berg, H.,

Nunes, R. G., Clare, S., … Smith, S. M. (2003). Characterization and

propagation of uncertainty in diffusion-weighted MR imaging. Mag-

netic Resonance in Medicine, 50(5), 1077–1088. https://doi.org/10.

1002/mrm.10609

Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate

in multiple testing under dependency. Annals of Statistics, 29(4), 1165–
1188.

Boretius, S., Escher, A., Dallenga, T., Wrzos, C., Tammer, R., Bruck, W., …
Stadelmann, C. (2012). Assessment of lesion pathology in a new animal

model of MS by multiparametric MRI and DTI. NeuroImage, 59(3),

2678–2688. https://doi.org/10.1016/j.neuroimage.2011.08.051

Brown, R. W., Cheng, Y.-C. N., Haacke, E. M., Thompson, M. R., &

Venkatesan, R. (2014). Magnetic resonance imaging: Physical principles

and sequence design (2nd ed.). New York, NY: WILEY Blackwell.

Casey, B. J., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M.,

Heitzeg, M. M., … Workgroup, A. I. A. (2018). The adolescent brain

cognitive development (ABCD) study: Imaging acquisition across

21 sites. Developmental Cognitive Neuroscience, 32, 43–54. https://doi.
org/10.1016/j.dcn.2018.03.001

Chan, R. W., von Deuster, C., Giese, D., Stoeck, C. T., Harmer, J.,

Aitken, A. P., … Kozerke, S. (2014). Characterization and correction of

eddy-current artifacts in unipolar and bipolar diffusion sequences

1338 KOIRALA ET AL.

https://childmind.org/center/healthy-brain-network/
https://fsl.fmrib.ox.ac.uk/fsldownloads_registration
https://osf.io/9s27f
https://osf.io/9s27f
https://orcid.org/0000-0002-8261-8271
https://orcid.org/0000-0002-8261-8271
https://doi.org/10.1007/s00247-016-3677-9
https://doi.org/10.3389/fnint.2013.00009
https://doi.org/10.1016/j.nurt.2007.05.011
https://doi.org/10.1016/j.nurt.2007.05.011
https://doi.org/10.1038/sdata.2017.181
https://doi.org/10.1002/jmri.24678
https://doi.org/10.1002/jmri.24678
https://doi.org/10.1176/appi.ajp.2016.15111435
https://doi.org/10.1176/appi.ajp.2016.15111435
https://doi.org/10.1002/mrm.1315
https://doi.org/10.1016/j.neuroimage.2017.02.085
https://doi.org/10.1016/j.neuroimage.2017.02.085
https://doi.org/10.1016/S1053-8119(03)00336-7
https://doi.org/10.1016/S1053-8119(03)00336-7
https://doi.org/10.1016/j.neuroimage.2015.10.019
https://doi.org/10.1016/j.neuroimage.2015.10.019
https://doi.org/10.1186/s11689-019-9291-z
https://doi.org/10.1186/s11689-019-9291-z
https://doi.org/10.1016/j.jml.2007.12.005
https://doi.org/10.1016/j.jml.2007.12.005
https://doi.org/10.4329/wjr.v8.i9.785
https://doi.org/10.1016/j.mric.2009.01.011
https://doi.org/10.1016/j.mric.2009.01.011
https://doi.org/10.1016/S0006-3495(94)80775-1
https://doi.org/10.1016/S0006-3495(94)80775-1
https://doi.org/10.1016/j.neuroimage.2017.06.050
https://doi.org/10.1016/j.neuroimage.2018.09.073
https://doi.org/10.1016/j.neuroimage.2018.09.073
https://doi.org/10.1016/S0730-725x(98)00098-8
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1016/j.neuroimage.2018.02.041
https://doi.org/10.1016/B978-0-12-374709-9.00006-7
https://doi.org/10.1002/mrm.10609
https://doi.org/10.1002/mrm.10609
https://doi.org/10.1016/j.neuroimage.2011.08.051
https://doi.org/10.1016/j.dcn.2018.03.001
https://doi.org/10.1016/j.dcn.2018.03.001


using magnetic field monitoring. Journal of Magnetic Resonance, 244,

74–84. https://doi.org/10.1016/j.jmr.2014.04.018

Chanraud, S., Zahr, N., Sullivan, E. V., & Pfefferbaum, A. (2010). MR diffu-

sion tensor imaging: A window into white matter integrity of the

working brain. Neuropsychology Review, 20(2), 209–225. https://doi.
org/10.1007/s11065-010-9129-7

Chilla, G. S., Tan, C. H., Xu, C., & Poh, C. L. (2015). Diffusion weighted mag-

netic resonance imaging and its recent trend-a survey. Quantitative

Imaging in Medicine and Surgery, 5(3), 407–422. https://doi.org/10.
3978/j.issn.2223-4292.2015.03.01

Dosenbach, N. U. F., Koller, J. M., Earl, E. A., Miranda-Dominguez, O.,

Klein, R. L., Van, A. N., … Fair, D. A. (2017). Real-time motion analytics

during brain MRI improve data quality and reduce costs. NeuroImage,

161, 80–93. https://doi.org/10.1016/j.neuroimage.2017.08.025

Einstein, A., Fürth, R., & Cowper, A. D. (1926). Investigations on the theory

of the Brownian movement. London: Methuen & Co. Ltd.

Fortin, J. P., Labbe, A., Lemire, M., Zanke, B. W., Hudson, T. J., Fertig, E. J.,

… Hansen, K. D. (2014). Functional normalization of 450k methylation

array data improves replication in large cancer studies. Genome Biology,

15(12), 503. https://doi.org/10.1186/s13059-014-0503-2

Fortin, J. P., Parker, D., Tunc, B., Watanabe, T., Elliott, M. A., Ruparel, K., …
Shinohara, R. T. (2017). Harmonization of multi-site diffusion tensor

imaging data. NeuroImage, 161, 149–170. https://doi.org/10.1016/j.
neuroimage.2017.08.047

Fortin, J. P., Sweeney, E. M., Muschelli, J., Crainiceanu, C. M.,

Shinohara, R. T., & Alzheimer's Disease Neuroimaging Initiative.

(2016). Removing inter-subject technical variability in magnetic reso-

nance imaging studies. NeuroImage, 132, 198–212. https://doi.org/10.
1016/j.neuroimage.2016.02.036

Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S.,

Duff, E. P., … Poldrack, R. A. (2016). The brain imaging data structure,

a format for organizing and describing outputs of neuroimaging experi-

ments. Scientific Data, 3, 160044. https://doi.org/10.1038/sdata.

2016.44

Greene, D. J., Koller, J. M., Hampton, J. M., Wesevich, V., Van, A. N.,

Nguyen, A. L., … Dosenbach, N. U. F. (2018). Behavioral interventions

for reducing head motion during MRI scans in children. NeuroImage,

171, 234–245. https://doi.org/10.1016/j.neuroimage.2018.01.023

Gruner, P., Vo, A., Ikuta, T., Mahon, K., Peters, B. D., Malhotra, A. K., …
Szeszko, P. R. (2012). White matter abnormalities in pediatric

obsessive-compulsive disorder. Neuropsychopharmacology, 37(12),

2730–2739. https://doi.org/10.1038/npp.2012.138
Helmer, K. G., Chou, M. C., Preciado, R. I., Gimi, B., Rollins, N. K., Song, A.,

… Mori, S. (2016). Multi-site study of diffusion metric variability:

Effects of site, vendor, field strength, and echo time on regions-of-

interest and histogram-bin analyses. Proceedings of SPIE The Interna-

tional Society for Optical Engineering, 9788, 97882U. https://doi.org/

10.1117/12.2217445

Hrabe, J., Kaur, G., & Guilfoyle, D. N. (2007). Principles and limitations of

NMR diffusion measurements. Medical Physics, 32(1), 34–42. https://
doi.org/10.4103/0971-6203.31148

Huo, J., Alger, J., Kim, H., Brown, M., Okada, K., Pope, W., & Goldin, J.

(2016). Between-scanner and between-visit variation in Normal white

matter apparent diffusion coefficient values in the setting of a multi-

center clinical trial. Clinical Neuroradiology, 26(4), 423–430. https://doi.
org/10.1007/s00062-015-0381-3

Ismail, M. M., Keynton, R. S., Mostapha, M. M., ElTanboly, A. H.,

Casanova, M. F., Gimel'farb, G. L., & El-Baz, A. (2016). Studying autism

Spectrum disorder with structural and diffusion magnetic resonance

imaging: A survey. Frontiers in Human Neuroscience, 10, 211. https://

doi.org/10.3389/fnhum.2016.00211

Jayarajan, R. N., Venkatasubramanian, G., Viswanath, B., Janardhan

Reddy, Y. C., Srinath, S., Vasudev, M. K., & Chandrashekar, C. R.

(2012). White matter abnormalities in children and adolescents with

obsessive-compulsive disorder: A diffusion tensor imaging study.

Depression and Anxiety, 29(9), 780–788. https://doi.org/10.1002/da.
21890

Jbabdi, S., & Johansen-Berg, H. (2011). Tractography: Where do we go

from here? Brain Connectivity, 1(3), 169–183. https://doi.org/10.

1089/brain.2011.0033

Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved opti-

mization for the robust and accurate linear registration and motion

correction of brain images. NeuroImage, 17(2), 825–841.
Jenkinson, M., & Smith, S. (2001). A global optimisation method for robust

affine registration of brain images. Medical Image Analysis, 5(2),

143–156.
Jensen, J. H., & Helpern, J. A. (2010). MRI quantification of non-Gaussian

water diffusion by kurtosis analysis. NMR in Biomedicine, 23(7), 698–
710. https://doi.org/10.1002/nbm.1518

Jeurissen, B., Leemans, A., Tournier, J. D., Jones, D. K., & Sijbers, J. (2013).

Investigating the prevalence of complex fiber configurations in white

matter tissue with diffusion magnetic resonance imaging. Human Brain

Mapping, 34(11), 2747–2766. https://doi.org/10.1002/hbm.22099

Johnson, W. E., Li, C., & Rabinovic, A. (2007). Adjusting batch effects in

microarray expression data using empirical Bayes methods. Biostatis-

tics, 8(1), 118–127. https://doi.org/10.1093/biostatistics/kxj037
Jones, D. K., & Cercignani, M. (2010). Twenty-five pitfalls in the analysis of

diffusion MRI data. NMR in Biomedicine, 23(7), 803–820. https://doi.
org/10.1002/nbm.1543

Jones, D. K., Knosche, T. R., & Turner, R. (2013). White matter integrity,

fiber count, and other fallacies: The do's and don'ts of diffusion MRI.

NeuroImage, 73, 239–254. https://doi.org/10.1016/j.neuroimage.

2012.06.081

Koirala, N., Anwar, A. R., Ciolac, D., Glaser, M., Pintea, B., Deuschl, G., …
Groppa, S. (2019). Alterations in white matter network and microstruc-

tural integrity differentiate Parkinson's disease patients and healthy

subjects. Frontiers in Aging Neuroscience, 11, 191. https://doi.org/10.

3389/fnagi.2019.00191

Koirala, N., Fleischer, V., Glaser, M., Zeuner, K. E., Deuschl, G.,

Volkmann, J., … Groppa, S. (2017). Frontal lobe connectivity and net-

work community characteristics are associated with the outcome of

subthalamic nucleus deep brain stimulation in patients with

Parkinson's disease. Brain Topography, 31, 311–321. https://doi.org/
10.1007/s10548-017-0597-4

Koirala, N., Fleischer, V., Granert, O., Deuschl, G., Muthuraman, M., &

Groppa, S. (2016). Network effects and pathways in deep brain stimu-

lation in Parkinson's disease. Conference Proceedings: Annual Interna-

tional Conference of the IEEE Engineering in Medicine and Biology

Society, 2016, 5533–5536. https://doi.org/10.1109/embc.2016.

7591980

Koirala, N., Perdue, M. V., Su, X., Grigorenko, E. L., & Landi, N. (2021). Neu-

rite density and arborization is associated with reading skill and pho-

nological processing in children. NeuroImage, 241, 118426. https://doi.

org/10.1016/j.neuroimage.2021.118426

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest

package: Tests in linear mixed effects models. Journal of Statistical

Software, 82(13), 1–26. https://doi.org/10.18637/jss.v082.i13
Landman, B. A., Farrell, J. A. D., Jones, C. K., Smith, S. A., Prince, J. L., &

Mori, S. (2007). Effects of diffusion weighting schemes on the repro-

ducibility of DTI-derived fractional anisotropy, mean diffusivity, and

principal eigenvector measurements at 1.5T. NeuroImage, 36(4), 1123–
1138. https://doi.org/10.1016/j.neuroimage.2007.02.056

Le Bihan, D., Poupon, C., Amadon, A., & Lethimonnier, F. (2006). Artifacts

and pitfalls in diffusion MRI. Journal of Magnetic Resonance Imaging,

24(3), 478–488. https://doi.org/10.1002/jmri.20683

Leek, J. T., & Storey, J. D. (2007). Capturing heterogeneity in gene expres-

sion studies by surrogate variable analysis. PLoS Genetics, 3(9), 1724–
1735. https://doi.org/10.1371/journal.pgen.0030161

Lenth, R., & Love, J. (2018). lsmeans: Least-squares means. R package ver-

sion 2.27-62.

KOIRALA ET AL. 1339

https://doi.org/10.1016/j.jmr.2014.04.018
https://doi.org/10.1007/s11065-010-9129-7
https://doi.org/10.1007/s11065-010-9129-7
https://doi.org/10.3978/j.issn.2223-4292.2015.03.01
https://doi.org/10.3978/j.issn.2223-4292.2015.03.01
https://doi.org/10.1016/j.neuroimage.2017.08.025
https://doi.org/10.1186/s13059-014-0503-2
https://doi.org/10.1016/j.neuroimage.2017.08.047
https://doi.org/10.1016/j.neuroimage.2017.08.047
https://doi.org/10.1016/j.neuroimage.2016.02.036
https://doi.org/10.1016/j.neuroimage.2016.02.036
https://doi.org/10.1038/sdata.2016.44
https://doi.org/10.1038/sdata.2016.44
https://doi.org/10.1016/j.neuroimage.2018.01.023
https://doi.org/10.1038/npp.2012.138
https://doi.org/10.1117/12.2217445
https://doi.org/10.1117/12.2217445
https://doi.org/10.4103/0971-6203.31148
https://doi.org/10.4103/0971-6203.31148
https://doi.org/10.1007/s00062-015-0381-3
https://doi.org/10.1007/s00062-015-0381-3
https://doi.org/10.3389/fnhum.2016.00211
https://doi.org/10.3389/fnhum.2016.00211
https://doi.org/10.1002/da.21890
https://doi.org/10.1002/da.21890
https://doi.org/10.1089/brain.2011.0033
https://doi.org/10.1089/brain.2011.0033
https://doi.org/10.1002/nbm.1518
https://doi.org/10.1002/hbm.22099
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.1002/nbm.1543
https://doi.org/10.1002/nbm.1543
https://doi.org/10.1016/j.neuroimage.2012.06.081
https://doi.org/10.1016/j.neuroimage.2012.06.081
https://doi.org/10.3389/fnagi.2019.00191
https://doi.org/10.3389/fnagi.2019.00191
https://doi.org/10.1007/s10548-017-0597-4
https://doi.org/10.1007/s10548-017-0597-4
https://doi.org/10.1109/embc.2016.7591980
https://doi.org/10.1109/embc.2016.7591980
https://doi.org/10.1016/j.neuroimage.2021.118426
https://doi.org/10.1016/j.neuroimage.2021.118426
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.1016/j.neuroimage.2007.02.056
https://doi.org/10.1002/jmri.20683
https://doi.org/10.1371/journal.pgen.0030161


Li, X., Yang, J., Gao, J., Luo, X., Zhou, Z., Hu, Y., … Wan, M. (2014). A robust

post-processing workflow for datasets with motion artifacts in diffu-

sion kurtosis imaging. PLoS One, 9(4), e94592. https://doi.org/10.

1371/journal.pone.0094592

Ling, J., Merideth, F., Caprihan, A., Pena, A., Teshiba, T., & Mayer, A. R.

(2012). Head injury or head motion? Assessment and quantification of

motion artifacts in diffusion tensor imaging studies. Human Brain Map-

ping, 33(1), 50–62. https://doi.org/10.1002/hbm.21192

Liu, S. Y., Thung, K. H., Lin, W. L., Yap, P. T., Shen, D. G., &

Connectome, U. U. B. (2019). Multi-stage image quality assessment

of diffusion MRI via semi-supervised nonlocal residual networks. In

D. Shen, T. Liu, T. M. Peters, L. H. Staib, C. Essert, S. Zhou, et al.

(Eds.), Medical Image Computing and Computer Assisted Intervention.

MICCAI 2019. Lecture Notes in Computer Science (Vol. 11766,

pp. 521–528). Cham: Springer. https://doi.org/10.1007/978-3-030-

32248-9_58

Lu, H. Z., Jensen, J. H., Ramani, A., & Helpern, J. A. (2006). Three-

dimensional characterization of non-gaussian water diffusion in

humans using diffusion kurtosis imaging. NMR in Biomedicine, 19(2),

236–247. https://doi.org/10.1002/nbm.1020

Maximov, I. I., Alnaes, D., & Westlye, L. T. (2019). Towards an optimised

processing pipeline for diffusion magnetic resonance imaging data:

Effects of artefact corrections on diffusion metrics and their age asso-

ciations in UK biobank. Human Brain Mapping, 40(14), 4146–4162.
https://doi.org/10.1002/hbm.24691

Merboldt, K. D., Hanicke, W., & Frahm, J. (1985). Self-diffusion Nmr imag-

ing using stimulated echoes. Journal of Magnetic Resonance, 64(3),

479–486. https://doi.org/10.1016/0022-2364(85)90111-8
Mirzaalian, H., Ning, L., Savadjiev, P., Pasternak, O., Bouix, S.,

Michailovich, O., … Rathi, Y. (2016). Inter-site and inter-scanner diffu-

sion MRI data harmonization. NeuroImage, 135, 311–323. https://doi.
org/10.1016/j.neuroimage.2016.04.041

Nana, R., Zhao, T., & Hu, X. (2008). Single-shot multiecho parallel echo-

planar imaging (EPI) for diffusion tensor imaging (DTI) with improved

signal-to-noise ratio (SNR) and reduced distortion. Magnetic Resonance

in Medicine, 60(6), 1512–1517. https://doi.org/10.1002/mrm.21770

Ning, L., Bonet-Carne, E., Grussu, F., Sepehrband, F., Kaden, E., Veraart, J.,

… Tax, C. M. W. (2020). Cross-scanner and cross-protocol multi-shell

diffusion MRI data harmonization: Algorithms and results. NeuroImage,

221, 117128. https://doi.org/10.1016/j.neuroimage.2020.117128

Nolte, U. G., Finsterbusch, J., & Frahm, J. (2000). Rapid isotropic diffusion

mapping without susceptibility artifacts: Whole brain studies using

diffusion-weighted single-shot STEAM MR imaging. Magnetic Reso-

nance in Medicine, 44(5), 731–736. https://doi.org/10.1002/1522-

2594(200011)44:5<731::Aid-Mrm11>3.0.Co;2-1

Oguz, I., Farzinfar, M., Matsui, J., Budin, F., Liu, Z., Gerig, G., … Styner, M.

(2014). DTIPrep: Quality control of diffusion-weighted images. Fron-

tiers in Neuroinformatics, 8, 4. https://doi.org/10.3389/fninf.2014.

00004

Ozcan, A. (2010). A new model for diffusion weighted MRI: Complete Fou-

rier direct MRI. Proceedings of the 32nd Annual International Conference

of the IEEE Engineering in Medicine and Biology Society (EMBC), Buenos

Aires, pp. 2710–2713.
Perrone, D., Aelterman, J., Pizurica, A., Jeurissen, B., Philips, W., &

Leemans, A. (2015). The effect of Gibbs ringing artifacts on measures

derived from diffusion MRI. NeuroImage, 120, 441–455. https://doi.
org/10.1016/j.neuroimage.2015.06.068

Pierpaoli, C. (2012). Artifacts in diffusion MRI. In D. K. Jones (Ed.), Diffusion

MRI: Theory, methods, and applications. Oxford: Oxford Univeristy

Press.

Pierpaoli, C., Jezzard, P., Basser, P. J., Barnett, A., & Di Chiro, G. (1996).

Diffusion tensor MR imaging of the human brain. Radiology, 201(3),

637–648. https://doi.org/10.1148/radiology.201.3.8939209
Pinto, M. S., Paolella, R., Billiet, T., Van Dyck, P., Guns, P. J., Jeurissen, B.,

… Sijbers, J. (2020). Harmonization of brain diffusion MRI: Concepts

and methods. Frontiers in Neuroscience, 14, 396. https://doi.org/10.

3389/fnins.2020.00396

Polders, D. L., Leemans, A., Hendrikse, J., Donahue, M. J., Luijten, P. R., &

Hoogduin, J. M. (2011). Signal to noise ratio and uncertainty in diffu-

sion tensor imaging at 1.5, 3.0, and 7.0 tesla. Journal of Magnetic Reso-

nance Imaging, 33(6), 1456–1463. https://doi.org/10.1002/jmri.22554

Roalf, D. R., Quarmley, M., Elliott, M. A., Satterthwaite, T. D.,

Vandekar, S. N., Ruparel, K., … Gur, R. E. (2016). The impact of quality

assurance assessment on diffusion tensor imaging outcomes in a

large-scale population-based cohort. NeuroImage, 125, 903–919.
https://doi.org/10.1016/j.neuroimage.2015.10.068

Sasaki, M., Yamada, K., Watanabe, Y., Matsui, M., Ida, M., Fujiwara, S., …
Investigators, A. J. (2008). Variability in absolute apparent diffusion

coefficient values across different platforms may be substantial: A

multivendor multi-institutional comparison study. Radiology, 249(2),

624–630. https://doi.org/10.1148/radiol.2492071681
Schmeel, F. C. (2019). Variability in quantitative diffusion-weighted MR

imaging (DWI) across different scanners and imaging sites: Is there a

potential consensus that can help reducing the limits of expected bias?

European Radiology, 29(5), 2243–2245. https://doi.org/10.1007/

s00330-018-5866-4

Silk, T., Chen, J., Seal, M., & Vance, A. (2013). White matter abnormalities

in pediatric obsessive-compulsive disorder. Psychiatry Research,

213(2), 154–160. https://doi.org/10.1016/j.pscychresns.2013.04.003
Skare, S., Li, T. Q., Nordell, B., & Ingvar, M. (2000). Noise considerations in

the determination of diffusion tensor anisotropy. Magnetic Resonance

Imaging, 18(6), 659–669. https://doi.org/10.1016/S0730-725x(00)

00153-3

Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain

Mapping, 17(3), 143–155. https://doi.org/10.1002/hbm.10062

Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F.,

Behrens, T. E., Johansen-Berg, H., … Matthews, P. M. (2004). Advances

in functional and structural MR image analysis and implementation as

FSL. NeuroImage, 23(Suppl 1), S208–S219. https://doi.org/10.1016/j.
neuroimage.2004.07.051

Soares, J. M., Marques, P., Alves, V., & Sousa, N. (2013). A Hitchhiker's

guide to diffusion tensor imaging. Frontiers in Neuroscience, 7, 31.

https://doi.org/10.3389/fnins.2013.00031

Tamnes, C. K., Roalf, D. R., Goddings, A. L., & Lebel, C. (2018). Diffusion

MRI of white matter microstructure development in childhood and

adolescence: Methods, challenges and progress. Developmental Cogni-

tive Neuroscience, 33, 161–175. https://doi.org/10.1016/j.dcn.2017.
12.002

te Grotenhuis, M., Pelzer, B., Eisinga, R., Nieuwenhuis, R., Schmidt-

Catran, A., & Konig, R. (2017). When size matters: Advantages of

weighted effect coding in observational studies. International Journal

of Public Health, 62(1), 163–167. https://doi.org/10.1007/s00038-

016-0901-1

Theys, C., Wouters, J., & Ghesquiere, P. (2014). Diffusion tensor imaging

and resting-state functional MRI-scanning in 5- and 6-year-old chil-

dren: Training protocol and motion assessment. PLoS One, 9(4),

e94019. https://doi.org/10.1371/journal.pone.0094019

Tournier, J. D., Mori, S., & Leemans, A. (2011). Diffusion tensor imaging

and beyond. Magnetic Resonance in Medicine, 65(6), 1532–1556.
https://doi.org/10.1002/mrm.22924

Travers, B. G., Adluru, N., Ennis, C., do Tromp, P. M., Destiche, D.,

Doran, S., … Alexander, A. L. (2012). Diffusion tensor imaging in autism

spectrum disorder: A review. Autism Research, 5(5), 289–313. https://
doi.org/10.1002/aur.1243

Truong, T. K., Chen, N. K., & Song, A. W. (2011). Dynamic correction of

artifacts due to susceptibility effects and time-varying eddy currents in

diffusion tensor imaging. NeuroImage, 57(4), 1343–1347. https://doi.
org/10.1016/j.neuroimage.2011.06.008

Tuch, D. S., Reese, T. G., Wiegell, M. R., Makris, N., Belliveau, J. W., &

Wedeen, V. J. (2002). High angular resolution diffusion imaging reveals

1340 KOIRALA ET AL.

https://doi.org/10.1371/journal.pone.0094592
https://doi.org/10.1371/journal.pone.0094592
https://doi.org/10.1002/hbm.21192
https://doi.org/10.1007/978-3-030-32248-9_58
https://doi.org/10.1007/978-3-030-32248-9_58
https://doi.org/10.1002/nbm.1020
https://doi.org/10.1002/hbm.24691
https://doi.org/10.1016/0022-2364(85)90111-8
https://doi.org/10.1016/j.neuroimage.2016.04.041
https://doi.org/10.1016/j.neuroimage.2016.04.041
https://doi.org/10.1002/mrm.21770
https://doi.org/10.1016/j.neuroimage.2020.117128
https://doi.org/10.1002/1522-2594(200011)44:5%3C731::Aid-Mrm11%3E3.0.Co;2-1
https://doi.org/10.1002/1522-2594(200011)44:5%3C731::Aid-Mrm11%3E3.0.Co;2-1
https://doi.org/10.3389/fninf.2014.00004
https://doi.org/10.3389/fninf.2014.00004
https://doi.org/10.1016/j.neuroimage.2015.06.068
https://doi.org/10.1016/j.neuroimage.2015.06.068
https://doi.org/10.1148/radiology.201.3.8939209
https://doi.org/10.3389/fnins.2020.00396
https://doi.org/10.3389/fnins.2020.00396
https://doi.org/10.1002/jmri.22554
https://doi.org/10.1016/j.neuroimage.2015.10.068
https://doi.org/10.1148/radiol.2492071681
https://doi.org/10.1007/s00330-018-5866-4
https://doi.org/10.1007/s00330-018-5866-4
https://doi.org/10.1016/j.pscychresns.2013.04.003
https://doi.org/10.1016/S0730-725x(00)00153-3
https://doi.org/10.1016/S0730-725x(00)00153-3
https://doi.org/10.1002/hbm.10062
https://doi.org/10.1016/j.neuroimage.2004.07.051
https://doi.org/10.1016/j.neuroimage.2004.07.051
https://doi.org/10.3389/fnins.2013.00031
https://doi.org/10.1016/j.dcn.2017.12.002
https://doi.org/10.1016/j.dcn.2017.12.002
https://doi.org/10.1007/s00038-016-0901-1
https://doi.org/10.1007/s00038-016-0901-1
https://doi.org/10.1371/journal.pone.0094019
https://doi.org/10.1002/mrm.22924
https://doi.org/10.1002/aur.1243
https://doi.org/10.1002/aur.1243
https://doi.org/10.1016/j.neuroimage.2011.06.008
https://doi.org/10.1016/j.neuroimage.2011.06.008


intravoxel white matter fiber heterogeneity. Magnetic Resonance in

Medicine, 48(4), 577–582. https://doi.org/10.1002/mrm.10268

Tuch, D. S., Reese, T. G., Wiegell, M. R., & Wedeen, V. J. (2003). Diffusion

MRI of complex neural architecture. Neuron, 40(5), 885–895. https://
doi.org/10.1016/s0896-6273(03)00758-x

Van Essen, D. C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T. E.,

Bucholz, R., … Consortium, W. U.-M. H. (2012). The human

Connectome project: A data acquisition perspective. NeuroImage, 62(4),

2222–2231. https://doi.org/10.1016/j.neuroimage.2012.02.018

van Ewijk, H., Heslenfeld, D. J., Zwiers, M. P., Buitelaar, J. K., &

Oosterlaan, J. (2012). Diffusion tensor imaging in attention

deficit/hyperactivity disorder: A systematic review and meta-analysis.

Neuroscience and Biobehavioral Reviews, 36(4), 1093–1106. https://doi.
org/10.1016/j.neubiorev.2012.01.003

Vandermosten, M., Boets, B., Wouters, J., & Ghesquiere, P. (2012). A quali-

tative and quantitative review of diffusion tensor imaging studies in

reading and dyslexia. Neuroscience and Biobehavioral Reviews, 36(6),

1532–1552. https://doi.org/10.1016/j.neubiorev.2012.04.002
Veenith, T. V., Carter, E., Grossac, J., Newcombe, V. F. J., Outtrim, J. G.,

Lupson, V., … Coles, J. P. (2013). Inter subject variability and reproduc-

ibility of diffusion tensor imaging within and between different imag-

ing sessions. PLoS One, 8(6), e65941. https://doi.org/10.1371/journal.

pone.0065941

Wang, Y., Mauer, M. V., Raney, T., Peysakhovich, B., Becker, B. L. C.,

Sliva, D. D., & Gaab, N. (2017). Development of tract-specific white

matter pathways during early Reading development in at-risk children

and typical controls. Cerebral Cortex, 27(4), 2469–2485. https://doi.
org/10.1093/cercor/bhw095

Warrington, S., Bryant, K. L., Khrapitchev, A. A., Sallet, J., Charquero-

Ballester, M., Douaud, G., … Sotiropoulos, S. N. (2020). XTRACT—
Standardised protocols for automated tractography in the human and

macaque brain. NeuroImage, 217, 116923. https://doi.org/10.1016/j.

neuroimage.2020.116923

Webster, J. G., & Descoteaux, M. (2015). High Angular Resolution Diffu-

sion Imaging (HARDI). In Wiley Encyclopedia of Electrical and Electronics

Engineering (pp. 1–25). Hoboken, NJ: Wiley.

Wedeen, V. J., Hagmann, P., Tseng, W. Y., Reese, T. G., & Weisskoff, R. M.

(2005). Mapping complex tissue architecture with diffusion spectrum

magnetic resonance imaging. Magnetic Resonance in Medicine, 54(6),

1377–1386. https://doi.org/10.1002/mrm.20642

Wilkins, B., Lee, N., Gajawelli, N., Law, M., & Lepore, N. (2015). Fiber esti-

mation and tractography in diffusion MRI: Development of simulated

brain images and comparison of multi-fiber analysis methods at clinical

b-values. NeuroImage, 109, 341–356. https://doi.org/10.1016/j.

neuroimage.2014.12.060

Wu, Z. M., Bralten, J., Cao, Q. J., Hoogman, M., Zwiers, M. P., An, L., …
Wang, Y. F. (2017). White matter microstructural alterations in chil-

dren with ADHD: Categorical and dimensional perspectives.

Neuropsychopharmacology, 42(2), 572–580. https://doi.org/10.1038/
npp.2016.223

Yeatman, J. D., Dougherty, R. F., Ben-Shachar, M., & Wandell, B. A. (2012).

Development of white matter and reading skills. Proceedings of the

National Academy of Sciences of the United States of America, 109(44),

E3045–E3053. https://doi.org/10.1073/pnas.1206792109
Yendiki, A., Koldewyn, K., Kakunoori, S., Kanwisher, N., & Fischl, B. (2014).

Spurious group differences due to head motion in a diffusion MRI

study. NeuroImage, 88, 79–90. https://doi.org/10.1016/j.neuroimage.

2013.11.027

Zhang, H., Schneider, T., Wheeler-Kingshott, C. A., & Alexander, D. C.

(2012). NODDI: Practical in vivo neurite orientation dispersion and

density imaging of the human brain. NeuroImage, 61(4), 1000–1016.
https://doi.org/10.1016/j.neuroimage.2012.03.072

How to cite this article: Koirala, N., Kleinman, D., Perdue, M.

V., Su, X., Villa, M., Grigorenko, E. L., & Landi, N. (2022).

Widespread effects of dMRI data quality on diffusion

measures in children. Human Brain Mapping, 43(4),

1326–1341. https://doi.org/10.1002/hbm.25724

KOIRALA ET AL. 1341

https://doi.org/10.1002/mrm.10268
https://doi.org/10.1016/s0896-6273(03)00758-x
https://doi.org/10.1016/s0896-6273(03)00758-x
https://doi.org/10.1016/j.neuroimage.2012.02.018
https://doi.org/10.1016/j.neubiorev.2012.01.003
https://doi.org/10.1016/j.neubiorev.2012.01.003
https://doi.org/10.1016/j.neubiorev.2012.04.002
https://doi.org/10.1371/journal.pone.0065941
https://doi.org/10.1371/journal.pone.0065941
https://doi.org/10.1093/cercor/bhw095
https://doi.org/10.1093/cercor/bhw095
https://doi.org/10.1016/j.neuroimage.2020.116923
https://doi.org/10.1016/j.neuroimage.2020.116923
https://doi.org/10.1002/mrm.20642
https://doi.org/10.1016/j.neuroimage.2014.12.060
https://doi.org/10.1016/j.neuroimage.2014.12.060
https://doi.org/10.1038/npp.2016.223
https://doi.org/10.1038/npp.2016.223
https://doi.org/10.1073/pnas.1206792109
https://doi.org/10.1016/j.neuroimage.2013.11.027
https://doi.org/10.1016/j.neuroimage.2013.11.027
https://doi.org/10.1016/j.neuroimage.2012.03.072
https://doi.org/10.1002/hbm.25724

	Widespread effects of dMRI data quality on diffusion measures in children
	1  INTRODUCTION
	2  METHODS
	2.1  Data acquisition
	2.2  Reproducibility and data availability
	2.3  Data analysis
	2.4  Statistical analysis
	2.4.1  Analysis 1
	2.4.2  Analysis 2
	2.4.3  Analysis 3
	2.4.4  Analysis 4

	2.5  Testing the effect of data harmonization

	3  RESULTS
	3.1  Analysis 1
	3.2  Analysis 2
	3.3  Analysis 3
	3.4  Analysis 4
	3.4.1  Scanner models (Siemens Prisma vs. TrioTim)
	3.4.2  Magnetic strength (3 vs. 1.5T)
	3.4.3  dMRI models (DKI vs. DTI)
	3.4.4  dMRI sequence (higher vs. lower b values)
	3.4.5  The effect of harmonization


	4  DISCUSSION
	5  CONCLUSION
	ACKNOWLEDGMENTS
	  CONFLICT OF INTEREST
	Endnotes
	  DATA AVAILABILITY STATEMENT

	REFERENCES


