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Abstract: For practical use of pluripotent stem cells (PSCs) for disease modelling, drug screening,
and regenerative medicine, the cell differentiation process needs to be properly refined to generate
end products with consistent and high quality. To construct and optimize a robust cell-induction
process, a myriad of cell culture conditions should be considered. In contrast to inefficient brute-force
screening, statistical design of experiments (DOE) approaches, such as factorial design, orthogonal
array design, response surface methodology (RSM), definitive screening design (DSD), and mixture
design, enable efficient and strategic screening of conditions in smaller experimental runs through
multifactorial screening and/or quantitative modeling. Although DOE has become routinely utilized
in the bioengineering and pharmaceutical fields, the imminent need of more detailed cell-lineage
specification, complex organoid construction, and a stable supply of qualified cell-derived material
requires expedition of DOE utilization in stem cell bioprocessing. This review summarizes DOE-
based cell culture optimizations of PSCs, mesenchymal stem cells (MSCs), hematopoietic stem cells
(HSCs), and Chinese hamster ovary (CHO) cells, which guide effective research and development of
PSC-derived materials for academic and industrial applications.

Keywords: design of experiments (DOE); induced pluripotent stem cell (iPSC); embryonic stem cell
(ESC); mesenchymal stem cell (MSC); hematopoietic stem cell (HSC); Chinese hamster ovary (CHO)
cell; cell differentiation

1. Introduction

Growing cell-based therapeutics utilizing pluripotent stem cells (PSCs), mesenchymal
stem cells (MSCs), hematopoietic stem cells (HSCs), or chimeric antigen receptor T (CAR-T)
cells offer novel disease treatment approaches. The use of PSCs, represented by induced
pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs), opens the door for more
precise disease modelling, drug screening, and regenerative medicine [1]. The use of iPSCs,
which overcomes the ethical issues associated with ESCs, especially broadens prospects for
disease- or, even, patient-specific models and autologous cell treatments. Currently, the
efficacies of PSC-derived cell therapy products are being assessed in over 30 clinical trials
worldwide [2].

However, several issues surrounding the use and application of PSCs must be resolved
to take advantage of their potential benefits. Among the hundreds of types of human
cells [3], most have never been properly differentiated from PSCs or maintained in vitro,
restricting their research and industrial use. Even if differentiation protocols are available,
comparisons of PSC-derived cells and reference cells, such as primary cultures, often
exhibit different cell states and functions. Although these differences are partly resolved
by advanced cultivation technologies (e.g., three-dimensional (3D) culture, co-culture of
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different types of cells, or organoid construction), further improvements are anticipated.
Moreover, for the broader use of PSC-based therapy and regenerative medicine, both stable
mass production of PSC-derived materials and cost reduction should be achieved [4]. In
addition, to overcome safety issues of heterogeneity, genetic instability, and tumorigenicity
that sometimes hamper smooth PSC therapeutic applications [5–7], the whole process from
PSC establishment to differentiation requires further screening and optimization.

To appropriately assess a cell-differentiation process, there are considerable require-
ments to evaluate in addition to the general process of cell expansion. During cell expansion,
cells grow and increase through cell division; thus, it is critical to maintain cell quality and
condition so as not to disturb homologous self-renewal [8]. Therefore, for the expansion of
stem cells or other cell types (e.g., to produce a recombinant protein or antibody), cells are
cultivated in specific optimized media and conditions. In contrast, during cell differentia-
tion, cells often divide heterogeneously [9], exhibit altered cell characteristics, and mature
in a temporal manner. Moreover, during prolonged culture processes, cells mature but no
longer increase in number; instead, unnecessary cells are excluded in some cases.

Therefore, in general, stem cell differentiation processes are divided into phases
based on cell maturation stages, with different media and culture conditions used for
each phase. Compositions of media and extracellular matrixes (ECM) have primarily been
determined through optimization based on findings from research of in vivo embryonic
development [10]. Recently, cytokines, chemical compounds, small molecules, and micro-
RNAs have been utilized to control cell-lineage specification [11,12]. Additionally, novel
culture methods and devices have further broadened PSC applications while offering a
myriad of possible conditions to optimize [13].

As the necessities for screening and optimization of PSC differentiation multiply, so
do time and costs for detailed or large-scale experiments, which can hamper productivity.
At present, PSC culture is relatively expensive and requires diligent medium changes. In
addition, recent advancements in culture technologies can prolong the cultivation period
to months, this inevitably makes it difficult to confirm experimental reproducibility.

To circumvent such difficulties in cell culture optimizations, a number of design of ex-
periments (DOE) approaches have been implemented for cell expansion and differentiation
processes—including PSC technology [14,15]. DOE enables effective condition screening
and optimization while reducing experimental runs by virtue of statistics. Since the first
application of analysis of variance (ANOVA) toward improved crop yield by Fisher in the
1920s, various approaches have supported academic and industry researchers. Recently,
the perceived utility and spread of user-friendly statistical software have supported DOE
applications in biological experiments [16,17]. Among such studies, numerous reports
from the field of fermentation that achieved efficient optimizations of bacterial growth
and fungi growth, and improve final product yield, suggest great applicability of DOE for
mammalian cell culture optimization [18–21].

The use of DOE is not only recommended for experimental efficiency, but also for
the reliability of cell-derived material production processes required by governments and
regulatory authorities. DOE methodologies are now standardized by the International
Organization for Standardization (ISO), while authorities including the United States Food
and Drug Administration (FDA) and European Medicines Agency (EMA) recommend
using DOE for pharmaceutical product development [14,22]. Notably, the success of Quality
by Design (QbD) concepts in medical fields has urged DOE-based process evaluations in
cell production facilities [23–25].

In this review, we collect and summarize DOE investigations of mammalian cell
cultivation processes to support readers incorporating DOE approaches for their own
experiments. First, we briefly introduce major experimental designs and their charac-
teristics. Then, we discuss previous articles assessing stem cells, Chinese hamster ovary
(CHO) cells, other cell types, and miscellaneous cell culture-associated processes. Finally,
we describe the limitations and issues to be resolved for more effective PSC expansion
and differentiation.
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2. DOE Approaches

In DOE applications, a trade-off between model accuracy and experimental efficiency
is inevitable when estimating “main effects”, “interaction effects”, and “quadratic effects”
of investigated factors for “response variables” (Figure 1). Response variables are the
indicators measured and improved, e.g., marker gene/protein expression, cell yield, or
cell purity. Main effects reflect the contribution of the investigated factor itself; interaction
effects reflect synergistic or counteracting effects elicited by a combination of two or
more investigated factors; quadratic effects reflect the curvature contributed by each
investigated factor. Generally, specifying significant main effects should be prioritized
over evaluating higher-order effects because main effects tend to be more robust and
reproducible. In addition, three or more higher-order interactions are often neglected
in DOE approaches. Compared with other scientific or industrial experiments, chemical
or biological interactions largely hinder effective investigations because they are often
unforeseeable and uncontrollable.
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2.1. One Factor at a Time Approach

The most classical and simple experimental method is the “one factor at a time”
(OFAT) approach. OFAT clarifies the main effect of a single factor at multiple levels using a
moderate experimental scale. However, the accuracy and reproducibility of results are often
inferior to those of other DOE approaches, and screenings easily end up with inefficient
quasi-optimizations [26].

2.2. Full Factorial Design

Compared with OFAT, DOE enhances screening efficiency and result reproducibility
by selecting optimal conditions through investigations of multiple factors and levels.
Full factorial designs provide a clear estimation of the investigated response variables in
an experimental space [27]. However, its practical use is limited to small experimental
scales because investigation of more factors and levels requires a tremendous number of
experimental runs.

2.3. Fractional Factorial Design

Fractional factorial designs are used to estimate main effects and interactions with a
reduced number of experimental runs. By compromising the resolution of an assay [28],
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its experimental scale can be reduced to 1/2, 1/4, 1/8, 1/16, and so on of the original full
factorial design. All main effects and two-order interactions remain estimable by “resolution
V or more” designs to almost the same extent as full factorial designs, but the risk of missing
optimal conditions increases as resolution decreases to “IV” or “III”. The Plackett–Burman
design, another fractional factorial design, has been widely used for screening of media
compositions owing to its relatively higher screening efficiency focusing on only large
main effects. Because fractional factorial designs generally handle two-level factors, usages
are limited to screening and further optimizations would be recommended for numerical
factors possessing significant contributions.

2.4. Orthogonal Array Designs

The use of orthogonal array designs enables screening of multiple factors with multiple
levels [29]. Fixed two-level (e.g., L4, L8, L16, and so on) or three-level (e.g., L9, L27, and so
on) arrays are used to estimate all main effects and interactions of interest. Mixed-level
arrays (e.g., L12, L18, L36, and so on) enable efficient identification of large main effects
by ignoring interaction effects, based on the belief that controlling main effects is much
easier and robust than controlling interactions and quadric effects [30]. Larger arrays offer
extremely high experimental efficiency and ready-made analytical formats (e.g., various
ways of signal-to-noise ratio calculation and two-step optimizations, and so on) enable
efficient screening and even optimized fine-tuning. In addition, robust parameter design
(RPD), which intentionally includes a “noise factor” in experimental arrays, essentially
focuses on enhancing quality stability. Especially, L18 array-based RPDs have been widely
utilized in industrial fields for the product designs and manufacturing process designs,
which should be robust to uncontrollable factors, such as differences in lot size and lot-to-lot
differences [31].

2.5. Response Surface Method (RSM)

Key factors selected through DOE screenings can be further optimized through DOE
optimizations, represented by the RSM. With RSM, main effects, interactions, and quadratic
effects can be efficiently deduced, and the modeled response surface gives clear hints for
further optimization. More logically, statistical approaches like steepest ascent analysis
offer optimal conditions. Despite of its powerful modelling availability, because RSM
requires three or five levels for each factor, the number of assessable factors would be
limited practically. Another concern would be the effects of outlier data, missing values,
and extremely high or low values, on model constructions, which restrict the experimental
space to conservatively small.

2.6. Definitive Screening Design (DSD)

DSD is an emerging DOE that possesses fascinating merits [32]. With small experi-
mental runs ((2 × number of factors) + 1), main effects can be defined, large interactions
can be detected, and quadratic effects can be estimated. These features readily offer a
response surface for factor selection and further optimization from the initial screening
results. However, the use of DSD is especially recommended for the screening of novel
factors with unknown effects because more than three active factors in the design fail to
construct good models. In addition, other screening designs specialized for main effect
detection, such as fractional factorial designs and orthogonal array designs, would more
precisely identify factors possessing main effects.

2.7. Mixture Design

Another potent approach available for media improvement is mixture design, which
is especially suitable for blending-ratio optimization. This method has been vigorously
utilized in the food, beverage, and drug fields [33], and its use for cell culture improvements
should facilitate optimization of any proportional investigation, e.g., ECM composition,
co-culture cell ratio, or nutrient composition. Although the usages are limited to the ratio
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or proportional assessments, mixture designs offer response surface models and experi-
mental design spaces could be set more flexibly than general RSM avoiding unnecessary
experimental conditions.

2.8. Selection of DOE Approach

From the major strategies described above, experimenters can choose and construct
appropriate experimental designs to achieve specific goals (Figure 2). For efficient mul-
tifactorial screening, the use of low-resolution fractional factorial screenings, DSD, and
mixed-level orthogonal array designs is recommended. Based on the screening results, opti-
mal conditions can be chosen through fixed-level orthogonal array designs, high-resolution
fractional factorial designs, full factorial designs, and RSM assessing a selected small num-
ber of factors. Above all, because it is crucial in DOE to reasonably select the response
variables, factors, and levels of factors to be investigated, those settings should be fully
discussed after a vigorous literature research for marked process improvement.
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Figure 2. Decision tree for DOE selection.

3. Stem Cell Expansion and Differentiation

In this chapter, we select DOE reports investigating PSC, MSC, or HSC cultivations.
These representative stem cells, in common, require efficient cell expansion and differentiation
for advanced research and application. Although the required media components are totally
different, DOE facilitates efficient screening and optimization as a universal framework whose
methodology can be applied for future investigations of any cell culture paradigm. In each
section, commonly used DOE and distinguished works are briefly introduced.

3.1. PSC Expansion and Differentiation

For investigations of PSC expansion (Table 1), full factorial screenings have been used
to select cytokines and ECM that maintain ESC pluripotency [34] and optimize bioreactor
parameters for aggregate ESC cultures [35]. RSM was used to investigate the basic cell
signaling of ESCs under hypoxic conditions [36], develop novel human iPSC (hiPSC)
maintenance media [37], and increase the yield of automated ESC [38] and microcarrier
PSC culture systems [39]. In these RSM studies, models were developed for optimizations
of cell growth rate, colony-forming efficiency, population doubling, and cell yield of PSCs.
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Table 1. DOE studies investigating PSC expansion.

Cells Experimental
Design

Number of
Factors Factors Year Ref.

Murine ESC Full factorial 24 4 LIF, FGF4, Fibronectin, Laminin 2004 [34]
Full factorial 23 3 FGF4, Fibronectin, Laminin

Human ESC Full factorial 32 2 Seeding density, Agitation speed 2014 [35]

Murine ESC RSM 3 CHIR99021, LIF, PD0325901 2012 [36]

Human ESC RSM 4 Seeding density, Media volume, Media
exchange time, Duration between passages 2013 [38]

Human iPSC RSM 2 bFGF, NRG1β1 2015 [37]

Human iPSC RSM 2 Seeding density, Agitation speed 2016 [39]

Abbreviations: LIF, leukemia inhibitory factor; FGF4, fibroblast growth factor 4; bFGF, basic fibroblast growth factor 2; NRG1β1, neureg-
ulin 1 β1.

For investigations of PSC differentiation (Table 2), full factorial designs were used to
screen additives during endoderm induction from embryoid bodies [40]; optimize ECM
and cytokines during hepatic, cardiac, or mesodermal progenitor lineage induction [41–43];
optimize additive doses for retinal organoid production [44]. Fractional factorial screenings
have also been used for definitive endoderm differentiation [45]. Mixed-level orthogonal
arrays were used to screen cytokines for choroidal endothelium differentiation [46] and
optimize additive doses for four distinct types of endodermal cell induction [47]. RSM was
used to optimize hydrogel peptide concentrations for neural progenitor maturation [48],
optimize the ECM composition for cardiomyocyte differentiation [49], and screen nutrient
compositions driving trilineage specification from hiPSCs based on the response surface
models for endodermal, mesodermal, and ectodermal protein expressions [50].

During early in vivo development, human embryos are exposed to dramatic environ-
mental changes upon maternal blood perfusion [51]. From this perspective, Esteban et al.
constructed a full factorial 33 RSM design space composed of O2, glucose, and pyruvate
to assess how the absence and presence of these key nutrients affects trilineage specifica-
tion upon spontaneous differentiation of hiPSC. By assessing key marker gene sets, they
revealed that O2 deprivation promoted ectodermal differentiation; O2 deprivation and
low glucose synergistically promoted mesodermal differentiation; high O2 and low glu-
cose synergistically promoted endodermal differentiation. The temporal transition of the
generated response surfaces clearly showed the different contributions of the three factors.

Although 3D cultures strongly facilitate PSC-derived cell maturation compared with
two-dimensional cultures, the culture processes involved are relatively complicated and
need longer culture periods, which require detailed condition screenings. Jung et al.
showed that interactions between three ECM components (collagen I, fibronectin, and
laminin 111) largely contributed to cardiac troponin T protein expression and finely tuned
the matrix composition via an RSM with just 15 runs [49]. Importantly, the optimal cell
matrix reproducibly enhanced cardiomyocyte differentiation.

To investigate definitive endoderm differentiation and patterning, we constructed
an L18 array design including whole anterior-posterior endoderm by inputting eight
cell signaling modifiers, thereby increasing the screening efficiency 243-fold (18 runs vs.
4374 runs) [47]. RNA expression of 18 end products seemed like “melting pots”, in which
some achieved specific differentiation and others produced mixtures of cell lineages. These
varied results enabled the selection of optimal conditions for upregulating desirable genes,
while downregulating undesirable ones for specific anterior foregut, hepatic, pancreatic,
and mid-hindgut cell inductions. Following initial screening of two hiPSC lines, the
constructed protocols were successfully applied to an additional five hiPSC lines.
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Table 2. DOE studies investigating PSC differentiation.

Cells Purpose Experimental Design Number of Factors Factors Year Ref.

Murine ESC Endodermal
differentiation Full factorial 25 5 Glucose, Insulin, bFGF, Retinoic acid, EGF 2004 [40]

Full factorial 32 2 Retinoic acid, EGF

Murine ESC Hepatocyte
differentiation Full factorial 25 5 Collagen I, Collagen III, Collagen IV, Laminin, Fibronectin 2005 [41]

Murine ESC Cardiac cell
differentiation Full factorial 25 5 Collagen I, Collagen III, Collagen IV, Laminin, Fibronectin 2008 [42]

Full factorial 24 4 Wnt3a, Activin A, BMP4, FGF4

Human iPSC Mesodermal progenitor
differentiation Full factorial 27 7 Collagen I, Collagen III, Collagen IV, Collagen V, Laminin,

Fibronectin, Vitronectin 2015 [43]

Human iPSC Retinal organoid
differentiation Full factorial 25 5 Initial cell density, 1-Thioglycerol, BMP4, KSR, Lipids 2018 [44]

Full factorial 24 4 Initial cell density, CHIR99201, BMP4, SU5402

Human iPSC Definitive endoderm
differentiation 24−1 Resolution IV 4 Activin A, GDF8, Wortmannin, CHIR99201 2020 [45]

Human iPSC Choroidal endothelium
cell differentiation L12 5 CTGF, CTNNB1, SHC1, TWEAKR, VEGFB 2017 [46]

Human iPSC Four endodermal cell
differentiation L18 8

Retinoic acid, CHIR99201(early phase), bFGF(later phase),
Sodium butyrate, bFGF(early phase), CHIR99201(later

phase), (LDN193189, BMP4), A-83-01
2021 [47]

Human iPSC-derived Mature neuron
differentiation RSM 3 RGD, YIGSR, IKVAV 1 2015 [48]

neural progenitor cell RSM 2 RGD, IKVAV 1

RSM 2 RGD, IKVAV 1

Murine iPSC Cardiomyocyte
differentiation Full factorial 23 3 Collagen I, Laminin, Fibronectin 2015 [49]

RSM 3 Collagen I, Laminin, Fibronectin
Full factorial 23 3 Collagen I, Fibronectin, TSP1

Human iPSC Trilineage bifurcation RSM 3 O2 tension, Glucose, Pyruvate 2021 [50]

Abbreviations: bFGF, basic fibroblast growth factor 2; EGF, epidermal growth factor; BMP4, bone morphogenetic protein 4; FGF4, fibroblast growth factor 4; KSR, KnockOut™ Serum Replacement; GDF8,
myostatin or growth differentiation factor 8; CTGF, connective tissue growth factor; CTNNB1, β catenin; SHC1, steroid receptor coactivator homology 2 domain-containing transforming protein 1; TWEAKR,
TNF-related weak inducer of apoptosis receptor; VEGFB, vascular endothelial growth factor B; TSP1, thrombospondin.1 RGD, YIGSR, and IKVAV are peptides containing the indicated amino acid residues.
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Another mixed-level orthogonal array design approach reported by Songstad et al.
screened five cell signaling proteins that facilitate differentiation of hiPSC-derived em-
bryoid bodies into choroidal endothelial cells [46]. An L12 array facilitated the five-factor
screening 2.7-fold (12 runs vs. 32 runs) and identified positive contributions. Notably,
the screening results revealed a significant contribution of connective tissue growth factor
(CTGF) through cell signal inhibitor analysis.

Survival and differentiation efficiency of neural cells largely depend on the ECM and
its peptide compositions. Lam et al. developed a novel hydrogel matrix and optimized
the gel formulation by investigating the ratio of three adhesion peptide components via
repeated RSM optimizations [48]; the results revealed positive or negative interactions
between the components. Along with component optimization, both cell survival and cell
spreading efficiency were improved, and immunostaining and cell sorting analysis verified
significant neuronal maturation.

As shown in Tables 1 and 2, most DOE studies investigating PSCs focused on full
factorial or RSM optimization. This suggests a need and opportunities for wider screening
of uninvestigated factors to overcome technical limitations of PSC expansion and differenti-
ation. Although investigations of ECM are likely more difficult than those of soluble factors,
the use of ECM array platforms has enabled high-throughput full factorial screening of up
to 128 combinations with replicates [41–43]. Incremental iPSC differentiation studies from
the late 2010s presage further DOE exploitations in this field.

3.2. MSC and HSC Expansion, and Differentiation

For investigations of MSCs (Table 3), full factorial screenings were used to identify
key parameters for automated expansion [52] and screen additives for chondrogenic differ-
entiation [53]. Fractional factorial screening was used to develop a serum-free expansion
medium [54]. Orthogonal arrays were used to optimize primary MSC culture conditions
from umbilical cord blood, readily identified the significant contributions of initial cell
density and cytokine doses for MSC growth [55]. RSM was used to optimize osteoblast and
tenocyte differentiations, which offered models for marker RNA expression levels [56,57].

Table 3. DOE studies investigating MSC expansion and differentiation.

Purpose Experimental
Design

Number of
Factors

Factors Year Ref.

MSC expansion Full factorial 24 4 Seeding density, Fetal calf serum, Media
volume, Culture time

2008 [52]

Chondrocyte
differentiation

Full factorial 25 5 TGFβ1, BMP2, DEX, FGF2, IGF1 2014 [53]

MSC expansion 24−1 Resolution IV 4 Hydrocortisone, bFGF, Human albumin,
SITE supplement 1

2007 [54]

MSC expansion L8 4 Seeding density, Cytokines 2, Serum,
Stromal cells

2009 [55]

L8 6 SCF, TPO, FL, IL-3, GM-CSF, G-CSF

Osteoblast
differentiation

RSM 4 Culture duration, O2 tension, Seeding
density, Two media 3

2011 [56]

Tenocyte
differentiation

RSM 2 TGFβ3, Culture days 2020 [57]

Abbreviations: TGFβ1, transforming growth factor β1; BMP2, bone morphogenetic protein 2; DEX, dexamethasone; FGF2, fibroblast growth
factor 2; IGF1, insulin-like growth factor 1; bFGF, basic fibroblast growth factor 2; SCF, stem cell factor; TPO, thrombopoietin; FL, FMS-like
tyrosine kinase 3 ligand; IL-3, interleukin-3; GM-CSF, granulocyte macrophage-colony stimulating factor; G-CSF, granulocyte-colony
stimulating factor; TGFβ3, transforming growth factor β3.1 SITE supplement contains sodium selenite, bovine insulin, human transferrin,
and ethanolamine.2 Cytokines contain stem cell factor, FL, TPO, IL-3, G-CSF, and GM-CSF.3 Two media are α-MEM supplemented with
ascorbate-2-phosphate or α-MEM supplemented with ascorbate-2-phosphate, DEX, and β-glycerophosphate.
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For clinical use of cell-derived materials, one of the big challenges is the development
of chemically defined, animal origin-free cell culturing processes. After pre-screening of
over 15 compounds, Liu et al. chose and screened four additives using a resolution IV 24−1

fractional factorial design, and examined the viability of human cord blood MSCs [54].
A mere eight runs of cultivation defined a serum-free medium capable of yielding MSCs
possessing the same growth ability and adipogenic, chondrogenic, and osteogenic differen-
tiation potentials as those maintained in serum-containing media.

For efficient differentiation of human MSCs into chondrocytes, Jakobsen et al. screened
five cytokines with 25 full factorial design [53]. For each of the 32 cultivation runs, the
expression of 364 chondrogenic genes was analyzed. The gene set contained both desirable
articular cartilage markers and undesirable bone or adipose markers, thus enabling detec-
tion of marked contributions of transforming growth factor β1 (TGFβ1) and dexamethasone
(DEX) to chondrogenesis.

For investigations of HSC (Table 4), full factorial designs were used to screen cytokines
for long-term culture-initiating cells and colony-forming cell bifurcation [58–60], as well as
platelet production [61]. Fractional factorial designs were used to screen the cytokines rela-
tive to HSC expansion [62,63] and its lineage commitments toward erythroid, granulocyte,
megakaryocyte, and dendric cell [64–67]. RSM was used for the detailed optimization of
HSC expansion [68] and to identify long-term culture-initiating cells or colony-forming cell
bifurcation based on cell yields [69] and megakaryocyte induction was optimized through
the modeling of cell yield, cell expansion ratio, and platelet production [70]. The resulting
cytokine usages, lineage commitments, and DOE approaches for HSC investigations were
diligently reviewed by Lim et al. [71].

To optimize media components for HSCs and their derivatives, Yao et al. reported
numerous DOE results and employed systematic approaches by combining fractional
factorial screening and steepest ascent. In their 2003 report, Yao and colleagues isolated
HSCs from cord blood and screened numerous cytokines and serum components by
low-resolution fractional factorial screenings [63]. The established medium expanded
HSCs, colony-forming cells, and white blood cells more efficiently than other published
results. Similar strategies were applied for direct HSC expansion from umbilical cord blood
mononuclear cells to omit the HSC-isolation phase, which increased the experimental
efficiency up to 64-fold (16 runs vs. 1024 runs) [64]. They also achieved megakaryocyte
or platelet production [65] and potent antigen-presenting dendric cell differentiation from
their HSCs [66] by applying fractional factorial screenings.

Differentiation of HSCs has been thoroughly investigated by DOE. The significant
factors chosen from low-resolution fractional screening, including Plackett–Burman de-
signs, seem to reproducibly contribute to the desired cell expansions and differentiations,
probably due to their larger main effects compared with the interaction effects brought
about by other factors. Notably, the wide varieties of target cell lineages and cytokines
investigated suggest the applicability of multifactorial screening to enhance differentiation.
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Table 4. DOE studies investigating HSC expansion and differentiation.

Purpose Experimental
Design

Number of
Factors

Factors Year Ref.

LTC-IC and CFC bifurcation Full factorial 25 5 FL, SF, IL-3, IL-6, (G-CSF, NGFβ) 1996 [58]

LTC-IC and CFC bifurcation Full factorial 23 3 FL, SF, IL-3 1997 [59]

LTC-IC and CFC bifurcation Full factorial 26 6 FL, SF, IL-3, (IL-6, sIL-6R), TPO, IL-1 1998 [60]

Megakaryocyte and
platelet differentiation

Full factorial 24 4 SCF, IL-3, IL-6, IL-9 2013 [61]

HSC expansion 29−5 Resolution III 9 TPO, IL-3, SCF, FL, G-CSF, GM-CSF, IL-6,
sIL-6R, EPO

2003 [62]

24−1 Resolution IV 4 TPO, IL-3, SCF, FL
28−4 Resolution IV 8 Albumax, BSA, TF, Glutamine, Hydrocortisone,

Peptone, 2-ME, Insulin
24 4 BSA, Insulin, TF, 2-ME

27−3 Resolution IV 7 TPO, IL-3, SCF, FL, G-CSF, GM-CSF, IL-6

HSC expansion Full factorial 24 4 BSA, Insulin, TF, 2-ME 2004 [63]
210−6 Resolution III 10 TPO, IL-3, SCF, FL, IL-11, IL-6, GM-CSF, G-CSF,

SCGF, HGF

Erythroid cell, granulocyte,
and megakaryocyte
differentiation

27−3 Resolution IV 7 FL, SCF, IL-3, (MGDF, G-CSF), IL-11, IL-6, EPO 2001 [64]

Full factorial 24 4 IL-3, IL-11, IL-6, EPO

Megakaryocyte
differentiation

28−3 Resolution IV 8 TPO, IL-3, SCF, FL, IL-11, IL-6, GM-CSF, IL-9 2009 [65]

Dendritic cell differentiation 28−4 Resolution IV 8 SCF, FL, IL-1β, GM-CSF, TNFα, IL-4, IL-6, TGFβ1 2019 [66]
25−1 Resolution V 5 SCF, FL, IL-1β, GM-CSF, TNFα

HSC differentiation ability 25−1 Resolution V 5 SCF, FL, TPO, SDF-1, Fucoidan 2011 [67]
Full factorial 23 3 SCF, FL, TPO

HSC expansion RSM 4 SCF, FL, TPO, LIF 2010 [68]

LTC-IC and CFC bifurcation Full factorial 25 5 IL-11, SF, FL, TPO, Temperature 2002 [69]
RSM 3 IL-11, SF, FL

Megakaryocyte and
platelet differentiation

Plackett–Burman 11 SCF, FL, IL-11, MIP-1α, IL-1α, IL-1β, IL-8, IFN-γ,
VEGF, MCP-1, β-thromboglobuline

2005 [70]

Plackett–Burman 9 IL-9, IL-8, IL-6, IL-1α, IL-1β, SCF, FL,
MIP-1α, IFN-γ

25−1 Resolution V 5 SCF, FL, IL-6, IL-9, EPO
Full factorial 24 4 SCF, FL, IL-6, IL-9

RSM 4 TPO, SCF, IL-6, IL-9

Abbreviations: FL, FMS-like tyrosine kinase 3 ligand; SF, steel factor; IL-3, interleukin-3; IL-6, interleukin-6; G-CSF, granulocyte-colony
stimulating factor; NGFβ, nerve growth factor β; sIL-6R, soluble IL-6 receptor; TPO, thrombopoietin; IL-1, interleukin-1; SCF, stem
cell factor; MGDF, megakaryocyte growth and development factor; IL-11, interleukin-11; EPO, erythropoietin; GM-CSF, granulocyte
macrophage-colony stimulating factor; TF, transferrin; 2-ME, 2-mercaptoethanol; SCGF, stem cell growth factor α; HGF, hepatocyte growth
factor; IL-1β, interleukin-1β; TNFα, tumor necrosis factor α; IL-4, interleukin-4; TGFβ1, transforming growth factor β1; SDF-1, stromal
cell-derived factor-1; MIP-1α, macrophage inhibitory protein-1α; IL-1α, interleukin-1α; IL-8, interleukin-8; IFN-γ, interferon γ; VEGF,
vascular endothelial growth factor; MCP-1, monocyte chemoattractant protein-1.

4. CHO Cell Expansion

CHO cell lines are exemplary mammalian cells whose culture processes have been
thoroughly investigated using various DOE (Table 5). Indeed, detailed media optimizations
utilizing DOE have been reported for effective recombinant protein and antibody produc-
tion processes. We collected DOE investigations evaluating cell yield and/or viability as
response variables [72–95], or selecting desirable clones [96,97].
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Table 5. DOE studies investigating CHO cell expansion.

Experimental Design Number of Factors Factors Year Ref.

Full factorial 23 3 Glucose, Glutamine, Inorganic salts 2004 [72]

Full factorial 25 5 Feed volume at days 3, 5, 7, 10, and 12 2019 [73]

25−1 Resolution V 5 Sodium hypoxanthine-thymidine, Antioxidant, ITS 1, Fatty acids
supplement, Polyamines supplement

2006 [74]

24−1 Resolution IV 5 Amino acid feed, Glucose Feed, Temperature, pH 2011 [96]
Full factorial 31 × 22 3 Glucose feed, Temperature shift, pH control frequency

Plackett–Burman 20 BSA, Transferrin, Insulin, Sodium pyruvate, Putrescine, Glucose,
Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, Ser, Met, (Pro, His,
Hydroxyproline), (Thr, Val, Ile), (Leu, Trp, Lys), (Phe, Tyr)

1992 [75]

Plackett–Burman 4 Oleic acid, Linoleic acid, Cholesterol, (Choline, Ethanolamine) 1995 [76]

Plackett–Burman 21 Ala, Arg, (Asn, Asp), Cys, Gln, Glu, Gly, Ser, Met, (Phe, Tyr), (Thr,
Val, Ile), (Leu, Trp, Lys), (Pro, His), Insulin, Transferrin,
Ethanolamine, Pluronic F68, Phosphatidylcholine, Putrescine,
Linoleic acid, Hydrocortisone

1998 [77]

Plackett–Burman 21 Ala, Arg, (Asn, Asp), Cys, Gln, Glu, Gly, Ser, Met, (Phe, Tyr), (Thr,
Val, Ile), (Leu, Trp, Lys), (Pro, His), Insulin, Transferrin,
Ethanolamine, Pluronic F68, Phosphatidylcholine, Hydrocortisone,
Sodium selenite, Glutathione

1999 [78]

Plackett–Burman 21 Ala, Arg, (Asn, Asp), Cys, Gln, Glu, Gly, Ser, Met, (Phe, Tyr), (Thr,
Val, Ile), (Leu, Trp, Lys), (Pro, His), Sodium selenite, Insulin,
Transferrin, Hydrocortisone, Ethanolamine, Phosphatidylcholine,
Glutathione, Pluronic F68

1999 [79]

RSM 2 Glucose, Gln 2005 [80]
RSM 2 Glucose, NaCl

27−3 Resolution IV 7 Insulin, Meat peptone, Yeast extract, SerEx, BSA, Linoleic acid–BSA,
Dextran sulfate

2006 [81]

RSM 2 Insulin, SerEx

RSM 5 Gln, Essential amino acids supplement, Non-essential amino acids
supplement, ITS 1, Lipids

2007 [82]

RSM 3 Yeastolate, Soy, Wheat 2009 [83]

Plackett–Burman 17 Ethanolamine, Sodium selenite, Putrescine, Hydrocortisone, Lipids,
Sodium pyruvate, Ascorbic acid, Glutathione, Choline chloride,
D-calcium pantothenate, Folic acid, Niacinamide,
Pyridoxine-hydrochloride, Riboflavin, Thiamine hydrochloride,
Cyanocobalamin, I-inositol

2013 [84]

RSM 3 Lipids, Putrescine, Ammonium ferric citrate

RSM 3 Temperature, pH, Seeding density, Culture duration 2013 [85]

RSM 3 Glucose, Asn, Gln 2015 [86]

Plackett–Burman 19 19 amino acids (Gln excluded) 2015 [87]
RSM 4 Asp, Glu, Arg, Gly

RSM 3 pH, O2 tension, CO2 tension 2017 [88]

28−4 Resolution IV 8 8 kinds of commercial supplements 2020 [89]
RSM 4 4 kinds of commercial supplements
Full factorial 23 3 3 kinds of commercial supplements

Plackett–Burman 8 Sodium selenite, Transferrin, Albumin, Insulin, Tocopherol, Tween
80, Fatty acids, Synthetic cholesterol

2019 [90]

Box–Behnken RSM 3 Transferrin, Insulin, Tween 80

Plackett–Burman 15 Gln, Asp, Lys, Trp, Thr, Val, His, Vitamin B1, Thymidine,
Deoxy-cytidine, 3-methyl-oxobutyrate, Deoxy-guanosine, Vitamin
B6, Vitamin A, Arachidonate

2020 [91]

RSM 2 Thr, Arachidonate

Mixture Design 6 Hexoses, Energy provider compounds 2007 [92]

Mixture Design 20 20 amino acids 2013 [97]
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Table 5. Cont.

Experimental Design Number of Factors Factors Year Ref.

Mixture Design 43 19 amino acids (Gln excluded), Disodium phosphate, Magnesium
sulfate, Calcium chloride, Myo-inositol, Sodium pyruvate, D-biotin,
Choline Chloride, Folic acid, Niacinamide, D-pantothenic acid,
Potassium chloride, Pyridoxine, Riboflavin, Thiamine, Ferric
ammonium citrate, Vitamin B12, Hypoxanthine, Thymidine,
Putrescine, Ethanolamine, Zinc sulfate, Cupric sulfate, Pluronic,
Sodium selenite

2013 [93]

DSD 5 pH, Shifted temperature, Seeding density, Viable cell density at first
feeding, Viable cell density at temperature shift

2019 [94]

DSD 6 DMEM fraction, Cellgro trace element A, Cellgro trace element B,
Insulin, Ca2+, Mg2+

2021 [95]

1 ITS supplement contains sodium selenite, bovine insulin, and human transferrin.

Although the base media used for PSC differentiation mostly depend on commercial
media, such as RPMI, Eagle’s, and Ham’s media with some supplements, nutrient levels in
CHO culture media have been optimized through detailed investigations, sometimes for
each clone. Torkashvand et al., achieved a 1.7-fold increase of monoclonal antibody (mAb)
titer by screening 19 amino acids in 20 runs with a Plackett–Burman design, followed
by RSM dose optimization of the four key amino acids [76]. Obvious inhibitory effects
arising from some unnecessary amino acid additions highlight the importance of dedicated
evaluations of base media for cell quality improvements.

Selecting the right cell strain or clone can resolve difficulties in later research and
developmental stages, in some cases because some human PSC characteristics originate
from the process used to establish the clone [98,99]. In a CHO cell line-development process,
Mora et al. employed factorial DOE to feed 10 CHO clones with 24 different feed plans [73].
This screening revealed that the clones could be divided into early and late responders,
which differed in their peak timing for molecule production. On the basis of the screening
results, they modified the feeding strategy and improved the molecule titers of seven
investigated clones (up to 34% increase), while reducing about 40% of hands-on time for
culture maintenance by skipping unnecessary media changes.

CHO cells originally maintained adherently in the presence of serum are often adapted
to serum-free cell suspension culture to improve productivity and quality, especially in
industry. This adaptation process was optimized by Wu et al., who screened five additives
employing DSD in just 15 experimental runs [95]. Consequently, with the established
medium condition, the adaptation process that conventionally took 66 days was success-
fully shortened to just 27 days.

Screening of wider design spaces with more data points can be investigated through
mixture design approaches. Jordan et al. prepared 10 different nutrient cocktails, each
containing different combinations of 20 amino acids, and further systematically blended
the 10 cocktails at various combinations and ratios. From the resulting 192 media, the
medium generating the highest mAb titer was chosen [97]. More detailed statistical
analysis revealed the limiting dose of each amino acid, suggesting that further optimization
of medium components is possible on the basis of the accumulated data. Likewise, Rouiller
et al. included 43 nutrients in 16 cocktails, and mixed them to obtain 376 media [93]. Some
media increased the mAb titer up to 1.4-fold compared with the control condition, and
further improvement was predicted through the identification of key components.

In addition to screening cytokines, the base medium components for CHO cell culture
have been minutely investigated. Such approaches should be applied not only for PSC
expansion processes, but also to optimize base media for differentiation of cells to increase
yield and/or purity of the end material. Screening efficiency was further increased by
regarding groups of nutrients as a factor, based on their roles in metabolic pathways.
Notably, the use of mixed-level orthogonal array designs, mixture designs, and DSDs for
cell culture have great potential to further accelerate media development because of their
high screening efficiency.
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5. Other Cell Expansion, Cell Differentiation, and Cell-Material
Development Processes

Cell isolation and/or selective expansion of target cells (Table 6) also requires intricate
screening, and this process needs to be robust enough for reproducible utilization for differ-
ent cell origins and donors. To improve human cell yields, culture conditions for pancreatic
duct cells were assessed by full factorial design [100], or co-culture of intestinal Caco-2
cells and goblet HT29-MTX cells [101], umbilical vein endothelial cells [102], cytotoxic T
lymphocytes [103], prostate cancer cells [104], and immortalized erythroblasts [105] were
investigated by RSM modeling of cell numbers. In addition to these human cell types, Vero
cells [106,107] and murine cells [108–110] have been assessed by fractional factorial and
orthogonal array designs.

Table 6. DOE studies investigating other cell expansion.

Cells Experimental
Design

Number
of Factors

Factors Year Ref.

Human pancreatic
duct cell

Full factorial 25 5 bFGF, EGF, HGF, KGF, VEGF 2012 [100]

Vero 210−6 Resolution III 10 (20 amino acids, Vitamin B1, Magnesium sulfate, Sodium
phosphate), (Vitamins H, B2, and B9, Thymidine, Uracil,
Xanthine, Hypoxanthine), (Vitamins B12, B3, and B7, Choline
chloride, Pyridoxal), (Vitamins B3, B6, and BX, Putrescin),
(Vitamins A, D2, and K3, Linoleic acids, Lipoic acids),
(Deoxyribose, Adenine, Adenosine, Ethanolamine), (Plant and
yeast extracts, EGF, Insulin), (Sodium citrate, Ferric chloride),
(Glucose, Pyruvate), (Other)

2010 [106]

Murine hybridoma 29−4 Resolution IV 9 Serum, Dissolved oxygen, Temperature, pH, Glucose, Glutamine,
Lactate, Ammonium, Base medium concentration

1993 [108]

Murine myeloma 25−1 Resolution V 5 pH, Temperature, Dissolved oxygen, Early/late feed regime,
Seeding density

2000 [109]

Murine hybridoma L8 4 Stirring speed, Fetal bovine or calf serum, Serum concentration,
Glucose and glutamine supplement

2002 [110]

Vero L8 4 Cytodex 1, Regulation of glucose, Initial glucose, Gln 2006 [107]

Caco-2 and
HT29-MTX cells

L18 4 MEM or DMEM medium, Seeding time, Seeding density, and
Caco-2/HT29-MTX ratio

2010 [101]

Human umbilical
vein endothelial cell
(HUVEC)

Full factorial 24 4 RGDS, IKVAV, YIGSR, Q11 1 2011 [102]

RSM 3 RGDS, IKVAV, YIGSR 1

Human peripheral
blood mononuclear
cell

24−1 Resolution IV 4 Phosphatidyl choline, Polyamine supplement, Antioxidant
supplement, Cholesterol

2010 [103]

RSM 2 Polyamine supplement, Cholesterol

Human prostate
cancer cells

Plackett–Burman 16 Transferrin, Sodium selenite, Sodium L-ascorbate, Ferric citrate,
L-glutathione, BSA, EGF, bFGF, Ethanolamine, Linoleic acid,
Arachidonate, Thioglycerol, Hydrocortisone, Yeast hydrolysate,
Penicillin-Streptomycin Solution, Succinic Acid

2017 [104]

RSM 3 EGF, FGF, Linoleic acid

Immortalized human
erythroblast

29−4 Resolution IV 9 BSA, EPO, Holo-transferrin, Hydrocortisone, Insulin, Fatty acid
supplement, Lipid mixture solution, Non-essential amino acids
supplement, SCF

2018 [105]

RSM 3 BSA, EPO, Fatty acid supplement

Abbreviations: bFGF, basic fibroblast growth factor 2; EGF, epidermal growth factor; HGF, hepatocyte growth factor; KGF, keratinocyte
growth factor; VEGF, vascular endothelial growth factor; MEM, Minimum Essential Medium with Earle’s Salts; DMEM, Dulbecco’s
Modified Eagle’s Medium; EPO, erythropoietin; SCF, stem cell factor.1 RGDS, IKVAV, and YIGSR are peptides containing the indicated
amino acid residues. Q11 is the structural peptide used as control matrix.

To improve cell differentiation (Table 7), human chondrocytes were differentiated
into cartilage [111,112], human periosteum-derived cells and osteosarcoma cells were in-
vestigated for skeletal tissue development [113], human adipose-derived stromal cells
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and murine embryonic fibroblasts were differentiated into osteoblasts [114,115], human
hepatoma cells were differentiated into hepatocytes [116], and mouse pluripotent em-
bryonic carcinoma were differentiated into neuronal cells [117]. In these RSM optimiza-
tions, response surfaces of cell spreading, osteogenic markers [115], and metabolites [116]
were obtained.

Table 7. DOE studies investigating other cell differentiation.

Cells Purpose Experimental
Design

Number of
Factors

Factors Year Ref.

Mouse
pluripotent
embryonic
carcinoma

Neuronal cell
differentiation

Full factorial 23 3 2D- or 3D-culture, IKVAV 1, ECM stiffness 2012 [117]

Human
chondrocytes

Cartilage
differentiation

212−4 Resolution
VI

12 BMP2, Insulin, IGF1, Testosterone, Parathyroid
hormone, IL-1RA, Growth hormone,
17β-estradiol, Triiodothyronine,
1α-25-dihydroxy vitamin D3, FGF2, DEX

2007 [111]

Human
chondrocytes

Articular
chondrocyte
differentiation

25−1 Resolution V 5 TGFβ1, ASC, ITS, DEX, Linoleic acid 2012 [112]

Full factorial 23 3 TGFβ1, DEX, Glucose
Full factorial 22 2 DEX, Glucose

Human bone
progenitor cells

Skeletal tissue
development

25−1 Resolution V 5 Medium volume, Seeding density, Human
periosteum-derived cell or osteosarcoma cell,
Seeding timing, Foamed titanium or 3D
fiber-deposited titanium

2011 [113]

Human
adipose-derived
stromal cells

Osteoblast
differentiation

12 × 12
Hadamard matrix
2

8 Two human adipose-derived stromal cells
suppliers, Seeding density, DMEM/F12 or
DMEM, Human platelet lysate or Fetal bovine
serum, L-ascorbate-2-phosphate,
β-glycerophosphate, DEX, BMP9

2019 [114]

Human
hepatoma cell

Hepatocyte
differentiation

27−4 Resolution
III

7 Human serum albumin, HGF, Oncostatin M,
DEX, FGF4, EGF, Nicotinamide

2008 [116]

RSM 3 Oncostatin M, HGF, FGF4

Murine
embryonic
fibroblast cell

Osteoblast
differentiation

RSM 2 Matrix stiffness, Collagen I 2010 [115]

Abbreviations: BMP2, bone morphogenetic protein 2; IGF1, insulin-like growth factor 1; IL-1RA, interleukin-1 receptor antagonist; FGF2,
fibroblast growth factor 2; DEX, dexamethasone; BMP9, bone morphogenetic protein 9; HGF, hepatocyte growth factor; FGF4, fibroblast
growth factor 4; EGF, epidermal growth factor. 1 IKVAV is a peptide containing the indicated amino acid residues.2 Hadamard matrix is a
fixed level orthogonal array.

The use of DOE is not limited to cell cultivation and can also be applied for other cell-
related purposes (Table 8), such as cell storage, cell transportation, and related materials
and devices, which are especially important issues for industrial cell usage. The refrigerated
storage conditions for retinal pigment epithelial cells [118] and epithelial cell sheets [119]
were optimized through full and fractional factorial screening. In addition, the virus
inactivation process of Vero cells [120] was investigated using an orthogonal array. Optimal
freezing conditions for CHO and human embryonic kidney (HEK) cells were identified by
RSM through the modelling of the first doubling time after the cell thawing [121].

For prostate cancer cell expansion toward vaccine development, Zhao et al. screened
16 compounds in 20 runs using the Plackett–Burman approach [117]. This screening
indicated that epidermal growth factor (EGF), fibroblast growth factor (FGF), and linoleic
acid had the highest positive effects on cell yield. The best doses of these additives
were determined by RSM in another 20 runs of experiments. The established medium
was confirmed to support prostate cancer cell growth equal to or greater than serum-
containing medium.
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Table 8. DOE studies investigating other cell-related processes.

Cells Purpose Experimental
Design

Number of
Factors

Factors Year Ref.

Human retinal
pigment
epithelial cells

Cell storage
condition

Full factorial 25 5 Adenosine, Allopurinol, β-Glycerophosphate,
L-Ascorbic acid, Taurine

2018 [118]

Human epithelial
cell sheets

Cell storage
condition

210−4 Resolution
IV

10 1% Glycerol, L-Ascorbic acid, Allopurinol, Sodium
pyruvate, Adenosine, Taurine, L-Glutathione,
Hydrocortizone, LiCl, Antimycin-A

2018 [119]

210−4 Resolution
IV

10 0.75% Glycerol, 3% Glycerol, Icilin, Menthol,
Dimethyl (S)-(−)-malate, Methyl pyruvate,
N-Acetyl-L-Cys, Insulin, Acetovanillone,
N-(2-Mercaptopropionyl)glycine

Full factorial 55 5 L-Carnosine, Dimethyl sulfoxide, Fenoldopam
mesylate, Glycerol, LIF

Full factorial 55 5 Glycerol, Aspirin, Melatonin, Lactic acid, ATP

Vero Virus inactivation L9 4 Temperature, Treatment time, pH, Ethanol 2019 [120]

CHO cell and
HEK293

Cell freezing and
refreezing
condition

RSM 3 Freezing density, Dimethyloxide, Seeding density 2008 [121]

Abbreviations: LIF, leukemia inhibitory factor.

During in vitro chondrocyte expansion, some mature chondrocytes undesirably dedif-
ferentiate into immature fibrous chondrocytes. This obstacle to chondrocyte amplification
is overcome through redifferentiation culture, in which expanded fibrous chondrocytes
are again matured while avoiding hypertrophic differentiation. This cell bifurcation was
inspected by two different DOE approaches. First, Enochson et al. optimized the rediffer-
entiation medium by assessing the gene expression of mature and immature chondrocyte
markers [112]. Five-factor fractional factorial screening (25−1) extracted contributors, while
subsequent RSM optimizations established the medium, to induce histologically better
micromass formation than conventional medium. Throughout the investigation, gene
expression of collagens was not ideally controlled; thus indicating that collagen expression
might be regulated by other cell signaling pathways and that further screening of collagen
regulators could lead to quality improvement. Liu et al. screened 12 candidate regulators
for auricular chondrocyte redifferentiation by monitoring glycosaminoglycan accumulation
as a response variable by 212−4 fractional factorial design [111], which increased screening
efficiency 16-fold (256 runs vs. 4096 runs). A combination of three cytokines was found to
promote glycosaminoglycan accumulation while preventing hypertrophic differentiation.
Efficacy of the optimized medium was validated by redifferentiation of chondrocytes from
different sources (articular and rib), mechanical property analysis of 3D-cultured cartilage
pellets, and pellet implantation into nude mice.

In this chapter, we confirmed that DOE facilitated optimization of cell culture pro-
cesses, regardless of the cell lineages involved. Although an enormous number of factors
were incorporated in DOE for different purposes, DOE successfully identified positive
factors and optimal conditions. The versatility of DOE promises to accelerate PSC-derived
material research and development in any situation.

6. Concluding Remarks

The presented efforts adopting DOE approaches in mammalian cell culture confirm
that DOE-based screening and optimization of stem cell culture facilitates novel differen-
tiation protocol developments and strategic evidence accumulation. Moreover, technical
hurdles arising from different cell characteristics of donors or clones might be overcome
by the construction of robust universal media components or donor-specific customized
media through high-throughput optimization. In particular, multifactorial screening has
good opportunities to reveal novel cell signaling regulation, which is not only important for its
biological meaning, but also desirable for stable and high-quality cell-differentiated materials.
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There is still room for more effective utilization of DOEs, especially for PSC investi-
gations. Indeed, because most previous studies were based on closed settings with full
factorial or RSM designs, rather than open for novel factor searching [122], the high experi-
mental efficiency of DOE is not fully utilized. In addition, because most PSC studies were
designed to assess cell-signaling modifiers, nutrient composition could also be improved,
as evaluated in CHO and other cell investigations [123]. Emerging metabolome analysis
and online monitoring of medium compositions along the differentiation process should
offer hints for further multifactorial screening. The significant contributions of basal media
composition on PSC lineage commitment [50] suggest that further addition or removal of
energy sources can improve the quality and/or yield of PSC and PSC-derived materials.

The timing and duration of additive treatments seem to be poorly investigated, al-
though differentiating cells mature during the cultivation process. For instance, in the
course of endoderm differentiation, the timing and duration of retinoic acid exposure signifi-
cantly affects lineage commitment both in vivo and in vitro [124]. To assess time-dependent
regulation of cell signaling, three or more multilevel screenings using orthogonal arrays or
DSDs might be more suitable. However, because incorporation of time-related factors in
DOEs tends to enlarge interaction effects, experimental plans should be carefully reviewed.

Another underexplored time-related issue is simultaneous investigation of media
components from different cultivation phases. For example, if a differentiation process
consists of three phases, the first, second, and third phases are often sequentially devel-
oped, and then a problematic phase might be refined. This “one phase at a time” approach
leads to quasi-optimal or frail conditions in the same manner as OFAT [15]. Particularly
for cell differentiation processes, it is strongly supposed that the cell status (e.g., epige-
netic regulation) in earlier phases largely influences the cell-lineage commitment of later
phases; thus, interactions between factors used in different phases would have significant
effects. DOE investigations of whole-process development methodologies, such as the
studies summarized in Section 6 or reviewed elsewhere [125,126], offer hints for better
experimental planning.

To screen numerous conditions appropriately, novel devices and platforms (such as
those used for ECM optimizations) can decrease experimental cost, human error, and
statistical experimental error. Utilization of robotics should especially be considered when
incorporating many factors or implementing a large-scale mixture design, an intricate me-
dia preparation or media-change scheme [97,127]. The use of robots can further promote
sequential optimizations through DOE planning, subsequent cell culture, cell characteriza-
tion by omics analysis and/or cell sorting, and validation of candidate optimal protocols
without human intervention. Those acquired data should be particularly suitable for
further in silico modeling of cell culture processes [128–130].

The use of DOE has no drawbacks if the experimenters have enough knowledge and
skills in the research field. Because DOE prompts research activities whose concrete utilities
have been ubiquitously elucidated, its use and understanding in academia, industry, and
administrative authorities are more essential than ever. We are certain that wider DOE
utilization will reveal new biological insights and novel solutions to establish more efficient
cell differentiation processes for further cell material applications.
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