SYSTEMATIC REVIEW

Optimal treatment approach for intracranial germinoma: a systematic review and metaanalysis

Zhirui Zhou^{1,2,10*†}, Jiabing Liu^{1,2†}, Qi Yue^{2,3†}, Lingxiao Chen⁴, Xiwei Zhang⁵, Xin Lin⁶, Lin Zheng⁷, Enmin Wang^{2,8}, Yang Wang^{1,2,11*} and Ying Mao^{2,3,9*}

Abstract

Background To determine the optimal treatment modality for intracranial germinoma (IG).

Materials and methods A search of Medline, Embase, Web of Science and Cochrane Library was conducted up to April, 2024. Pooled risk ratio (RR) and 95% confidence interval (CI) were calculated. Subgroup analysis was applied according to radiotherapy (RT) alone or with chemotherapy (CTx).

Results Total 37 studies were included in systematic review. Most IG patients were treated with biopsy or resection followed by RT with or without CTx. Prognosis of IG patients with different surgical resection is similar. Meta-analyses demonstrated focal field RT were with higher recurrence rate compared with craniospinal irradiation (CSI) [RR = 7.128, 95% CI (5.083, 9.995)], whole-brain RT (WBRT) [RR = 4.094, 95% CI (2.923, 5.735)] or whole-ventricle RT (WVRT) [RR = 3.361, 95% CI (2.126, 5.312)]; both WBRT and WVRT were also with higher recurrence compared with CSI; but no significant difference in recurrence and mortality between WVRT and WBRT. Total 24 studies reported treatment-related acute and/or late toxicity, combination CTx increased acute toxic, and expanded RT field and/or dose increased late toxicity.

Conclusion Based on our findings, focal field RT is not recommended regardless of whether combined with CTx for intracranial pure germinoma. Although CSI is associated with better local control than other reduced-field RT, considering the potential toxicity and pattern of relapse, whole ventricles irradiation is more reasonable for localized or nonmetastatic germinoma. Reduced-dose CSI with or without chemotherapy is effective in metastatic or disseminated IG.

Keywords Intracranial germinoma, Surgical resection, Radiotherapy, Chemotherapy, Meta-analysis

 $^{\dagger}\textsc{Zhirui}$ Zhou, Jiabing Liu, and Qi Yue contributed equally to this work.

*Correspondence: Zhirui Zhou zzr3711@163.com Yang Wang Janetcyj@163.com Ying Mao maoying@fudan.edu.cn

Full list of author information is available at the end of the article

© The Author(s) 2024. **Open Access** This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Open Access

Introduction

Intracranial germinoma (IG) is a rare tumor of the central nervous system (CNS) that occurs worldwide. The incidence of germinomas has been considered to be higher in East Asia than in Western countries, but a recent study has shown that the incidence of these tumors is similar between Japan and the United States [1]. Intracranial germinomas most commonly occur in childhood and adolescence, with 35-40% of cases occurring before the age of 14 years and 90% of patients diagnosed before the age of 20 years [1]. Sellar, pineal gland, and basal ganglia regions are the most commonly involved areas of germinomas. IG are highly radiosensitive and chemosensitive, with a tendency to spread via cerebrospinal fluid (CSF) [2]. In recent decades, radiotherapy and/or chemotherapy plays an important role in IG treatment. Owing to the high sensitivity of germinoma to radiotherapy, the 5-year overall survival rate is more than 90% [2, 3].

Although radiotherapy is essential to the management of intracranial germ cell tumors, the ideal radiation field and dose remain controversial. To date, various treatments, such as whole ventricle (WV) or whole brain radiotherapy (WBRT) or craniospinal irradiation (CSI) alone, chemotherapy (CTx) followed by focal RT/WVRT/ WBRT/CSI, have been applied per physicians' discretion [4, 5]. CSI used to be the standard of care, with this treatment approach, the majority of patients have been cured. Concerns have long been raised about the potential adverse effects of CSI [6], many studies have explored reduced-field irradiation and showed that CSI could be spared in patients with localized IG with chemotherapy support [7, 8]. A multi-institutional retrospective study, comparing the patterns of treatment and reporting clinical outcomes from the various intervention strategies, showing that focal field RT having the worst outcome, whereas chemotherapy usage had no impact on survival [9]. To further define the optimal treatment volume, a study on relapse patterns after focal RT was conducted in patients with localized intracranial germinoma [10]. Results from these studies showed that in patients with sellar or pineal gland germinoma, the periventricular areas were at risk of recurrence, which warranted the use of whole-ventricle irradiation.

However, areas of controversies and literature gaps still exist. Optimal treatment approach for intracranial germinoma, such as surgical resection method, radiotherapy volume, dose, and the necessity for adjuvant CTx, remain unclear. Here, we aimed to investigate the pattern of disease relapse and determine the optimal treatment strategy for IG by analyzing patient outcomes for various approaches. This study mainly answers two questions: is there any difference in recurrence rate among different radiotherapy volume? Does combination chemotherapy exempt craniospinal irradiation? To our knowledge, this systematic review and meta-analysis involves the largest number of studies and intracranial germinoma patients, represents the highest level of evidence available regarding the efficacy and safety of different treatment modalities for IG. Our report may suggest that future directions for the choice of optimal treatment approach for intracranial germinoma.

Materials and methods

Study eligibility

This study was conducted following a protocol and adhered to the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) updated statement [11] and Assessing the Methodological Quality of Systematic Reviews (AMSTAR) guideline [12]. This systematic review was registered in PROSPERO (No. CRD42024540172). Two reviewers worked independently to identify original study eligible for further review by screening abstract and title. Disagreement was settled by consensus, otherwise one more author was added to reach the consensus.

Inclusion criteria were as follows: (1) patients with histologically proven intracranial pure germinoma. Patients with a clinical diagnosis based on neuroimaging characteristics and response to RT were allowed to be included, alpha-fetoprotein (AFP) levels had to be ≤ 25 ng/mL and human chorionic gonadotropin (HCG) levels \leq 50 IU/L to treat for germinomas; (2) radiotherapy with or without chemotherapy was as first-line treatment; (3) prospective or retrospective controlled studies were enrolled; (4) at least two of these four RT volumes (Focal, WV, WB, CSI with or without boost to primary lesion) were included in the study; (5) the main outcome of interest focus on relapse and death events; (6) for duplicate articles, only the one with largest patient samples and/or recently published was included; (7) sample size of intracranial germinoma more than 20.

Exclusion criteria were as following: (1) non-germinomatous germ cell tumors (NGGCT); (2) uncontrolled studies, such case report, case series, etc.; (3) given information was insufficient to extract the required data; (4) non-original study, such as review, survey, etc.; (5) conventional fraction dose less than 1.5 Gy per fraction, hypofractionated radiotherapy or radiosurgery.

Search strategy

A search of Medline, Embase, Web of Science, and Cochrane Library was conducted from database construction to April, 2024. MeSH or Emtree terms combined free terms were used: "central nerve system", "intracranial germinoma", "germinoma", "germinomatous", "surgery", "resection", "chemotherapy", "chemoradiotherapy", "radiotherapy", "radiation therapy", "irradiation", "radiotherapy field", "focal radiotherapy", "whole ventricle radiotherapy", "whole brain radiotherapy", "craniospinal irradiation". References of included studies were used to locate potentially eligible articles. Furthermore, abstracts published in major academic conferences were checked. Research works were conducted independently by two reviewers first, and then the full articles chosen valuable were carefully reviewed. No language restrictions were applied.

Data extraction

Following information was extracted from each article: participant's eligibility, study design, baseline characteristics, radiotherapy, chemotherapy, surgical resection, duration of follow up, number of events and patients in each intervention group, sample size, etc. Outcomes regard to recurrence, mortality events and acute/late toxicity. If the results were reported in multiple publications, we would extract the data from all the publications.

Risk of bias assessment

Non-randomized controlled trials were evaluated according to the Methodological Index for non-Randomized Studies (MINORS) [13] and Risk Of Bias In Non-randomized Studies of Interventions (ROBINS-I) [14].

Statistical analysis

All statistical analyses were performed using StataMP 13.1 (StataCorp, Texas, USA). Dichotomous data using pooled risk ratio (RR) and 95% confidence intervals (CI) was calculated. Cochran's Q-test was used for testing heterogeneity between studies. If heterogeneity was not present (P > 0.10, $I^2 < 50\%$), both fixed-effect model (Mantel-Haenzel method) and random-effect model (DerSimonian&Laird method) were adopted for analysis, otherwise, random-effect model would be employed. In order to further explore the difference of prognosis between different radiation fields in radiotherapy alone or combined with chemotherapy, then we performed subgroup analysis according to these two kinds of treatment strategies. In the case of excessive heterogeneity, descriptive analysis rather than meta-analysis would be employed. For studies where no events were observed in one arm, add a fixed value 0.5 to zero cell; exclude studies from the meta-analysis where there are no events in both arms. P value < 0.05 was defined as statistically significant.

Results

Study selection and baseline characteristics

Finally, 54 full-text from 37 studies [7, 9, 15–49] (3 prospective and 34 retrospective studies), total 3163 IG patients, met the inclusion criteria and were included in systematic review; 53 full-text from 36 studies [7, 9, 15– 17, 19–49], total 2951 intracranial germinoma patients, were finally included in meta-analysis. The PRISMA flow diagram was shown in Fig. 1. Baseline characteristics of the included studies were summarized in Table 1.

Risk of bias assessment

All 37 studies were evaluated according to the MINORS index and ROBINS-I assessment tool, the scores and risk level were showed in Supplementary Table 1. The main limitations of included studies were as following: only three studies were prospective studies, and the rest were retrospective studies; most of the included studies did not control for confounding factors, such as location of the lesion and presence or absence of metastasis, thus, there was a possibility of selection bias.

Surgical resection

Most patients were treated with biopsy followed by RT with or without CTx, and some patients treated with resection followed by RT with or without CTx. Among them, a very small number of patients can achieve gross total resection (Table 1). This systematic review showed that pure germinoma have good prognosis and the 5-year overall survival rate is more than 90%; prognosis of patients with different surgical resection methods is similar (Table 1). Given the high sensitivity of the IG disease to radiotherapy and/or chemotherapy, the good prognosis, and the fact that the disease is often located near the midline, it is difficult to achieve safe gross total resection.

Meta-analysis of different radiation volume *Recurrence in full-set*

Thirty studies with 1512 patients assessed the recurrence rate of focal RT vs. CSI. Pooled RR indicated focal RT were with higher recurrence compared with CSI [RR=7.128, 95% CI (5.083, 9.995), P=0.000] (Fig. 2A). Nineteen studies with 1061 patients were included in meta-analysis to calculate recurrence rate of WVRT vs. CSI. Pooled RR indicated that WVRT were with higher recurrence in comparison with CSI [RR=2.771, 95% CI (1.375, 5.584), P=0.004] (Fig. 2B). Thirty studies with 1530 IG patients assessed the recurrence rate of WBRT vs. CSI. Pooled RR manifested WBRT were with higher recurrence compared with CSI [RR=2.397, 95% CI (1.388, 4.140), P=0.002] (Fig. 2C). Nineteen studies with 778 patients were included in meta-analysis to calculate recurrence rate of focal RT vs. WVRT. Pooled RR indicated that focal field RT were with higher recurrence in comparison with WVRT [RR=3.361, 95% CI (2.126, 5.312), P=0.000] (Fig. 2D). Twenty-six studies with 915 patients were included in meta-analysis to evaluate recurrence rate of focal RT vs. WBRT. Pooled RR also indicated that focal field RT were with higher recurrence in comparison with WBRT [RR=4.094, 95% CI (2.923, 5.735), P=0.000] (Fig. 2E). Nineteen studies with 730 patients

Fig. 1 Flowchart depicting study selection

were included in meta-analysis to evaluate recurrence of WVRT vs. WBRT. Pooled RR manifested no significant difference between WVRT and WBRT [RR=1.444, 95% CI (0.796, 2.619), P=0.227] (Fig. 2F). In these meta-analyses, no obvious heterogeneity was found, both random and fixed effect model were employed, and more detailed meta-analyses results were shown in Table 2.

Mortality in full-set

Twenty-three studies with 1204 patients assessed the mortality of focal RT vs. CSI. Pooled RR manifested focal RT were with higher mortality compared with CSI [RR=3.134, 95% CI (1.804, 5.446), P=0.000] (Fig. 3A). Seventeen studies with 838 patients were included into this meta-analysis to calculate mortality of WVRT vs. CSI. Pooled RR indicated that no significant difference between WVRT and CSI [RR=1.311, 95% CI (0.425, 4.047), P=0.638] (Fig. 3B). Twenty-two studies with 1046 patients assessed the mortality of WBRT vs. CSI.

Pooled RR showed that there was borderline significant difference between WBRT and CSI [RR=2.103, 95% CI (0.980, 4.514), P=0.056] (Fig. 3C). Seventeen studies with 692 patients were included in meta-analysis to calculate mortality of focal RT vs. WVRT. Pooled RR indicated that focal field RT were with higher mortality compared with WVRT [RR=2.559, 95% CI (1.263, 5.185), P=0.009] (Fig. 3D). Twenty-one studies with 708 patients were included in this meta-analysis to evaluate mortality of focal RT vs. WBRT. Pooled RR also indicated that focal RT were with higher mortality in the comparison with WBRT [RR=2.635, 95% CI (1.504, 4.614), P=0.001] (Fig. 3E). Seventeen studies with 515 IG patients were included in the meta-analysis to evaluate mortality of WVRT vs. WBRT. Pooled RR manifested no significant difference between WVRT and WBRT [RR=0.533, 95% CI (0.184, 1.541), P=0.245] (Fig. 3F). In these metaanalyses, no obvious heterogeneity was found (except for WVRT vs. CSI, I^2 =51.6%, τ^2 = 1.4156), the random

Study Name/ AuthorYei	Pub- Sampl lish Size r Year (N)	e Study Tumor Extension De- (N) sign	Inter- ven- tions (N)	RT Field (N)	Dose (boost) (Gy)	Chemothrapy (N)	Surgery (N)	Outcomes	Gender M/F (N)	Age (years)	Coun- F try/ (r Re- gion	ollow-up nonths)
Aoyama 1998	1998 41	multi- localized:31, insti- multi-focal/7, tu- CSF dissemination:3 tional spec- study study	radio- thera- py:41; biopsy/ resec- tion:41; chemo- thera- py:13	focal8; whole-brain:10; craniospinal:23	primary sites; median 46 Gy; whole-brain: median 32 Gy; spinal: median 30 Gy	with/without plat- inum-compound after RT:5/4, with platinum-com- pound before RT3, simultaneous without platinum- compound:1	biopsy: 17, partial resection:19, total resection:5	RFS:10- year;90%,76% and 22% for cranicspinal, whole-brain and local field; OS and CSS5-and 10- year;9194% and 87/90%.	M/F:33/8	less than 16/ more than 16:22/19	North- m ern m Japan	ionths ionths
Byun 2020	2020 213	sin- solitary:151, gle- bifocal:32, center multifocal/disseminated:30 retro- spec- tive study	radio- thera- py:210; biopsy/ resec- tion:126; chemo- thera- py:76	fiocal(29; whole-brain/ ventricle:51; craniospinal:130	primary sites:30 to 39 Gyr neuraxis:18 to 36 Gy	CTx+RT73, CTx3	biopsy: 97, partial/subtotal resection:3, total resection:3,	DF5:10 year 91.6% O5:10 year 95.6% toxicity.	M/F:163/50	median (range):16.2(3.5 66.0)	Korea 7	tedian 141 conths (range 4–518)
SIOP CNS GCT 96	2013 235	multi- localized 190: 94 pineal, insti- 53 supra-/frasellar, tu- 32 bifocal, 11 other sites. tional metastatic:45 non- ran- can- ized study	radio- thera- py:235; biopsy/ resec- tion:232; chemo- thera- thera- py:110	focal(65; craniospinal:125	primary sites40 Gy; neuraxis:24 Gy	CTx+RT:65, carboplatin/etopo- side alternating with etoposide/ ifosfamide*2	stereotactic biopsy:103, partial/open biopsy:107, total resection:23,	EF5.5 year, CSI vs focal, 94% vs. 88%; O5.5 year, CSI vs focal, 97% vs. 96%; PF5.5 year, CSI vs focal, 97% vs. 88%; toxicity.	M/F:176/59	(range):13(4–42)	Inter- In na- m tional 3	tedian 72 tonths (range 2-168)
Chen 2012	2012 80	sin- localized 62:sellar and gle- suprasellar:23, center pinea:14,thalamus/basal retro- ganglion:22/3; spec- multi-foca:112; tive CSF dissemination:6 study	radio- thera- py:80; biopsy/ resec- tion:50; chemo- thera- py:29	fiocal(27; whole-brain/ ventricle:8/31; craniospinal:14	primary sites: before 1990s median 50 Gy(range,40.5-54),mid-to late 1990s median 30 Gy(range,28-50),eatly 2000s median 30 Gy(range,293-50); whole-brain-wentrice before 1990s WBI median 294 Gy(range,33-30); neuraxis: before 1990s median 27 Gy(range,25.5-28.5)	CTx+RT:29, 6 to 8 courses of the VBEP	pathologica// dinical44/30, CSF cytology:6	RFS5-year, CSI, WBI, WVI, and focal. 100%, 887.7%, 100%, 882.7%, OS55-year, CSI, WBI, WVI, and focal. 100%, and 87.9%, 100%, and 87.9%,	M/F-57/17	(range):12(5–20)	Taipei 7	reclian 82.3 Ionths Inge(5.1-2368)

Table 1	(continu	ed)											
Study Name/ AuthorYeaı	Pub- Samp lish Size Year (N)	le Study De- sign	Tumor Extension (N)	Inter- ven- tions (N)	RT Field (N)	Dose (boost) (Gy)	Chemothrapy (N)	Surgery (N)	Outcomes	Gender M/F (N)	Age (years)	Coun- try/ Re- gion	Follow-up (months)
Eom 2008	2008 81	sin- gle- center retro- spec- tive study	localized:60; CSF dissemination.21	radio- thera- py:81; biopsy/ resec- thomo- thera- py:42	focal:23; whole-brain/ventricle: unclear craniospinal:52	primary sites: RT median 54 Gy(range:40–56), RT+CTx median 50 Gy(range;36–54); neuraxis: RT median neuraxis: RT median 1 Gy(range,13–45) negative seeding, median 36 Gy(range,24–45) positive seeding.	CTX+RT:42, 2 cycles BEP/EP 29, 5 cycles VCEP 10, other 2	stereotactic biopsy 27, endoscopic/open biopsy 20/10, partial removal 12, subtotal removal 9, gross total removal 3	Response to RT/ CRT, 165.5 year 160.0% RT and 88.1% CRT; 05.5 year 100% RT and 92.9% CRT; 05.10 year 92.5% RT and 92.9% RT and 92.9%RT and 92.9% RT and 92.9%RT and 92.9% RT	M/F: RT 27/12, CRT 38/4	median (range): RT 14.6(8–41), CRT 17.5(8–44)	Korea	median 68 months range(8-231)
Foo 2023	2023 46	sin- gle- center retro- spec- tive study	suprasellar 11, pineal 10, h bifocal 3, basal ganglia 1, metastatic 4, h	radio- thera- py.:29; biopsy/ resec- thera- thera- oy.:29	whole ventricle:23; whole-brain:5; craniospinal:1	whole-ventricle:23.4 Gy(no boost); whole-brain:23.4 Gy(no boost); craniospinal:23.4 Gy(no boost)	3-4 cycles carbopla- tin + etoposide 22, carboplatin/eto- poside alternating with etoposide/ fifofamide*2: 6, fifofamide*2: 6, platin + weekly vinblastine:1	biopsy 22, debulking 1	PFS, 5-year 91% OS: 5-year 100%	M/F:14/15	median (range):128(62– 17.3)	Cana- da	median 63 months range(9-187)
Graham 2021	2021 43	multi- insti- tu- tional retro- spec- tive study	basal ganglia/bilateral/ extension 28/4/10, thalamic/bilateral/extension 23/8/11.	radio- thera- py:38; biopsy/ resec- thera- chemo- thera- oy:38	foca!9; whole-brain/ ventricle:8/15; craniospinal6; boost:23	focal RT (median 36 Gy); WVI (median 23.4 Gy/Gy(RBEI), boost to 36-45 Gy; WBI (median 23.4 Gy/Gy(RBEI), boost to 36-45 Gy; CSI (median 22.4 Gy/Gy(RBEI), boost to 30-546 Gy.	CTx:38 pts, Carbo, Etop/Carbo, Etop, Cisplatin, Cyclo/ Carbo, Etop, Ifos/ Carbo, Etop, Beomycin/ Cisplatin, Etop, Velo, Etop, Cisplatin, Cyclo, VCR	biopsy. 35 pts, subtotal resection 2 pts, gross total resection 1 pts	EFS,5-and 10- year, 85.8% and 81.0%; OS,5-and 10- year,100% and 95.5%; 1pt died from unnelated cause; toxicity.	M/F36/7	median (range):13.2(4.8- 3.1)	Aus- tralia, Brazil, Can- ada, USA	median <i>87</i> months
Haddock 1997	1997 48	multi- insti- tu- tional retro- spec- tive study	suprasella 25, pineal 15, multiple 2, other 6.	radio- thera- py:48; biopsy/ resec- tion:47; tion:47; thera- oy:5	prior-1973 plus after 1973: partial brain:13+11, whole-brain:1+10, craniospinal:2+10	primary: median 44 Gy(7 44–59 40); whole-brain: median 30 Gy(3.6–40); craniospinal: median 27.75 Gy(16.58–32.82),	CTX-5 pts, cisplati- num + etoposide prior to RT	biopsy 28 pts, subtotal resection 16 pts, gross total resection 3 pts, CSF positive 1 pts	OS,5-and 10-year, entire,80%; OS,5-and 10-year, DS,5-and 10-year, DFS,5-and 10- year, prior/after 1973,62%/70% and 63%; toxicity.	MrF:39/9	median (range):17(6–44)	USA	median 66 months range(4-444)
Harden- bergh 1997	1997 40 lower dose 3	sin- gle- retro- spec- tive study	suprasella 12, pineal 11, multiple midline 17.	radio- thera- py:40; biopsy/ resec- thera- thera- sy:5	focat:14; whole-brain9; craniospinal9	primary site: median 52 Gy(44,5–59,5 Gy); whole-brain: median 324 Gy(15–44,37 Gy); craniospinai: median 25 Gy(18,7–37,5 Gy).	cisplatin-base 4, intrathecal metho- trexate 1.	biopsy 17 pts	DF5,5-year,97%; OS,5-year,97%; toxicity	M/F.26/14	median (range):14(0.5 31)	USA	median 62 months range(3-226)

Table 1	(continu	ed)											
Study Name/ AuthorYear	Pub- Sampi lish Size r Year (N)	le Study De- sign	Tumor Extension (N)	Inter- ven- tions (N)	RT Field (V)	Dose (boost) (Gy)	Chemothrapy (N)	Surgery (N)	Outcomes	Gender M/F (N)	Age (years)	Coun- Foll try/ (mc Re- gion	ow-up inths)
Jensen 2016	2010 59	sin- gle- rettro- spec- tive study	CRT/RT: suprasellar 9/18, pineal 8/7/multiple 6/5, spinal or positive CSF 5/1.	radio- py:59, py:59, py:59, tesec- tion:17; chemo- thera- py:54	CRT/RT: focal 17/9, whole-brain 0/8, whole-ventricle 1/0, craniospinal 10/9, unknown 0/5.	primary site: range(30.356 Gy); whole-ventricle:23.4 Gy; whole-brain: range(10.8-40 Gy); craniospinal: range(19.5-40 Gy).	cisplatin etoposide:24, austine/etoposide. heomycin/cisplatin/ etoposide: 1, bleomycin/cisplatin/ etoposide: 1	CRT/RT: resection 6/11 pts, biopsy: 20/17 pts, none 2/3 pts	CRT: freedom from progression (FFP), 5-and 10- year/89% and 80%; OS:5-and 10-year/80% and 71% for 10-year/90% for vs 100% for vs 100% for vs 100% for 10-year/82%; RT: FFP 5-and 10-year/82%; A4% for local fields vs. 100% for extensive fields vs. 1	CRT: MMF.23/5 MMF.23/8 MMF.23/8	CRT: median (range):16(9–42) median (range):19(5–35) (range):19(5–35)	USA CRT mee meen moo ran, ran, ran,	/RT: dian 79.2 atths ge(6-1968)/ ths atths ge(10.8-308.4) ge(10.8-308.4)
Jinguji 2013	2013 46 RT/ GRT38.	sin- gle- retro- spec- tive study	localized:30, multifocal or disseminated:16	radio- thera- py:45; biopsy/ tresec- theno- thera- py:8	CRT/RT: focal:3/0, whole-brain:2/6, craniospinal:2/32.	 1.6–2.0 Gy/F, once a day, 35 pts: primary site: mean 49.9 Gy(44.7–52.8 Gy), whole-brain: mean 25.9 Gy(18.–30.4 Gy), 25.9 Gy(18.–30.4 Gy), 25.9 Gy(28.–30.6 Gy), 1.2 Gy/F, twice a day, 7 pts: primary site: mean 49.4 Gy(45.6–52.5 Gy), whole-brain: mean 30.1 Gy(28.–36 Gy). 	3-6 cycles CTx: CARE(carboplatin 450 mg/m2 and etoposide 150 mg/ m2); Pm2) m2 and etoposide 100 mg/m2).	biopsy 25 pts, partial resection 10 pts, subtotal resection 8 pts, gross total resection 3 pts	OS:5-, 10, 15-year 100%, 93.3%, and 88.2%, 88.2%, 98.2%, 89.3%, year 64.3%, toxicity, toxicity,	M/F:35/11	range: (5-43)	Japan me ran	lian 125 nths Je(25-235)
4 00 201 4	2014 72	sin- gle- center retro- spec- tive study	pineal gland 34, suprasellar 25, basal ganglia 5, multifocal 6, other 2	radio- thera- py:72; biopsy/ resec- tion: unknow; chemo- thera- py:72	after CTX CR/PR: focal:10/3, whole-brain/ ventride:15/22, craniospinal.6/15/1(SD).	after CTx CR/PR. primary sites: 28–46 Gy/30.6–55 Gy, whole-brain: 18–36 Gy/23.4–30.6 Gy, spinal: 19.5–27 Gy/19.5–30.6 Gy.	2 cycles cisplatin and etoposide 56, carboplatin, etopo- side, and cyclophos- phamide 4, based etoposide regimens 12	unknown	RFS5-year 97%, CSJ, WBRT/WYRT, focal RT: 95%, 91%, and 63%; OS:5-year 87%, CS:5-year 87%, CS:8/WBRT/WYRT, focal RT: 100%, and 83%	M/F:62/10	median (range): 16(7–35)	Korea me moo ran	lian 87 aths ge(7-197)

Table 1	(cont	tinued)	<u> </u>											
Study Name/ AuthorYear	Pub- lish Year	Sample S Size D (V) si	Study De- sign	Tumor Extension (N)	Inter- ven- tions (N)	RT Field (N)	Dose (boost) (Gy)	Chemothrapy (N)	Surgery (N)	Outcomes	Gender M/F (N)	Age (years)	Coun- Follow- try/ (month Re- gion	dn (s
Kanamori 2021	2021	56 rr class I, II, cc and III: re st 41, s st class tiv and st ?: 25	multi- center retro- spec- tive study	class I, II, and III/class IV and V: 6.3. basal ganglia 0/1,bifocal 18/15. renown 1/0: CSF cytology negative/ positive:41/22 positive:41/22	CSF positive 22; thera- py:22; biopsy/ tresec- thera- py:15 py:15	CSF positive 22 pts: whole-brain 6, whole-wentricle 5, craniospinal 11,	C5F positive 22 pts, C5(/hon-C5): primary site median 44(24-52)/40(24- 51)Gy, whole ventricle, median 24(23- 44)/30(24-45)Gy, whole brain, median 24(23-32)/30(10- 45)Gy, craniospinal, median 24(18-35)/0Gy.	platinum-based regimens similar in CSI/non-CSI	nwcuyun	PFS, CSI and non-CSI groups (log-rank test, ho=0.37)	CSI, M/F:7/3 M/F:7/4 M/F:7/4	CS, median (range): 12(7-40) non-CSI, median (range): 16(9-28)	Janpan CS, mec months 75 mon	lian 101 (12–265) , median ths(2–228)
Kang 2020	2020	<u>ک</u> ک ۲: چ ۳ ۵ ۵ ۵	sin- gle- retro- spec- tive study	basal ganglia:34; localized:29; seeding5	radio- thera- py:34; biopsy/ resec- themo- thera- py:17	focat:14; whole ventricle:11; whole-brain3; craniospinal16	focal, tumor only, median 30(10–30)Gy, whole ventricle + P8, median 24.0(23.4-27) + 6(6–23)Gy, whole brain + P8, median 27.9(18– 30) + 18(18-22.1)Gy, craniospinal + P8, median 22.5(198– 30) + 22.6 (108–29.6)Gy.	6 to 10 cycles VBEP (vinblastine, bleomycin, cisplatin, etoposide); 6 to 10 cycles etopo- side + carboplatin	craniotomy 9 pts, stereotactic biopsy 5 pts	DFS, 2., 3., and 5.year, 91.2%, 888.2%, 79.4%; 0S, 2., and 0S, 2., and 5.year, 97.1%, 94.1%, 82.4%; toxicity.	M/F:33/1	median (range):16(9–28)	Taipei median months	8.3 (1.8–25.2)
Kawabata 2008	2008	39 st 5; 5; 6; 0; 0; 5; st 5; 5; 6; 6; 0; 0; 0; 5; st 5; 5; 6; 6; 6; 6; 6; 6; 6; 6; 6; 6; 6; 6; 6;	sin- gle- retro- spec- tive study	basal ganglia/other site:9/24; solitary/multifocal:33/6	radio- thera- py:39; biopsy/ resec- thora- thera- py:16	focal:3; whole ventricle:17; whole zhrain:6; craniospinal:13	primary site: median 46.8 Gy(19.8-60 Gy); whole-ventricle: median 23.4 Gy(20.4-27 Gy); whole-brain: median 35 Gy(25.2-51.2 Gy); 35 Gy(25.2-51.2 Gy); craniospinal: median 24 Gy(10-40 Gy).	CARE (carboplatin and etoposide); VIP (ifosfamide, cisplatin, and etoposide)	biopsy 13 pts, no biopsy 13 pts	OS,5- and 10- year, 97% and 90%; PFS,5- and 10-year,91% and 87%	M/F.29/10	median (range):15(7–27)	Janpan median months	94 (18–300)
Koh 2022	2022	19 20 20 20 20 20 20 20 20 20 20 20 20 20	multi- center spec- study study	suprasellar:142,pineal:130; bifocal:69;basal ganglia:53; other (thalamus, etc);24. M0/M+:334/84.	radio- py/s18; py/s18; resec- tion:318; py/:260 py/:260	focal:58; whole ventricle:180; whole-brain:7; craniospinal:173	M0:median 21 Gy (CSI) and 23.4 Gy (WM); (WM); M+:median 23.4 Gy (CSI) and 240 Gy (WM); total tumor: median 36 Gy	carbopla- tin/ettoposide and cyclophosphamide/ etoposide 145pts, etoposide 145pts, etoposide and cyclophosphamide/ vincristine 21pts, carboplatin/etopo- side 20pts, etoposide 20pts, etoposide 20pts, etoposide 20pts, etoposide 20pts, etoposide 20pts, etoposide 20pts, etoposide 20pts, tergimens, 4 pts unknown.	biopsy 249pts, tumor removal (+ bi- opsy) 69pts, no resection 100pts	OS,5- and 10- year, 97.2% and 96.2%. RFS,5- and 10- 86.9% 86.9%	M/F.320/96	; median (range):14,4(3.8- 39.1)	Korea, median Tai- months wan, Singa- Japan Japan	06.8

Chudy	Duh- Cample	Study Tumor Extension	Inter-	DT Eiald	Doce (hoost)	Chemothranu	Surgery	Outromes 6	andar	0.00	
Name/	lish Size	De- (N)	ven-	(N)	(Gy)	(N)	(N)		V/F (N)	(years) t	ry/ (months)
AuthorYear	· Year (N)	sign	tions (V)							E O	e- ion
Lee 2019 KSPNO G051/G081	2019 91	multi- solitary.65; center multiple/disseminated.26. pro- spec- tive study	radio- thera- py.91; biopsy/ resec- tion.91; chemo- thera- py.86	focal:4; whole ventricle:26; whole-brain5; craniospinal:55	primary site: median 393 Gy(27–54)Gy; whole-ventricle: median 19.8 Gy(16.2– 30.6)Gy; craniospinal: median 19.8 Gy(18–36) Gy.	 4 cycles carboplatin/ etoposide and cyclophosphamide/ etoposide 	biopsy 81 pts, resection 10pts	OS:5-year and N 7-year,98.8% and 98.8%; EFS:5-year and 7-year 96.6% and 93.8%; toxicity.	A/F:68/23	k (range):14(3–30)	orea median 67.9 months(6.6-1193)
Lee 2021	202/ 189	multi- solitary: suprasellar 41/ center pineal 46/ retro- BG/thalamus 29/others 3pts, spec- bifocal: suprasellar and tive pineal 15/ pineal and other 5/ pineal and other 2/others 3pts, seeding (+).CSF cytology (+) 10/ multiple lesions in MRI (+) 22/ CSF cytology and MRI (+) 13pts,	thera- thera- py:189; biopsy/ teon189; thera- thera- py:139	RT/CTx+RT: focal:0/28; whole ventricle:0/56; whole-brain:5/4; craniospinal:45/51	RT: craniospinal, seeding+, median 24 Gy(20-30 Gy), seeding -; median 30 Gy(24-36 Gy); primary site:34 Gy(45-57 Gy). CTX+RT: extended-field, median 23 Gy(16-39 Gy), primary site: CR to CTX 45 Gy(25-50 Gy), non-CR to CTX 50 Gy(45-55 Gy).	66pts 2 cycles bleo- mycin, etoposide, and cisplatin or etopo- cisplatin or etopo- side and cisplatin 67pts 5 cycles cispla- tin, etoposide, cyclophosphamide, and vincristine; lomustine, procarbazine, hy- droxyurea, cisplatin, cyclophosphamide)	all were confirmed histologically.	OS: RT/ N CRT, 10-year was RS: 264/92.894; RES: RT/ CRT, 79-594/89.394; toxicity.	AF:151/38	k (range):15(4-47)	orea mecian 180 months(48–564)
Lee 2020 SMC-G13 trial	2020 41	sin-suprasellar:12 gle-pineal:12 center bifocal pro-(suprasellar+pineal):11 spec-basal ganglia:6 tive study	radio- thera- py:39; biopsy/ resec- tion:41; chemo- thera- py:41	whole ventricle:23; whole-brain5; craniospinal:11	primary site:30.6 Gy(R8B); whole ventricle:18 Gy; whole-brain:18 Gy; craniospinal:18 Gy	4 cycles induction chemotherapy: CE regimen(carboplatin, etoposide), CyE regimen mide, etoposide) alternated.	endoscopic biopsy;36, stereotactic biopsy;5	PF55-year.96.2%; N OS:5-year.96.2%; toxicity.	A/F31/10	k median (range):15.9(7.5- 34.1)	orea mecian 40.8 months(3.6–84)
Li 2021	2027 161	sin- basal ganglia: 161 gle- center retro- spec- tive study	radio- thera- py:161; biopsy/ resec- tion:30; chemo- thera- py:153	focal:35; whole-brain:109; craniospinal:17	primary site40 Gy; whole-brain30 Gy; craniospinal30 Gy	2 cycles platinum- based induction chemotherapy (fitosfamide + etopo- side + cisplatin), after RT additional 2 cycles CTx	biopsy:15, surgery:15, serum p-HCG elevation:131	DF5.5-year,92.0%, N FR, WBRT, CSI was 74.3%, 97.2%, and 100%; OS:5-year,96.7%; toxicity.	A/F:150/11	(range):12(5-41)	hina median 83 months(20–214)

(continued)	
Table 1	

Table 1	(continue	(pe											
Study Name/ AuthorYear	Pub- Sample lish Size Year (N)	le Study De- sign	Tumor Extension (N)	nter- /en- :ions N)	RT Field (N)	Dose (boost) (Gy)	Chemothrapy (N)	Surgery (N)	Outcomes	Gender M/F (N)	Age (years)	Coun- try/ Re- gion	Follow-up (months)
Li 2020	2020 49	sin- gle- retro- spec- tive study	bifocal: sellar/suprasellar + pi neal gland:34; sellar/suprasellar + basal ganglia/thalamus:15 t	adio- hera- by:49; biopsy/ esec- ion:13; chemo- hera- by:47	focal:3; whole-brain:34; craniospinal:12	primary site:40 Gy(2pts 45 Gy, 4pts 50.4 Gy); whole-brain:30 Gy; craniospinal:30 Gy	2 cycles platinum- based induction chemotherapy (fitosfamide + etopo- side + cisplatin), after RT additional 2 cycles CTx	histology:13, serum/CSF β-HCG elevation:36	DFS:5-year, 97.3%; OS:5-year, 97.3%; toxicity.	M/F:34/15	median (range):13(5-47)	China	median 52 months(10-134)
Lian 2018	2018 170	sin- gle- retro- spec- tive study	localized: sellar and suprasel- lar 95, pineal 2,basal ganglia6; blfocal47; disseminated20	adio- hera- by:170; biopsy/ esec- ion:56; themo- hera- by:38	focal:2; whole ventricle:82; whole-brain:32; craniospinal:54	RT: primary site: median 45 Gy(29-52 Gy); whole-ventricle/whole-brain/CS): median 25 Gy(19.8–36 Gy); CRT: primary site: median 36 Gy(30-40 Gy); whole-ventricle/whole-brain/CS): median 20 Gy(17.8–25 Gy)	1–6 cycles platinum- based regimen (displatin + etopo- side/ffosfamide + cis- platin + etoposide)	pathologically:56, clinically:114	RFS5-and 10- year,91.9% and 78.1%; OS:5-and 10- year,94.5% and 91.3%; toxicity.	M/F:94/76	median (range):15(4–39)	China	median 64.5 months(4-260.5)
Lo 2020	2020 94	multi- center retro- spec- tive study	pineal:37,suprasellar:23,bin t focal:14, multifocal:15,conpus callosum:2,basal ganglia:1 thalamus:2,basal ganglia:1 t	adio- hera- by:94; biopsy/ esec- chemo- hera- by:32	CTX + RT/RT: focals/4; whole ventricle:15/7; whole-brain:1/5; craniospinal:10/46	RT: primary site: range(308–55 Gy); whole-ventricle: median 294 Gy(17,3–34.6 Gy); whole-brain: range(20,7–50 Gy); CS1: median 27.3 Gy(14,7–37.3 Gy); CRT: primary site: range(22,5–53.3 Gy); whole-ventricle: median 22.5 Gy(16,2–27.6 Gy); whole-brain: range(11,1–43.2 Gy); CS1: median 25.4 Gy(11,1–36.0 Gy); CS1: median 25.4 Gy(11,1–36.0 Gy);	cisplatin-based regimens.9, carboplatin-based regimens.21, carboplatin + eto- poside/ cisplatin + cyclo- phosphamide:2	biopsy-43, subtotal resection:36, total resection:2	EFS:5-and 10- year/86.1%,84.3%; OS:5-and 10- year/93.1%,89.9%	M/F:82/12	median (range):20(15– 39)	da da	median 99.6 months
Nakamura 2006	2006 52	sin- gle- retro- spec- tive study	pinei:10, t suprasellar:11, t pineal+suprasellar:5, p basal ganglia:4 t t	adio- hera- by:30; biopsy/ esec- ion:26; themo- hera- by:30	focai:7; extended local(whole ventricle):5; extended local +boost16; whole-brain + boost2	local 24.Gy; extended local 24.Gy; extended local 30.Gy + local boost 20.Gy; whole brain 30.Gy + local boost 20.Gy	carboplatin or cispla- tin + etoposide:26; ifosphamide + cispla- tin + etoposide:4	biopsy:22 patial resection:3, total resection:1, none:4	Recurrence Rate:13.3%; QoL.	M/F/21/9	median (range):17(4–53)	Japan	unknown
Nguyen 2006	2006 21	sin- gle- retro- spec- tive study	pineli6, suprasellar8, multiple midline:7 E	adio- hera- biopsy/ esec- themo- hera- by:12	focaley craniospinal:12	focał: median 30.6 Gy (range.30.0-44 Gy); craniospinal: primary site, median 50 Gy(range.44.8-58 Gy)/ CSI, median 24 Gy(range.20-36 Gy).	CTX+focal RT:9,CTX+CS13; carboplatin or cispla- tin + etoposide:7, cisplatin + etopo- cisplatin + etopo- side + cytoxan + vin- side + cytoxan + vin- cistine:3, other cisplatin based regimens:2	biopsy:12 resection8, none:1	PF55-year 100% for CSI,62% for focal RT; focal RT; OS:10-year 83% for CSI,89% for for CSI,89% for focal RT	M/F:13/8	median (range):19(6–27)	USA	median 94 months(9.7–215)

(2025) 25:26

Study Model Autorianty Autorianty Study Autorianty Study Autorianty Study Autorianty Study Study Autorianty Study S	Table 1	(continue	(n)											
Option 2031 304 month periodical per	Study Name/ AuthorYear	Pub- Sample lish Size Year (N)	e Study Tu De- (<u>N</u> sign	mor Extension	nter- /en- ions N)	RT Field (N)	Dose (boost) (Gy)	Chemothrapy (N)	Surgery (N)	Outcomes	Gender M/F (N)	Age (years)	Coun try/ Re- gion	Follow-up (months)
Lec203 203 87 sinter suprediar folgment acto Codes blemyorin Retreated folgment center basilization 39 mode Mode and/5/(x) 2/(x) and/5/(x) 2/(x) center basilization tency tool mode mode and/5/(x) 2/(x) and/5/(x) 2/(x) center basilization tool tency tool mode and/5/(x) 4/(x) and/5/(x) 2/(x) terro tool tool tool tool tool tool tool and/5/(x) 4/(x) tool tuby standard tool tool tool tool tool tool tool tuby standard tool tool tool tool tool tool tool tuby standard tool tool tool tool tool tool tool tuby standard tool tool tool tool tool tool tool tuby standard tool tool tool tool tool tool tool tuby standard tool tool tool tool tool	Одама 2003	2003 126	multi- pir center eal retro- th: spec- mu tive tec study	rel:51,neurohypoptys 1 133, 13 alamus or basal ganglia;7, 1 11th ficcal:21,dissemina t 1:14 1:14 1:14 1:14 1:14	adio- chera- cy:126; cion:50; cion:50; chemo- hera- cy:0	focalt6; whole ventricle.2; whole-brain:62; craniospinal:56	primary site: median 50 Gy(20-64 Gy); whole ventricle: range(40-42 Gy); whole-brain: median 30 Gy(195-44 Gy); cranospinal: median 30.4 Gy(7,2-37.2 Gy)		pathologically:50, clinically:76	OS:10-year,90%; CSS:10-year,95%; toxicity.	M/F:95/31	median (range):17(2–47	Japan 7)	median 122 months(13–263)
Schoenfeld 2006 31 sin- pineal/23, radio- focal/2; primary site: median carboplatin, etopo- tissue diagnosis31 C 2005 gle- suprasellar/5, thera- whole ventricle.1; 495 Gy(range,30-51 Gy); side, bleomycin 1 2005 center pineal and suprasellar/5, thera- whole ventricle.1; 495 Gy(range,30-51 Gy); side, bleomycin 1 1 2005 center biopsy/ 9/5 Gy(range,30-51 Gy); side, bleomycin 8 1 1 2005 center biopsy/ 9 Gy(range,30-51 Gy); etoposide.2 R R 2005 retro- tesc- CSI, median 21 Gy(range,20-25 Gy); etoposide.2 1 1 21 Gy themo- themo- themo- themo- themo- themo-	Lee 2023	2023 87	sin- sol gle- 39 retro- th: spec- bir tive study sup pir	ilitary: suprasellar 16, pineal 1 sal gangla/ alamus: 14, others 3; cod: suprasellar and real 2, other 3, others 3 heal and other 3, others 3 teal and other 3, others 3	adio- bera- by:87; bion87; chemo- bra- by:87	whole ventricle:65	primary site: foca//WV, medi- an450y36-54 Gy/45Cy(234-558 Gy); whole ventricle: median 19.8 Gy(14.4-36.0 Gy)	2 Cycles bleomycin, etoposide and cisplatin or etoposide and carboplatin:36; 4 Cycles etoposide, carboplatin, and cyclophospha-mide2; cyclophosphamide2; 5 Cycles cis- platin, etoposide, platin, etoposide, platin, etoposide, platin, etoposide, platin, etoposide, platin, etoposide, platin, etoposide, platin, etoposide, cyclophosphamide3, fine, procarbazine, hydroxyurea, and vhorosynea, cyclophosphamide3, cyclophosphamide3, cyclophosphamide3, cyclophosphamide3,	stereotactic biopsy:26, endoscopic biopsy:44, open biopsy:9, surgery:8	RFS:10-year, 86.3%, 90.9%, Secondatric, Secondatry malignancy	MrF:72/15	median (range):15(4-44	to korea	median 93.6 months(5.88–270)
27.KH	Schoenfeld 2006	2006 31	sin- pir gle- suy center pir retro- spec- tive study	real:23, t prasellar5, t real and suprasellar3 r r r r r r r r r r r r r r r	adio- thera- by:31; biopsy/ esec- themo- thera- yy:2	focal:2; whole ventricle:1; craniospinal:28	primary site: median 49.5 Gy(range.30–51 Gy); whole ventride: median 9 Gy(range.8–21 Gy); CSI, median 21 Gy(range.20–25 Gy).	carboplatin, etopo- side, bleomycin or cisplatin, etoposide:2	tissue diagnosis31	OS:5- and 10-year,93% and 88%, 88%, 88%, 88%, 10-year,94% and 94%, toxicity,	MF-27/4	median (range):18(10– 36)	USA	median 84 months(21.6-246)

Table 1	(continue	(p											
Study Name/ AuthorYear	Pub- Sample lish Size Year (N)	e Study De- sign	Tumor Extension (N)	Inter- ven- tions (N)	RT Field (V)	Dose (boost) (Gy)	Chemothrapy (N)	Surgery (N)	Outcomes	Gender M/F (N)	Age (years)	Coun- try/ Re- gion	Follow-up (months)
Shibamoto 1988	1,988 70	sin- gle- center retro- spec- tive study	pineal(P):33, supra- or intrasellar(S):26, P + 5:6, basal ganglia/thalamus:5	radio- thera- py:70; biopsy/ resec- tion:30; chemo- therapy: therapy:	focal:34; whole ventricle + spine:6; whole-brain:4; craniospinal:22; others4	primany site:50–55 Gy; whole-brain:30 Gy; craniospinal: median 24 Gy	unknown	biopsy:19, patial resection.6, total resection.3, other.2, cytology:12,clinicaly.28	OS:5- and 10-year,86% and 79%, RFS, unknown, toxicity,	M/F:57/13	rredian (range):15(6-44)	Japan	unkown
Shikama 2005	<i>2005</i> 180	multi- center retro- spec- tive study	solitary: pineal 60,suprasel- lar 53, basal ganglia 16; multiple or disseminated:51	radio- thera- py:180; biopsy/ resec- tion:88; chemo- thera- py:55	focal:14; whole ventricle/ brain:100; craniospinal:56	primary site: median 50 Gy(24-64 Gy); whole-brain/ventricle: median 30 Gy(12-54 Gy); craniospinal: median 30 Gy(72-37.5 Gy)	1 to 5 cycles etopo- side plus cisplatin or carboplatin 40, cisplatin, bleomycin, nitrosurea and other agents 15, intrathecal metho- trexate 3.	pathologic 88, clinical 92	OS:8-year(91%); EFS:8-year(89%); 8-year recurrence rates at primary site, intracranial, and spinal were 1%, 6%, and 6%; toxicity.	M/F:133/47	median (range):16(1–47)	Japan	median 89 months(3-297)
Shirato 1997	1997 51	sin- gle- center retro- spec- tive study	pineal: 16, suprasellar: 11, pineal + suprasellar: 11, basal ganglia:5, thalamus:4, third ventricle: 1, third ventricle + suprasellar:3	radio- thera- py:51; biopsy/ resec- tion:18; chemo- thera- py:18	focal:5; whole ventricle:21; whole-brain:9; cranlospinal:16	primary site: median 47.1 Gy(30–60 Gy); whole-brain/ventricle: median 30 Gy(20–40 Gy); craniospinal: median 30 Gy(20–39 Gy)	5 cycles ifosfamide, cisplatin, etoposide	pathologic 18, clinical 33	OS:10-year, 92%, CSS:10-year, PVG and PUVG was 100 and 96%, toxicity,	M/F:42/9	median (range): 19(9– 32),PVG; median (range): 15(5– 28),PUVG	Japan	median 108 months(0.71–204)
Singh 2015	2015 28	multi- center retro- spec- tive study	bifocal 28	radio- thera- py:28; biopsy/ resec- tion:13; chemo- thera- py:26	focal:10; whole ventricle:14; craniospinal:4	primary site: median 38 Gy; whole-ventricle: median 24 Gy(30.6–40 Gy); craniospinal: unknown	adjuvant chemoterapy	surgery 13	Recurrence Rate	M/F.24/4	median (range):14.1(6.7– 21.8)	Can- ada, USA	WVRT + boost median 78 months WVRT median 50.4 months
Takami 2021	2021 35	sin- gle- center retro- spec- tive study	neurohypophyseal 20, bifocal, neurohypophy- seal+ pineal 15	radio- thera- py:33; biopsy/ resec- tion:32; thera- thera- py:25	focai:12; whole ventricle:3; craniospinal:15	ACNS0232 study protocol	ACNS0232 study protocol	endoscopic surgery 9, stereotactic biopsy 5, open craniotomy 15, unknown surgery 3	PFS, OS, toxicity; whole-brain or whole-ventricle RT significantly improved PFS and OS vs. local RT.	M/F.26/9	median (range):18(0.25- 49)	USA	rwouv

Study Pub- Sampl Name/ lish Size AuthorYear Year (N) Takano 2015 38 2015 2015 38 38 38 2015 38 2015 38 2015 38 2015 38 2015 38	a Study De- De- sign sign gle- center	Tumor Extension (N)	Inter-		A							
Takano 2015 38 2015 Tsurubuchi 2022 43 2022	sin- gle- center		ven- tions (N)	(N)	Dose (boost) (Gy)	Chemotriapy (N)	Surgery (N)	Outcomes	Gender M/F (N)	Age (years)	Coun- try/ Re- gion	Follow-up (months)
Tsurubuchi 2022 43 2022	retro- spec- tive study	pineal 17, neurohypophysial 11, multiple 6,basal ganglia 2, others 2	radio- thera- py:38; biopsy/ resec- tion:32; chemo- thera- thera- py:32	focal(CTX):16; whole ventride(CTX):17; whole-brain(RT alone).5	Group A: whole-brain 30.6 Gy + boost 19.8 Gy; Group B: CTx + local 30.6 Gy or extended local (24-30.6 Gy); Group C: CTx + whole-ventricle 30.6 Gy + local boost 19.8 Gy	Group B: cispla- tin + etoposide 11, bleomycin + vincris- tine + cisplatin 3, ifosfamide + cispla- ifosfamide + cispla- foroup C3 cycles cisplatin or cabopila tin + etoposide 17 tin + etoposide 17	pathological: Group A/B/C1/14/17	PFS:5-and 10- year,92.1% and 73.9%; OS:5-and 10- year,100% and 95.5%; toxicity.	M/F:29/9	median (range):16.5(7– 38)	Japan	median 1283 months(60-384)
	sin- gle- center retro- spec- tive study	pineal 26, sellar 18, lateral ventricle 8, cerebral hemisphere 3, basal ganglia 2, others 4	radio- thera- py:43; biopsy/ resec- tion:43; chemo- thera- py:41	focal.9; RT including WV:34	primary site: range, 29.4–50.4 Gy; whole ventricle: range, 23.4–30.6 Gy; CSI, 23.4 Gy	cisplatin and etoposide, vincristine, cisplatin, and/or bleomycin, ifosfamide, cisplatin, and etoposide, carboplatin and etoposide	endoscopic biopsy 17, craniotomy or lami- nectomy 17, transsphenoidal surgery 7, stereotactic biopsy 4	PFS and OS, 5-year, 88% and 100%	M/F:33/10	no/delayed/ early recurrence: median (range):14(7–38), median (range):23.5(8– median (range):15.5(14– 21)	Japan	no/delayed/early ecurrence: median 143.5 months(60–380) median 207.5 months(88–222) median 207.5 months(88–222)
Weksberg 2012 20 2012	sin- gle- center retro- spec- tive study	bifocal, pineal + suprasellar:20	radio- thera- py:20; biopsy/ resec- tion:13; chemo- thera- py:7	focal:1; whole ventricle:5; whole brain:3; craniospinal:11	primary site: median 50 Gy(19.5–58 Gy)	ifosfamide, cisplatin, and etoposide 2, carboplatin and etoposide 4, cisplatin and etoposide 1	biopsy 13	PFS, 5-year, 100%	M/E:19/1	median (range):19(8-47)	lapan (median 995 months(33-256)
Cheng 2014 2014 25	sin- gle- center retro- spec- tive study	suprasellar 9.brifocal 8, pineal 6.basal ganglia 2	radio- thera- py:25; biopsy/ resec- tion: un- known; chemo- thera- py:24	focal 4; whole ventricle:15; whole-brain:3; craniospinal:3	focal(40 Gy); whole-ventricu- lar(23.4–24 Gy) + boost(16 Gy); whole-brain(23.4 Gy); CSI unknown dose	carboplatin-based	nwonku	PFS, 5-year, 96%; OS, 5-year, 100%; Education Status.	M/F:14/11	median (range):12.9(6– 17)	Cana- da	median 61 months(1-144)

Zhou *et al. BMC Cancer* (2025) 25:26

Fig. 2 Results of meta-analyses regarding recurrence rate of intracranial germinoma in full-set. A: Meta-analysis of focal radiotherapy (RT) vs. craniospinal irradiation (CSI); B: Meta-analysis of whole-ventricle radiotherapy (WVRT) vs. CSI; C: Meta-analysis of whole-brain radiotherapy (WBRT) vs. CSI; D: Meta-analysis of focal RT vs. WVRT; E: Meta-analysis of focal RT vs. WBRT; F: Meta-analysis of WVRT vs. WBRT

Comparisons	Sta-	Relapse				Death			
	tistic Model	Events/Total(N)	RR, 95% CI	P value	$ ^2/\tau^2$	Events/Total(N)	RR, 95% Cl	P value	$ ^2/ au^2$
Focal RT vs. CSI	D+L pooled RR	135/450 vs. 34/1062	7.128(5.083,9.995)	< 0.001	0%/0.0000	37/380 vs. 22/824	3.134(1.804,5.446)	< 0.001	2.3%/0.0329
	M-H pooled RR		7.381(5.234,10.410)				2.932(1.789,4.804)		
WVRT vs. CSI	D+L pooled RR	38/485 vs. 21/576	2.771(1.375,5.584)	0.004	32.7%/0.5128	10/401 vs. 16/437	1.311(0.425,4.047)	0.638	51.6%/1.4156
	M-H pooled RR		2.134(1.337,3.406)				0.820(0.434,1.547)		
WBRT vs. CSI	D+L pooled RR	45/598 vs. 33/932	2.397(1.388,4.140)	0.002	14.3%/0.1927	15/417 vs. 17/629	2.103(0.980,4.514)	0.056	0.0%/0.0000
	M-H pooled RR		2.175(1.390,3.404)				1.817(0.889,3.714)		
Focal RT vs. WVRT	D+L pooled RR	81/241 vs. 40/537	3.361(2.126,5.312)	< 0.001	22.1%/0.1866	21/239 vs. 11/453	2.559(1.263,5.185)	0.009	4.1%/0.0666
	M-H pooled RR		4.362(3.082,6.174)				2.800(1.556,5.037)		
Focal RT vs. WBRT	D+L pooled RR	124/347 vs. 41/568	4.094(2.923,5.735)	< 0.001	0.0%/0.0000	35/300 vs. 15/408	2.635(1.504,4.614)	0.001	0.0%/0.0000
	M-H pooled RR		4.216(2.985,5.955)				2.748(1.606,4.703)		
WVRT vs. WBRT	D+L pooled RR	36/493 vs. 17/237	1.444(0.796,2.619)	0.227	3.8%/0.0418	9/424 vs. 3/91	0.533(0.184,1.541)	0.245	0.0%/0.0000
	M-H pooled RR		1.288(0.743,2.233)				0.567(0.217,1.482)		

Table 2 Meta-analyses of recurrence rate and mortality in full-set

CSI: craniospinal irradiation; WBRT: whole-brain radiotherapy; WVRT: whole-ventricle radiotherapy; RR: risk ratio

and fixed effect model were both employed, and more detailed meta-analyses results were shown in Table 2.

Recurrence in RT alone subset

We systematically evaluate recurrence in RT alone subset. Four studies with 236 IG patients assessed the relapse rate of focal RT vs. CSI. Pooled RR manifested that focal field RT were with higher recurrence in comparison with CSI [RR=14.469, 95% CI (6.293, 33.265), P=0.000]. Only two studies with 111 IG patients were included in this meta-analysis to calculate relapse rate of WVRT vs. CSI. Pooled RR indicated WVRT were with higher recurrence compared with CSI [RR=9.618, 95% CI (2.932, 31.552), P=0.000]. Six studies with 395 IG patients assessed the relapse rate of WBRT vs. CSI. Pooled RR indicated that WBRT were with higher recurrence in comparison with CSI [RR=5.989, 95% CI (1.347, 26.625), P=0.019, I^2 =62.1%]. Only two studies with 19 IG patients were included in this meta-analysis to calculate relapse rate of focal RT vs. WVRT. Pooled RR showed that no significant difference between focal RT and WVRT [RR=1.761, 95% CI (0.838, 3.701), P=0.135]. Four studies with 141 IG patients were included in meta-analysis to evaluate recurrence rate of focal RT vs. WBRT. Pooled RR also indicated focal field RT were with higher recurrence compared with WBRT [RR=4.102, 95% CI (1.945, 8.650), P=0.000]. Only two studies with 76 IG patients were included in this meta-analysis to evaluate relapse rate of WVRT vs. WBRT. Pooled RR manifested no significant difference between WVRT and WBRT [RR=3.117, 95% CI (0.303, 32.023), P=0.339]. In these meta-analyses, no obvious heterogeneity was found (except for WBRT vs. CSI, I^2 =62.1%, τ^2 =1.3962), the random and fixed effect

Fig. 3 Results of meta-analyses regarding mortality of intracranial germinoma in full-set. A: Meta-analysis of focal radiotherapy (RT) vs. craniospinal irradiation (CSI); B: Meta-analysis of whole-ventricle radiotherapy (WVRT) vs. CSI; C: Meta-analysis of whole-brain radiotherapy (WBRT) vs. CSI; D: Meta-analysis of focal RT vs. WVRT; E: Meta-analysis of focal RT vs. WBRT; F: Meta-analysis of WVRT vs. WBRT

model were both employed, and more detailed metaanalyses results were shown in Table 3.

Mortality in RT alone subset

Three studies with 174 patients assessed mortality rate of focal RT vs. CSI in RT alone subset. Pooled RR indicated that focal RT was with higher mortality compared with CSI [RR=10.589, 95% CI (2.831, 39.603), P=0.000]. Only one study with 53 IG patients evaluated mortality of WVRT vs. CSI, indicated that no significant difference between WVRT and CSI [RR=3.286, 95% CI (0.341, 31.643), P=0.303]. Three studies with 189 IG patients assessed mortality of WBRT vs. CSI. Pooled RR indicated that WBRT was with higher mortality than CSI [RR=9.043, 95% CI (1.981, 41.283), P=0.004]. Only one study with 11 patients evaluated mortality of focal RT

(0.583, 5.741), *P*=0.301]. Only one study with 12 patients

evaluated mortality of WVRT vs. WBRT, manifested no significant difference between WVRT and WBRT group

[RR=0.357, 95% CI (0.043, 2.941), P=0.338]. In these

meta-analyses, no obvious heterogeneity was found, both

random and fixed effect model were employed, and more

detailed pooled results were shown in Table 3.

 Table 3
 Meta-analyses of recurrence rate and mortality in RT alone subset

Comparisons	Sta-	Relapse				Death			
	tistic Model	Events/Total(<i>N</i>)	RR, 95% CI	P value	l^2/τ^2	Events/ Total(<i>N</i>)	RR, 95% Cl	P value	$ ^2/\tau^2$
Focal RT vs. CSI	D+L pooled RR	17/35 vs. 5/201	14.469(6.293,33.265)	< 0.001	0.0%/0.0000	5/29 vs. 2/145	10.589(2.831,39.603)	<0.001	0.0%/0.0000
	M-H pooled RR		16.876(6.658,42.779)				9.610(2.532,36.481)		
WVRT vs. CSI	D+L pooled RR	4/9 vs. 5/102	9.618(2.932,31.552)	<0.001	0.0%/0.0000	1/7 vs. 2/46	3.286(0.341,31.643)	0.303	/
	M-H pooled RR		9.710(2.757,34.197)				3.286(0.341,31.643)		
WBRT vs. CSI	D+L pooled RR	11/117 vs. 7/278	5.989(1.347,26.625)	0.019	62.1%/1.3962	3/44 vs. 2/145	9.043(1.981,41.283)	0.004	0.0%/0.0000
	M-H pooled RR		4.051(1.871,8.770)				8.933(1.757,45.417)		
Focal RT vs. WVRT	D+L pooled RR	7/10 vs. 4/9	1.761(0.838,3.701)	0.135	0.0%/0.0000	2/4 vs. 1/7	3.500(0.445,27.524)	0.234	/
	M-H pooled RR		1.679(0.800,3.526)				3.500(0.445,27.524)		
Focal RT vs. WBRT	D+L pooled RR	17/35 vs. 8/106	4.102(1.945,8.650)	<0.001	17.5%/0.1052	5/29 vs. 3/44	1.830(0.583,5.741)	0.301	0.0%/0.0000
	M-H pooled RR		4.200(2.092,8.431)				2.104(0.662,6.693)		
WVRT vs. WBRT	D+L pooled RR	4/9 vs. 5/67	3.117(0.303,32.023)	0.339	76.9%/2.1810	1/7 vs. 2/5	0.357(0.043,2.941)	0.338	/
	M-H pooled RR		1.760(0.621,4.987)				0.357(0.043,2.941)		

CSI: craniospinal irradiation; WBRT: whole-brain radiotherapy; WVRT: whole-ventricle radiotherapy; RR: risk ratio

Comparisons	Sta- tistic Model	Relapse				Death			
		Events/Total(N)	RR,95% CI	P value	$ ^2/\tau^2$	Events/ Total(<i>N</i>)	RR,95% CI	P value	$ ^2/\tau^2$
Focal RT vs. CSI	D+L pooled RR	41/119 vs. 1/201	12.368(5.046,30.314)	<0.001	0.0%/0.0000	10/88 vs. 0/148	13.270(2.361,74.582)	0.003	0.0%/0.0000
	M-H pooled RR		11.825(4.802,29.119)				10.623(1.642,68.725)		
WVRT vs. CSI	D+L pooled RR	3/135 vs. 2/141	0.871(0.187,4.053)	0.861	0.0%/0.0000	1/79 vs. 1/90	0.419(0.047,3.697)	0.433	0.0%/0.0000
	M-H pooled RR		0.868(0.226,3.333)				0.394(0.054,2.857)		
WBRT vs. CSI	D+L pooled RR	5/181 vs. 2/198	1.306(0.286,5.961)	0.730	0.0%/0.0000	6/175 vs. 1/145	1.127(0.199,6.384)	0.893	0.0%/0.0000
	M-H pooled RR		1.244(0.278,5.573)				1.169(0.212,6.445)		
Focal RT vs. WVRT	D+L pooled RR	37/119 vs. 12/249	4.643(2.546,8.468)	<0.001	0.0%/0.0000	5/82 vs. 2/159	3.517(0.795,15.554)	0.097	15.3%/0.4391
	M-H pooled RR		5.759(3.214,10.317)				3.561(1.235,10.265)		
Focal RT vs. WBRT	D+L pooled RR	37/99 vs. 5/178	8.183(4.111,16.287)	<0.001	0.0%/0.0000	10/68 vs. 6/172	4.639(1.882,11.431)	0.001	0.0%/0.0000
	M-H pooled RR		7.426(3.844,14.345)				4.658(1.878,11.553)		
WVRT vs. WBRT	D+L pooled RR	2/141 vs. 0/18	0.331(0.039,2.786)	0.309	0.0%/0.0000	1/85 vs. 0/14	0.409(0.021,7.931)	0.555	/
	M-H pooled RR		0.335(0.040,2.792)				0.409(0.021,7.931)		

Table 4 Meta-analyses of recurrence rate and mortality in CTx plus RT subset

CSI: craniospinal irradiation; WBRT: whole-brain radiotherapy; WVRT: whole-ventricle radiotherapy; RR: risk ratio

Recurrence in CTx plus RT subset

We systematically evaluate recurrence in CTx + RT subset. Nine studies with 320 IG patients assessed the recurrence rate of focal RT vs. CSI. Pooled RR indicated that focal RT were with higher recurrence compared with CSI [RR=12.368, 95% CI (5.046, 30.314), P=0.000]. Six studies with 276 IG patients were included to this metaanalysis to calculate relapse of WVRT vs. CSI. Pooled RR indicated that no significance between WVRT and CSI [RR=0.871, 95% CI (0.187, 4.053), P=0.861]. Eight studies with 379 IG patients assessed the relapse rate of WBRT vs. CSI. Pooled RR manifested that no significant difference between WBRT and CSI [RR=1.306, 95% CI (0.286, 5.961), P=0.730]. Nine studies with 368 IG patients were included in the meta-analysis to calculate recurrence rate of focal RT vs. WVRT. Pooled RR indicated that focal RT were with higher recurrence compared with WVRT [RR=4.643, 95% CI (2.546, 8.468), P=0.000]. Eight studies with 277 IG patients were included in meta-analysis to evaluate relapse rate of focal RT vs. WBRT. Pooled RR also indicated focal RT were with higher recurrence compared with WBRT [RR=8.183, 95% CI (4.111, 16.287), P=0.000]. Five studies with 159 IG patients were included into meta-analysis to evaluate relapse rate of WVRT vs. WBRT. Pooled RR showed that there was no significant difference between WVRT and WBRT [RR=0.331, 95% CI (0.039, 2.786), P=0.309]. In these meta-analyses, no obvious heterogeneity was found, the random and fixed effect model were both employed, and more detailed pooled results were shown in Table 4.

Mortality in CTx plus RT subset

Seven studies with 236 IG patients assessed the mortality of focal RT vs. CSI in CTx + RT subset. Pooled RR indicated that focal RT was with higher mortality compared with CSI [RR=13.270, 95% CI (2.361, 74.582), P=0.003]. Five studies with 169 patients evaluated mortality of WVRT vs. CSI. Pooled RR showed that no significant difference between WVRT and CSI [RR=0.419, 95% CI (0.047, 3.697), *P*=0.433]. Six studies with 320 IG patients assessed the mortality of WBRT vs. CSI. Pooled RR also indicated no significant difference between WBRT and CSI [RR=1.127, 95% CI (0.199, 6.384), P=0.893]. Seven studies with 241 patients evaluated mortality of focal RT vs. WVRT. Pooled RR manifested there was borderline significance between focal RT and WVRT [RR=3.517, 95% CI (0.795, 15.554), P=0.097]. Six studies with 240 IG patients were included in the meta-analysis to evaluated mortality of focal RT vs. WBRT. Pooled RR indicated focal RT was with higher mortality in comparison with WBRT [RR=4.639, 95% CI (1.882, 11.431), P=0.001]. Four studies with 99 patients evaluated mortality of WVRT vs. WBRT. RR manifested no significant difference between WVRT and WBRT arm [RR=0.409, 95% CI (0.021, 7.931), P=0.555]. In these meta-analyses, no obvious heterogeneity was found, the random and fixed effect model were both employed, and more detailed pooled results were shown in Table 4.

Toxicity

Twenty-four studies reported treatment-related acute and/or late toxicity. Most studies only qualitatively described toxicity, and it is difficult to quantitatively pool the differences in toxicity rates between different intervention approaches. To sum up, combination chemotherapy increased acute toxic effects, such as acute hematologic toxicities, nausea and vomiting; while expanded RT fields and/or RT doses increased late toxicity, such as neurocognitive dysfunctions, hormone deficiency, school activity, and secondary malignancy. More details were summarized in Supplementary Table 2.

Discussion

Main findings

This study has following main findings: Firstly, metaanalyses manifested focal RT were with higher recurrence and mortality compared with CSI, WBRT or WVRT, while CSI had the lowest recurrence rate in fullset; WBRT and WVRT were also with higher recurrence compared with CSI; no significant difference regarding to mortality between WVRT and CSI; no significant difference in recurrence and mortality rate between WVRT and WBRT. Secondly, Meta-analyses demonstrated focal RT/WVRT/WBRT were with higher recurrence rate compared with CSI in RT alone subset; either focal RT vs. WVRT or WVRT vs. WBRT, no significant difference in recurrence. Meta-analyses indicated focal RT were with higher recurrence compared with CSI, WBRT or WVRT in CTx+RT subset; no significant difference regarding to recurrence in any one of comparisons (WVRT vs. CSI, WBRT vs. CSI, WVRT vs. WBRT). Thirdly, combination chemotherapy increased acute toxic effects, and expanded RT fields and/or higher doses increased acute and late toxicity.

Strength of evidence

In this systematic review and meta-analysis, those treated with focal RT had an excessively higher recurrence rate, while CSI had the lowest recurrence rate. Focal field radiotherapy has a higher spinal failure rate than CSI [9, 15–17, 22, 24]. This has also been confirmed by multiple previously published studies [17, 22, 23, 25, 26]. Our findings together with those of previous studies suggest focal field RT is inappropriate for localized intracranial germinoma, regardless of whether combined with chemotherapy.

CSI has the lowest recurrence rate, so is this strategy still necessary? According to a study performed by Schoenfeld et al., RT alone with low-dose prophylactic CSI cures almost all patients with germinoma, and complications are rare [41]. In other studies, researchers thought that spinal irradiation might be omitted. A multicenter study showed that spinal irradiation did not contribute to favorable event-free survival in patients with IG [43]. The study by Kanamori et al. also suggested that CSI is unnecessary for germinoma patients with positive CSF cytology without spinal lesions on MR imaging [27]. Rather than omit CSI, some studies have used a milder approach that can be treated with reduced-dose CSI alone for localized germinoma, and reduced-dose CSI alone is effective in metastatic IG disease [7]. Hardenbergh et al. also suggested that CSI may be indicated for patients with multiple or spine seeding [23]. In a word, CSI is not necessary for localized intracranial germinoma, considering the efficacy, toxicity, number and spread of lesions, reduced-dose CSI alone with or without CTx is effective in multiple or metastatic IG.

This meta-analysis demonstrated that WVRT or WBRT were with higher recurrence rate compared with CSI in RT alone, but no significant difference between WVRT and WBRT; also no significant difference regarding to recurrence in any one of comparisons (WVRT vs. CSI, WBRT vs. CSI, WVRT vs. WBRT) in CTx + RT. Joo et al. reported that WBRT or WVRT could be applied to patients who show a complete response to chemotherapy [26]. Reduced field of radiation needs to encompass the whole-ventricular for bifocal germinoma [45]. RT including whole-ventricle system decreased delayed craniospinal relapses including dissemination, local, and distant recurrences even ≥ 5 years after CR in patients with intracranial germinoma [48]. WVRT or WBRT + primary boost is a sufficient irradiation field for localized IG, while patients with bifocal disease should undergo CSI, especially when treated with RT alone. The results of chemotherapy followed by reduced-dose RT are comparable to those of RT alone [35]. Based on the results of our study and the discussion above, whole-ventricular or whole-brain radiotherapy should be the preferred modality for localized lesions.

Some studies support the addition of chemotherapy to radiotherapy for intracranial germinoma. Chemotherapy followed by whole-ventricle radiotherapy, with or without local boost, and with use of neuro-endoscopy results in good disease-control without late complications in germinoma patients [47]. Currently used upfront chemotherapy followed by reduced-dose/volume RT appears acceptable, when whole-ventricle RT for pineal or suprasellar tumors and, at minimum, whole-brain RT for basal ganglia/thalamus lesions are applied [30]. A previous meta-analysis showed CRT strategy has a higher overall survival and disease-free survival at 3 years than RT, but the advantage of survival rates for CRT is eliminated or even reversed at 5 years in the postoperative period [50]. All above results suggest that the addition of chemotherapy may reduce RT volume and/or doses. However, some studies have come to a different conclusion. The additional benefit of CTx in the treatment of IG seems minimal, and RT-only approach with reduced target volume and dose seems reasonable [16]. Focal RT with or without CTx were associated with inferior control of IG and a higher incidence of CTx-related toxicities. Adjustment of the radiation volume to the whole ventricular system without CTx is sufficient for treatment of non-disseminated IG, even with lower primary RT doses (< 36 Gy) [17]. On the basis of our findings and those of previously studies, we conclude that whole-ventricle or whole-brain radiotherapy is adequate, regardless of whether combined with chemotherapy.

This meta-analysis together with previous studies showed that whole-ventricle irradiation with or without boost at total dose of 36–40 Gy for primary lesion and 23.4 Gy for whole-ventricle system, using precise radiation therapy of treatment planning, is appropriate as a standard treatment for most localized intracranial germinoma. Adjustment of the radiation volume to the wholeventricular system without CTx is sufficient for treatment of non-disseminated IG, even with lower RT doses (< 36 Gy) [17]. The radiation dose can also be further reduced if chemotherapy is combined. A study showed that upfront chemotherapy could be beneficial for the patients with complete response to minimize the RT dose down to 30 Gy [31]. In another study by Foo et al., excellent 5-year PFS and OS were achieved with chemotherapy followed by radiotherapy of 23.4 Gy delivered without primary tumor boost [20]. Due to the heterogeneity of radiation doses reported by different included studies, it was not feasible to quantitatively pooled results, recommendations for radiation dose are summarized as follows: (1) for localized intracranial germinoma, 20–24 Gy for whole-ventricle system and total dose up to 36–40 Gy for primary sites is required; (2) for multiple or metastatic IG, CSI at dose of 19.8–23.4 Gy and total dose up to 39.6–45 Gy for primary lesions is effective.

This systematic review indicated that most of the surviving patients are living an active, useful life, although some patients have hypothalamic-pituitary dysfunction, visual disturbance, or other neurological deficits. All of the symptoms existed from the beginning and may not be the sequalae of surgery and radiotherapy. QoL of surviving patients did not appear to differ significantly between the locally-treated and the CSI groups. Karnofsky performance status, educational achievement, and the ability to work were generally good, particularly in patients with tumors that did not involve the neurohypophyseal region. Because most complications, such as hormonal deficiency and neurocognitive dysfunction, were documented before RT and newly diagnosed complications after RT were infrequent, the treatment toxicity faced by germinoma patients appears to be less than anticipated [39]. Although radiotherapy rarely caused late adverse effects in patients with adolescent- or adult-onset, in some childhood-onset lesions, the radiation seems to carry the risk of neurocognitive dysfunctions, which are attributable to late adverse effects [25]. Pretreatment biochemical abnormalities may indicate higher risk of posttreatment pituitary insufficiency, and all patients should receive careful endocrine follow-up [46].

Limitations

There are several limitations of this meta-analysis. Firstly, all included studies were non-randomized, and most of included studies were retrospective, and most of the studies did not adjust for confounding factors, which weaken the level of evidence based on the results drawn. Secondly, due to the lack of stratification by local vs. disseminated disease in the most included studies, the meta-analysis included patients with both localized and disseminated disease, thus, it is almost impossible to conduct a meta-analysis, and the results may therefore exaggerate the value of CSI in localized disease. It is hoped that prospective controlled studies in the future need to stratified intervention according to the presence or absence of cerebrospinal fluid dissemination. Thirdly, though the I^2 in our study was low and acceptable, showing no concerned statistical heterogeneity, it might result from the high and similar cure rate of among different groups. In fact, the choice of treatment strategy varied among different studies, including the radiation equipment, technique and dose as well as the chemotherapy regimen, increased the heterogeneity of the pooled results. Fourthly, since the toxicity and QoL of different treatment strategies were reported diversely, it was hard to quantify and drew a pooled result. Thus, we could not quantitatively compare the adverse effects of different treatment modalities. Fifthly, the arms of some studies overlapped in different comparisons of meta-analyses, and this situation could still lead to Type I error inflation. Therefore, limitations caused by multiple comparisons should be carefully considered when interpreting the results. Nevertheless, our study represents the highest level of evidence available regarding the efficacy and safety of different treatment modalities for intracranial germinoma, and ultimately facilitates clinical decision making.

Conclusion

In summary, long-term survival of IG patients treated with radiotherapy is excellent. Based on the available evidence and our findings, focal field RT is not recommended due to its highest recurrence rate regardless of whether combined with CTx for intracranial germinoma. Although CSI with or without CTx is associated with better local control than other reduced field RT, considering the potential toxicity and the pattern of relapse, whole ventricles irradiation field is more reasonable for localized or nonmetastatic intracranial germinoma. Reduceddose CSI with or without CTx is effective in metastatic or disseminated germinoma.

Supplementary Information

The online version contains supplementary material available at https://doi.or g/10.1186/s12885-024-13323-1.

Supplementary Material 1 Supplementary Material 2 Supplementary Material 3

Acknowledgements

None.

Author contributions

Study concept and design: Y.M., Y.W., ZR.Z., EM.W.; Data collection: ZR.Z., JB.L., Q.Y., X.L., XW.Z., L.Z; Data analysis and interpretation: ZR.Z., JB.L., Q.Y., Y.M., Y.W., L.C.; Statistics: ZR.Z., JB.L., Q.Y., L.Z.; Manuscript drafting: ZR.Z., JB.L., Q.Y., X.L. XW.Z.; Manuscript revising: Y.M., Y.W., ZR.Z., EM.W. All authors reviewed the manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (grant 82003231 to Dr. ZRZ).

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Author details

¹Radiation Oncology Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China ²National Center for Neurological Disorders, Shanghai 200052, China ³Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China ⁴Department of Orthopedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University Centre for Orthopedics, Shandong University, Jinan, Shandong 250012, China ⁵Department of Oncology, Jing'an District Central Hospital, Fudan University, Shanghai 200040, China ⁶Nursing Department, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China ⁷Department of Radiation Oncology, Taizhou Cancer Hospital, Wenling, Taizhou 317500, Zhejiang, China ⁸Department of Neurosurgery, CyberKnife Center, Huashan Hospital, Fudan University, Shanghai 200040, China ⁹Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, No. 12 Urumchi Middle Road, Shanghai 200040, China ¹⁰National Center for Neurological Disorders, No. 958 Jin Guang Road, Shanghai 200052, China ¹¹Radiation Oncology Center, Huashan Hospital, Shanghai Medical

¹¹Radiation Oncology Center, Huashan Hospital, Shanghai Medical College, Fudan University, No. 12 Urumchi Middle Road, Shanghai 200040, China

Received: 4 June 2024 / Accepted: 10 December 2024 Published online: 07 January 2025

References

- McCarthy BJ, Shibui S, Kayama T, Miyaoka E, Narita Y, Murakami M, Matsuda A, Matsuda T, Sobue T, Palis BE, et al. Primary CNS germ cell tumors in Japan and the United States: an analysis of 4 tumor registries. Neurooncology. 2012;14(9):1194–200.
- Maity A, Shu HK, Janss A, Belasco JB, Rorke L, Phillips PC, Sutton LN, Goldwein JW. Craniospinal radiation in the treatment of biopsy-proven intracranial germinomas: twenty-five years' experience in a single center. Int J Radiat Oncol Biol Phys. 2004;58(4):1165–70.
- Bamberg M, Kortmann RD, Calaminus G, Becker G, Meisner C, Harms D, Göbel U. Radiation therapy for intracranial germinoma: results of the German cooperative prospective trials MAKEI 83/86/89. J Clin oncology: official J Am Soc Clin Oncol. 1999;17(8):2585–92.
- Lo AC, Laperriere N, Hodgson D, Bouffet E, Nicholson J, McKenzie M, Hukin J, Cheng S, Goddard KJ. Canadian patterns of practice for intracranial germ cell tumors in adolescents and young adults. J Neurooncol. 2019;143(2):289–96.
- Wang WG, Ye H, Chinnaiyan P. Practice patterns and survival outcomes of intracranial germinoma: an analysis of the National Cancer Database. *Journal* of neuro-oncology 2018, 137(1):77–82.
- Silber JH, Radcliffe J, Peckham V, Perilongo G, Kishnani P, Fridman M, Goldwein JW, Meadows AT. Whole-brain irradiation and decline in intelligence: the influence of dose and age on IQ score. J Clin oncology: official J Am Soc Clin Oncol. 1992;10(9):1390–6.
- Calaminus G, Kortmann R, Worch J, Nicholson JC, Alapetite C, Garrè ML, Patte C, Ricardi U, Saran F, Frappaz D. SIOP CNS GCT 96: final report of outcome of a prospective, multinational nonrandomized trial for children and adults with intracranial germinoma, comparing craniospinal irradiation alone with chemotherapy followed by focal primary site irradiation for patients with localized disease. Neurooncology. 2013;15(6):788–96.

- Aoyama H, Shirato H, Ikeda J, Fujieda K, Miyasaka K, Sawamura Y. Induction chemotherapy followed by low-dose involved-field radiotherapy for intracranial germ cell tumors. J Clin oncology: official J Am Soc Clin Oncol. 2002;20(3):857–65.
- Koh KN, Wong RX, Lee DE, Han JW, Byun HK, Yoon HI, Kim DS, Lyu CJ, Kang HJ, Hong KT, et al. Outcomes of intracranial germinoma-A retrospective multinational Asian study on effect of clinical presentation and differential treatment strategies. Neurooncology. 2022;24(8):1389–99.
- Alapetite C, Brisse H, Patte C, Raquin MA, Gaboriaud G, Carrie C, Habrand JL, Thiesse P, Cuilliere JC, Bernier V, et al. Pattern of relapse and outcome of nonmetastatic germinoma patients treated with chemotherapy and limited field radiation: the SFOP experience. Neurooncology. 2010;12(12):1318–25.
- Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int J Surg (London England). 2021;88:105906.
- Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, Moher D, Tugwell P, Welch V, Kristjansson E, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ (Clinical Res ed). 2017;358:j4008.
- Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J. Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg. 2003;73(9):712–6.
- Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, Henry D, Altman DG, Ansari MT, Boutron I, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ (Clinical Res ed). 2016;355:i4919.
- Aoyama H, Shirato H, Kakuto Y, Inakoshi H, Nishio M, Yoshida H, Hareyama M, Yanagisawa T, Watarai J, Miyasaka K. Pathologically-proven intracranial germinoma treated with radiation therapy. Radiotherapy oncology: J Eur Soc Therapeutic Radiol Oncol. 1998;47(2):201–5.
- Byun HK, Yoon HI, Cho J, Shim KW, Han JW, Lyu CJ, Kim DS, Suh CO. Optimization of Intracranial Germinoma Treatment: Radiotherapy Alone with Reduced Volume and Dose. Int J Radiat Oncol Biol Phys. 2020;108(3):657–66.
- Chen YW, Huang PI, Ho DM, Hu YW, Chang KP, Chiou SH, Guo WY, Chang FC, Liang ML, Lee YY, et al. Change in treatment strategy for intracranial germinoma: long-term follow-up experience at a single institute. Cancer. 2012;118(10):2752–62.
- Cheng S, Kilday JP, Laperriere N, Drake J, Bouffet E, Bartels U. Long term outcomes in children with intracranial germinoma: A single institution experience from 2000–2013. Neurooncology. 2014;16:i35.
- Eom KY, Kim IH, Park CI, Kim HJ, Kim JH, Kim K, Kim SK, Wang KC, Cho BG, Jung HW, et al. Upfront chemotherapy and involved-field radiotherapy results in more relapses than extended radiotherapy for intracranial germinomas: modification in radiotherapy volume might be needed. Int J Radiat Oncol Biol Phys. 2008;71(3):667–71.
- Foo JC, Yaman Bajin I, Marushchak O, McKeown T, Bouffet E, Tsang DS, Laperriere N, Dirks P, Drake J, Ertl-Wagner B, et al. Time to dismiss boost? Outcomes of children with localized and metastatic germinoma. J Neurooncol. 2023;162(2):443–8.
- Graham RT, Abu-Arja MH, Stanek JR, Cappellano A, Coleman C, Chi S, Cooney T, Dhall G, Ellen JG, Finlay JL, et al. Multi-institutional analysis of treatment modalities in basal ganglia and thalamic germinoma. Pediatr Blood Cancer. 2021;68(10):e29172.
- Haddock MG, Schild SE, Scheithauer BW, Schomberg PJ. Radiation therapy for histologically confirmed primary central nervous system germinoma. Int J Radiat Oncol Biol Phys. 1997;38(5):915–23.
- Hardenbergh PH, Golden J, Billet A, Scott RM, Shrieve DC, Silver B, Loeffler JS, Tarbell NJ. Intracranial germinoma: the case for lower dose radiation therapy. Int J Radiat Oncol Biol Phys. 1997;39(2):419–26.
- Jensen AW, Laack NN, Buckner JC, Schomberg PJ, Wetmore CJ, Brown PD. Long-term follow-up of dose-adapted and reduced-field radiotherapy with or without chemotherapy for central nervous system germinoma. Int J Radiat Oncol Biol Phys. 2010;77(5):1449–56.
- Jinguji S, Yoshimura J, Nishiyama K, Aoki H, Nagasaki K, Natsumeda M, Yoneoka Y, Fukuda M, Fujii Y. Factors affecting functional outcomes in longterm survivors of intracranial germinomas: A 20-year experience in a single institution: Clinical article. J Neurosurgery: Pediatr. 2013;11(4):454–63.
- Joo JH, Park JH, Ra YS, Im HJ, Koh KN, Khang SK, Do Ahn S. Treatment outcome of radiation therapy for intracranial germinoma: adaptive radiation field in relation to response to chemotherapy. Anticancer Res. 2014;34(10):5715–21.

- Kanamori M, Takami H, Suzuki T, Tominaga T, Kurihara J, Tanaka S, Hatazaki S, Nagane M, Matsuda M, Yoshino A et al. Necessity for craniospinal irradiation of germinoma with positive cytology without spinal lesion on MR imaging -A controversy. Neuro-Oncology Adv 2021, 3(1).
- Kang YM, Lin SC, Lee YY, Chang FC, Liang ML, Chen HH, Wong TT, Chen YW. A single-center study of treatment outcomes of pediatric basal ganglia germinoma in Taiwan. Child's Nerv system: ChNS : official J Int Soc Pediatr Neurosurg. 2020;36(8):1745–53.
- Kawabata Y, Takahashi JA, Arakawa Y, Shirahata M, Hashimoto N. Long term outcomes in patients with intracranial germinomas: a single institution experience of irradiation with or without chemotherapy. J Neurooncol. 2008;88(2):161–7.
- Lee DS, Lim DH, Kim IH, Kim JY, Han JW, Yoo KH, Park KD, Park HJ, Chung NG, Suh CO, et al. Upfront chemotherapy followed by response adaptive radiotherapy for intracranial germinoma: Prospective multicenter cohort study. Radiotherapy oncology: J Eur Soc Therapeutic Radiol Oncol. 2019;138:180–6.
- Lee JH, Eom KY, Phi JH, Park CK, Kim SK, Cho BK, Kim TM, Heo DS, Hong KT, Choi JY, et al. Long-Term Outcomes and Sequelae Analysis of Intracranial Germinoma: Need to Reduce the Extended-Field Radiotherapy Volume and Dose to Minimize Late Sequelae. Cancer Res Treat. 2021;53(4):983–90.
- Lee JW, Lim DH, Sung KW, Cho HW, Ju HY, Yoo KH, Koo HH, Kim JH, Suh YL, Shin HJ. Induction Chemotherapy Reduces Radiation Therapy Dose and Volume in the Treatment of Intracranial Germinoma: Results of the SMC-G13 Trial. Int J Radiat Oncol Biol Phys. 2020;108(3):649–56.
- Li B, Feng J, Chen L, Li Y, Wang J, Lv W, Li Y, Liu Y, Liu S, Luo S, et al. Relapse pattern and quality of life in patients with localized basal ganglia germinoma receiving focal radiotherapy, whole-brain radiotherapy, or craniospinal irradiation. Radiotherapy oncology: J Eur Soc Therapeutic Radiol Oncol. 2021;158:90–6.
- Li B, Lv W, Li C, Yang J, Chen J, Feng J, Chen L, Ma Z, Li Y, Wang J, et al. Comparison between Craniospinal Irradiation and Limited-Field Radiation in Patients with Non-metastatic Bifocal Germinoma. Cancer Res Treat. 2020;52(4):1050–8.
- Lian X, Hou X, Yan J, Sun S, Miao Z, Liu Z, Wang W, Shen J, Shen J, Hu K, et al. Treatment outcomes of intracranial germinoma: a retrospective analysis of 170 patients from a single institution. J Cancer Res Clin Oncol. 2019;145(3):709–15.
- Lo AC, Hodgson D, Dang J, Tyldesley S, Bouffet E, Bartels U, Cheng S, Hukin J, Bedard PL, Goddard K, et al. Intracranial Germ Cell Tumors in Adolescents and Young Adults: A 40-Year Multi-Institutional Review of Outcomes. Int J Radiat Oncol Biol Phys. 2020;106(2):269–78.
- Nakamura H, Takeshima H, Makino K, Kochi M, Ushio Y, Kuratsu J. Recurrent intracranial germinoma outside the initial radiation field: a single-institution study. Acta Oncol (Stockholm Sweden). 2006;45(4):476–83.
- Nguyen QN, Chang EL, Allen PK, Maor MH, Ater JL, Mahajan A, Wolff JE, Weinberg JS, Woo SY. Focal and craniospinal irradiation for patients with intracranial germinoma and patterns of failure. Cancer. 2006;107(9):2228–36.
- Ogawa K, Shikama N, Toita T, Nakamura K, Uno T, Onishi H, Itami J, Kakinohana Y, Kinjo T, Yoshii Y, et al. Long-term results of radiotherapy for intracranial germinoma: a multi-institutional retrospective review of 126 patients. Int J Radiat Oncol Biol Phys. 2004;58(3):705–13.
- Ryu H, Lee JH. Excluding prepontine cistern from whole ventricle radiotherapy target volume in localized germinoma. Radiation Oncol J. 2023;41(1):48–57.
- Schoenfeld GO, Amdur RJ, Schmalfuss IM, Morris CG, Keole SR, Mendenhall WM, Marcus RB Jr. Low-dose prophylactic craniospinal radiotherapy for intracranial germinoma. Int J Radiat Oncol Biol Phys. 2006;65(2):481–5.
- Shibamoto Y, Abe M, Yamashita J, Takahashi M, Hiraoka M, Ono K, Tsutsui K. Treatment results of intracranial germinoma as a function of the irradiated volume. Int J Radiat Oncol Biol Phys. 1988;15(2):285–90.
- 43. Shikama N, Ogawa K, Tanaka S, Toita T, Nakamura K, Uno T, Ohnishi H, Itami J, Tada T, Saeki N. Lack of benefit of spinal irradiation in the primary treatment of intracranial germinoma: a multiinstitutional, retrospective review of 180 patients. Cancer. 2005;104(1):126–34.
- Shirato H, Nishio M, Sawamura Y, Myohjin M, Kitahara T, Nishioka T, Mizutani Y, Abe H, Miyasaka K. Analysis of long-term treatment of intracranial germinoma. Int J Radiat Oncol Biol Phys. 1997;37(3):511–5.
- Singh G, Lafay-Cousin L, Muller S, Haas-Kogan D, Strother D, Nordal R, Laperriere N, Bouffet E, Bartels U. Bifocal Germinomas treated with whole ventricular field of radiation: To boost or not to boost? Pediatr Neurol. 2015;53(6):561–2.
- Takami H, Graffeo CS, Perry A, Giannini C, Daniels DJ. Epidemiology, natural history, and optimal management of neurohypophyseal germ cell tumors. J Neurosurg. 2021;134(2):437–45.

- Takano S, Yamamoto T, Ishikawa E, Akutsu H, Nakai K, Matsuda M, Muroi A, Shibata Y, Mizumoto M, Tsuboi K, et al. Improvement of Long-term Results with Neoadjuvant Chemotherapy and Radiotherapy for Central Nervous System Germinoma. World Neurosurg. 2015;84(3):846–54.
- Tsurubuchi T, Hara K, Takano S, Muroi A, Fukushima H, Mizumoto M, Sakamoto N, Matsuda M, Akutsu H, Sakurai H, et al. Factors Influencing Craniospinal Relapse of Intracranial Germinoma After Complete Remission. World Neurosurg. 2022;166:e325–36.
- Weksberg DC, Shibamoto Y, Paulino AC. Bifocal intracranial germinoma: a retrospective analysis of treatment outcomes in 20 patients and review of the literature. Int J Radiat Oncol Biol Phys. 2012;82(4):1341–51.
- Fu H, Guo X, Li R, Xing B. Radiotherapy and chemotherapy plus radiation in the treatment of patients with pure intracranial germinoma: A meta-analysis. J Clin neuroscience: official J Neurosurgical Soc Australasia. 2017;43:32–8.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.