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YBX1 mediates alternative 
splicing and maternal mRNA decay 
during pre‑implantation development
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Abstract 

Background:  In mammals, maternal gene products decay and zygotic genome activation (ZGA) during maternal to 
zygotic transition (MZT) is critical for the early embryogenesis. Y-box binding protein YBX1 plays vital roles in RNA sta-
bilization and transcriptional regulation, but its roles remain to be elucidated during pre-implantation development.

Methods:  In the present study, we re-analyzed transcriptional level of YBX1 in mice, human, bovine, and goat 
embryos using public RNA-seq datasets. We further performed siRNA microinjection to knock down the expression 
of YBX1, and RNA sequencing of the 8-cell stage embryos in the control and YBX1 knockdown group. To reveal the 
regulation mechanisms of YBX1, we conducted differentially expression analysis, alternative splicing (AS) analysis, 
enrichment analysis, and 5-EU staining using DESeq2, rMATs, clusterProfiler, and immunofluorescence technique, 
respectively.

Results:  The expression of YBX1 was increased during MZT in goat, bovine, human, and mice, but significantly 
decreased in YBX1 knockdown embryos compared with the controls, suggesting successfully knockdown of YBX1. 
The percentage of blastocyst was decreased, while embryos blocked at the 2- and 4-cell stage were increased in YBX1 
knockdown embryos compared to the controls. Using RNA-seq, we identified 1623 up-regulated and 3531 down-
regulated genes in the 8-cell stage YBX1 knockdown embryos. Of note, the down-regulated genes were enriched in 
regulation of RNA/mRNA stability and spliceosome, suggesting that YBX1 might medicate RNA stability and AS. To this 
end, we identified 3284 differential AS events and 1322 differentially expressed maternal mRNAs at the 8-cell stage 
YBX1 knockdown embryos. Meanwhile, the splicing factors and mRNA decay-related genes showed aberrant expres-
sion, and the transcriptional activity during ZGA in goat and mice was compromised when YBX1 was knocked down.

Conclusion:  YBX1 serves an important role in maternal mRNA decay, alternative splicing, and the transcriptional 
activity required for early embryogenesis, which will broaden the current understanding of YBX1 functions during the 
stochastic reprogramming events.
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Background
After fertilization, maternal mRNAs were massively 
degraded through a critical developmental process 
known as maternal to zygotic transition (MZT), dur-
ing which, the developmental control is handed from 
maternally provided gene products to those synthesized 
from the zygotic genome [1–4]. Recently, it was reported 
that additional maternal mRNAs degradation was also 
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depend on zygotic genome activation (ZGA) in mice 
(Z-decay) [5]. Since maternal mRNAs degradation is 
the first step of developmental transitions after fertiliza-
tion, it is of importance to investigate the mechanisms of 
mRNA decay during the pre-implantation development.

The maternal mRNAs degradation is sophisticated. 
Typically, general mRNA decay is initiated by deadenyla-
tion and mRNA decapping, through the CCR4-NOT 
(CNOT) deadenylase [6] and the decapping enzyme 
DCP1/2 [7], respectively. Recent studies revealed that 
epigenetic modifications and maternal factors play 
critical roles during mRNA decay. For example, B-cell 
Translocation Gene-4 (BTG4) bridged CNOT to EIF4E, 
and facilitated decay of maternal mRNA [8]. Deficiency 
of N6-methyladenosine (m6A) reader protein YTH 
N6-methyladenosine RNA binding protein 2 (YTHDF2) 
decelerated the decay of m6A-modified maternal mRNAs 
and impeded ZGA initiation [9, 10]. These and subse-
quent studies suggesting that maternal factors play piv-
otal roles during the pre-implantation development [5, 
11].

Y-box binding proteins, including YBX1, were discov-
ered to bind to Y-box DNA elements, and are expressed 
in bacteria and animals [12]. It was reported that Y-box 
binding proteins are enriched in oocytes [13], and were 
identified as major components of cytoplasmic messen-
ger ribonucleoproteins (mRNPs), with ubiquitous RNA-
binding ability [14]. They were linked to a wide range of 
nucleic acid-related processes including translational 
repression, RNA stabilization, and transcriptional regu-
lation in cell culture systems [12]. YBX1 is required for 
cell proliferation in cancer cells [15]. Of note, Wang et al. 
reported that YBX1 was differentially expressed dur-
ing follicular development [16], meanwhile, Violeta et al. 
reported that YBX1 is altered in pregnancy-associated 
disorders [17]. Moreover, Lu et  al. and Uchiumi et  al. 
found embryonic lethality in YBX1 deficiency mice at 
E13.5, due to multiorgan hypoplasia and abnormal pat-
terns of cell proliferation within the neuroepithelium [18, 
19]. These studies suggest essential roles of YBX1 during 
implantation development. However, it remains unclear 
whether YBX1 plays critical roles during the pre-implan-
tation development.

Alternative splicing (AS) diversifies the repertoire of 
mature cellular mRNAs, and broadly shapes mRNA 
metabolism by exposing or eliminating binding sites for 
RNA-binding proteins or ncRNAs [20, 21]. It also influ-
ences mRNA stability and translational efficiency [22]. 
AS displayed tissue-specific distribution and develop-
mental specificity [23, 24]. During oocyte meiotic matu-
ration, AS was related to the regulation of transcription 
and mitochondrial translation [25]. Recently, Tian et  al. 
and Cheng et  al. found that AS also occurs during the 

early embryo development. They identified major wave of 
AS switches around MZT and they further reported rela-
tionship between AS and gene transcription during the 
process in mice [26, 27], suggesting that MZT might be 
in the tight control of AS regulatory networks. However, 
regulation of AS during the pre-implantation remains to 
be elucidated.

In the present study, we investigated the role of YBX1 
and its regulatory mechanisms by knockdown experi-
ments, RNA-seq, AS analysis, and 5-EU staining. We 
report that YBX1 serves an important role in maternal 
mRNA decay, alternative splicing, and transcriptional 
activity required for pre-implantation development. Our 
data will be helpful in understanding the dynamic regula-
tion of the early embryogenesis.

Results
Up‑regulation of YBX1 during MZT in goat, bovine, mice, 
and human
We first investigated the expression pattern of YBX dur-
ing the early embryo development in mice, human, and 
goat by re-analyzing public RNA-seq datasets. As shown 
in Fig. 1A, YBX1 was gradually up-regulated from oocyte 
to blastocyst in goat; YBX2 was up-regulated from the 
2-cell embryos to the morula, while the expression of 
YBX3 was deceased at the 8-cell stage embryos compared 
to the 4- and 16-cell stage embryos. During bovine early 
embryo development, the expression of YBX1 was signif-
icantly increased in the 8-cell embryos compared to the 
4-cell embryos, whereas YBX2 was down-regulated dur-
ing MZT (Fig. 1B). In mice, the expression of YBX1 was 
increased after fertilization and further increased at the 
4-cell embryos compared to the 2-cell embryo. YBX2 and 
YBX3 was down-regulated during ZGA in mice (Fig. 1C). 
The expression of YBX1 in human were similar with that 
of mice (Fig.  1D). Conservative analysis revealed high 
homology of the protein sequence among goat, bovine, 
mice, and human (Additional file 1: Fig. S1). These data 
suggest conserved expression pattern of YBX1 in mam-
malian embryos and that YBX1 might play vital roles 
during MZT.

Knockdown of YBX1 impeded the early embryo 
development
To confirm its role in preimplantation, we knocked down 
YBX1 by siRNA microinjection (Fig. 2A). The expression 
of YBX1 was successfully inhibited, as revealed by RNA-
seq and quantitative PCR (Fig. 2B and Additional file 1: 
Fig. S2), while the expression of YBX2 and YBX3 showed 
no statistical change in YBX1 knockdown embryos at 
the 8-cell stage (Fig.  2C). Specifically, the percentage of 
blastocyst was significantly decreased in YBX1 knock-
down embryos compared to the controls (12.96 ± 1.51% 
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vs. 41.39 ± 1.20%, p < 0.01; Fig. 2D, E). Moreover, embryos 
that blocked at the 2- and 4-cell stage were increased in 
YBX1 knockdown embryos compared to the controls 
(Fig.  2F), suggesting essential roles of YBX1 during the 
early embryo development.

Knockdown of YBX1 compromised the transcriptional 
activity during ZGA
To determine whether gene expression profiles correlated 
with the treatment, we analyzed RNA-Seq data by unsu-
pervised hierarchical clustering. Embryos that clustered 
together were at the same group (Fig. 3A), and the frag-
ments per kilobase of exon model per million mapped 
fragments (FPKM) value showed no significant change 
between YBX1 knockdown embryos and the controls 
(Additional file  1: Fig. S3), indicating good quality of 
RNA-seq data. Using DESeq2, we obtained 5154 differen-
tially expressed genes (DEGs). Of which, 3531 genes were 
down-regulated, while 1623 genes were up-regulated at 
the 8-cell stage YBX1 knockdown embryos compared to 

the controls (Fig. 3B-D, Additional file 2: Table S1), sug-
gesting compromised transcriptional activity during ZGA 
by YBX1 knockdown. We further performed 5-EU stain-
ing to confirm the notion. As expected, 5-EU was weakly 
stained in the 4-cell embryos, and markedly increased 
in the 8-cell embryos. However, in the 8-cell stage YBX1 
knockdown embryos, the level of 5-EU was decreased 
compared to the 4- and 8-cell embryos in the control 
group (p < 0.01, p < 0.001; Fig. 3E, F). In mice, ZGA initi-
ates at the 2-cell embryos. The 5-EU was strongly stained 
at the 2-cell embryos, while the signal intensity of 5-EU 
was significantly decreased at 2-cell YBX1 knockdown 
embryos in mice (p < 0.001; Fig. 3G, H). These data sug-
gest that knockdown of YBX1 impaired transcriptional 
activity during ZGA in both goat and mice.

It is important to know the pathway that genes were 
de-repressed and/or downregulated in knockdown 
experiments. As shown in Fig. 4A, the 1623 up-regulated 
genes were enriched in chromosomal region, DNA rep-
lication, meiotic cell cycle, ERBB signaling pathway, 

Fig. 1  Up-regulation of YBX1 during MZT in goat, bovine, mice, and human. A The expression of YBX1, YBX2, and YBX3 in goat in vivo embryos. B 
The expression of YBX1 and YBX2 in bovine in vivo embryos. C The expression of YBX1, YBX2, and YBX3 in in vitro fertilized embryos in mice. D The 
expression of YBX1 and YBX2 in in vitro fertilized embryos in human. FPKM/RPKM: fragments/reads per kilobase of exon model per million mapped 
fragments
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DNA geometric change, and DNA duplex unwinding as 
revealed by GO annotation. The 3531 down-regulated 
genes were enriched in RNA/mRNA/ncRNA metabolic 
process, ncRNA processing, regulation of mRNA meta-
bolic process, methylation, RNA modification, RNA/
mRNA splicing, and regulation of RNA/mRNA stabil-
ity (Fig.  4B). KEGG analysis revealed that the down-
regulated genes were enriched in RNA transport, 
spliceosome, and ribosome (Fig.  4C). To further con-
firm GO and KEGG annotation results, we performed 
GSEA analysis. As expected, the DEGs were enriched 
in ncRNA processing (p.adjust < 0.001), RNA meth-
ylation (p.adjust < 0.05), RNA methyltransferase activity 
(p.adjust < 0.05), RNA processing (p.adjust < 0.001), and 
spliceosome (p.adjust < 0.05; Fig. 3D, E). These data sug-
gest that YBX1 regulate MZT by regulation of RNA splic-
ing and RNA stability.

YBX1 regulates alternative splicing during MZT
Since the DEGs were enriched in spliceosome, we fur-
ther investigated the AS events in the 8-cell stage YBX1 
knockdown embryos by analyzing the RNA-seq data. As 
shown in Fig. 5A, 18,001 skipped exon (SE), 195 retained 

intron (RI), 2768 mutually exclusive exons (MXE), 154 
alternative 5`splice site (A5SS), and 230 alternative 
3`splice site (A3SS) was identified at the 8-cell embryos. 
With the △PSI > 0.05 and the false discovery rate 
(FDR) < 0.05, we identified 3284 differential AS events. 
SE (76.52%), followed by MXE (21.29%) appears to be the 
most abundant differential AS events (Fig. 5B, Additional 
file 3: Table S2). For example, knockdown of YBX1 pro-
moted the sixth exon skipping in Breast Cancer Type 1 
(BRCA1, Fig. 5C), but inhibited the ninth exon skipping 
in Eukaryotic Translation Initiation Factor 3 Subunit I 
(EIF3I, Fig. 5D), the eleven-exon skipping in Embryonic 
Ectoderm Development (EED, Fig.  5E), and the sixth 
exon skipping in Heterogeneous Nuclear Ribonucleopro-
tein M (HNRNPM, Fig. 5F).

Transcriptional profile of splicing factors and genes 
of spliceosome pathway was further characterized 
at the 8-cell stage YBX1 knockdown embryos. Dur-
ing ZGA, Serine and Arginine Rich Splicing Factor 
(SRSF)1/2/3/10, Splicing Factor 3b Subunit (SF3B) 1/3/5, 
HNRNPM, HNRNPK, HNRNPU, DExD-Box Helicase 
39B (DDX39B) showed no statistically changed. How-
ever, they were down-regulated in the 8-cell stage YBX1 

Fig. 2  Knockdown of YBX1 impeded the early embryo development in goat. A Schematic illustration of the knockdown experimental approach. 
B Characterization of YBX1 expression at the 8-cell stage YBX1 knockdown embryos. C No statistical change of YBX2 and YBX3 at the 8-cell stage 
YBX1 knockdown embryos. D Representative images of YBX1 knockdown and the control embryos at day 3 and day 7.5. The red arrow indicates 
developmental arrest embryos. The black asterisk indicates blastocysts. E, F Statistical analysis of embryos at day 7.5 and day 3 in YBX1 knockdown 
embryos
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knockdown embryos compared to the controls (Fig. 5G). 
In addition, these genes were not only highly correlated 
with each other, but also predicted to be targeted with 
the YBX1 (Fig. 5H). Taken together, our data suggest that 
YBX1 was in regulation of AS during the MZT process.

Knockdown of YBX1 impairs maternal mRNA decay 
during MZT
To confirm YBX1 is associated with RNA stability, we 
established a highly correlated hub genes network. As 
shown in Fig.  6A, the N6-methyladenosine-related 
genes (YTHDF2/3, METTL3, and IGF2BP1), Protea-
some (Prosome, Macropain) 26S Subunit (PSM) family, 
Heterogeneous Nuclear Ribonucleoprotein (HNRNP), 

Decapping mRNA 1A (DCP1A), and DCP2 were highly 
correlated. Moreover, EIF4G1, HNRNPD, HNRNPM, 
HNRNPR, HNRNPU, and IGF2BP1 were predicted to 
target with YBX1 directly (Fig.  6A). The expression of 
ZFP36 (p < 0.01), YTHDF2 (p < 0.05), IGF2BP1 (p < 0.01), 
EIF4G1 (p < 0.01), HNRNPM (p < 0.01), HNRNPU 
(p < 0.01), DCP1A (p < 0.05), DCP2 (p < 0.001), and 
METTL3 (p < 0.05) were significantly decreased in YBX1 
knockdown embryos at the 8-cell stage compared to the 
controls (Fig.  6B), suggesting that YBX1 might regulate 
mRNA decay during MZT.

We further analyzed the expression of maternal 
mRNAs in YBX1 knockdown embryos. There were 
1322  M-decay genes expressed in both the knockdown 

Fig. 3  Knockdown of YBX1 Compromised the transcriptional activity during ZGA. A Unsupervised clustering of genes in YBX1 knockdown and the 
control embryos. B Volcano plot of gene expression after YBX1 knockdown. C Heatmap of DEGs at the 8-cell stage YBX1 knockdown embryos and 
the controls. D Two clusters of the DEGs. E Representative images 5-ethynyl uridine (5-EU, red) and DAPI staining (blue) at the 4- and 8-cell embryos, 
and the 8-cell stage YBX1 knockdown embryos in goat. Scale bar = 20 μm. F Statistical analysis of 5-EU signal intensity in 4- and 8-cell embryos, 
and the 8-cell stage YBX1 knockdown embryos in goat. Values are presented as mean ± SEM and compared using student’s t-test. G Representative 
images 5-EU (red) and DAPI staining (blue) at the 2-cell stage YBX1 knockdown embryos and the controls in mice. Scale bar = 10 μm. H Statistical 
analysis of 5-EU signal intensity in 2-cell stage YBX1 knockdown embryos and the controls in mice. Values are presented as mean ± SEM and 
compared using student’s t-test
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Fig. 4  Enrichment analysis of DEGs in YBX1 knockdown embryos. GO enrichment of up-regulated A and downregulated B DEGs. C KEGG 
enrichment of all DEGs. D Enriched GO items revealed by GSEA. E Enriched KEGG items revealed by GSEA. DEGs differentially expressed genes

Fig. 5  YBX1 regulates alternative splicing during MZT. A Pie chart of alternative splicing events identified in the 8-cell stage YBX1 knockdown 
embryos and the controls. B Differential alternative splicing after YBX1 knockdown. C–E Exon skipping in the sixth exon of BRCA1, the ninth exon of 
EIF3I, the eleventh exon of EED, and the seventh exon of HNRNPM. F Boxplot of splicing index of the four genes. G Expression scatterplot showing 
down-regulation of splicing factors. H High correlation of YBX1 with the splicing factors
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and the NC group. Of which, 295 maternal genes were 
up-regulated, while 317 maternal genes were down-reg-
ulated in YBX1 knockdown embryos at the 8-cell stage 
compared to the controls (Fig.  6C). As for the Z-decay 
genes, 904 genes were detected in the RNA-seq data. In 
the 8-cell stage YBX1 knockdown embryos, the expres-
sion of 184 Z-decay genes was increased, while the 
expression of 244 Z-decay genes was decreased com-
pared to the controls (Fig. 5D). Taken together, these data 
suggested that knockdown of YBX1 impaired the mater-
nal mRNA decay.

Discussion
YBX1 serves an important role in translation, RNA sta-
bilization, and transcriptional regulation in cell culture 
systems. In the present study, we found knockdown of 
YBX1 impede the pre-implantation in goat. We further 
reported that YBX1 regulates alternative splicing, mater-
nal mRNA decay, and transcriptional activity during 
MZT. Consistent with the previous studies that YBX1 
is enriched in oocytes of Xenopus and primate [13, 16], 
YBX1 were highly expressed in the mature oocytes in 
goat, bovine, mice, and human, with the FPKM > 5, in 
the present study. Moreover, the expression of YBX1 was 
further increased after fertilization, specifically during 
the MZT process, which is in line with the data of Geor-
gia et al. [28]. Thereby, YBX1 might play conserved roles 

during the early embryo development. To this end, we 
found high homology of the protein sequence of YBX1 
among goat, bovine, mice, and human.

We show that YBX1 is related to the maternal mRNA 
degradation. Supporting this finding, YBX1 in tran-
scription regulation has been reported in cell culture 
system [29]. Consistently, the dysregulation of several 
mRNA decay related genes was found in the 8-cell 
stage YBX1 knockdown embryos. mRNA decapping is 
the ultimate step before rapid clearance of the mRNA 
and the decapping reaction is catalyzed by a multi-
protein complex formed by the DCP2 catalytic subunit 
and its DCP1 cofactor [7]. Therefore, the down-regu-
lation might impair the mRNA decay process. mRNA 
stability was also regulated by m6A. The m6A reader 
IGF2BP1 and YTHDF2 have been reported to regulate 
the early embryo development [9, 10, 30], while the 
m6A methyltransferase METTL3 was essential for fer-
tility [31]. The down-regulation of METTL3, IGF2BP1, 
and YTHDF2 might impede the early embryo develop-
ment. Taken together, YBX1 might affect the maternal 
mRNA degradation through m6A. Indeed, a recent 
study reported that YBX1 is required for maintain-
ing myeloid leukemia cell survival by regulating BCL2 
stability in an m6A-dependent manner [15]. It will be 
of interest to investigate the correlation of YBX1 and 
m6A during the pre-implantation development. The 

Fig. 6  Knockdown of YBX1 impairs maternal mRNA decay during MZT. A High correlation of YBX1 with the mRNA stability related genes. B Boxplot 
showing down-regulation of critical mRNA stability related genes. C Volcano plot of M-decay maternal mRNAs at the 8-cell stage YBX1 knockdown 
embryos. D Volcano plot of Z-decay maternal mRNAs at the 8-cell stage YBX1 knockdown embryos
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transcriptional activity was inhibited when YBX1 was 
knocked down, which could be explained by the fact 
that ZGA occurs after maternal mRNA degradation, 
the impaired mRNA decay might lead to the transcrip-
tional activity failure.

In addition, YBX1 represses global translation during 
oocyte maturation and the MZT process in zebrafish 
[14]. Consistent with the data, we found that target-
ing YBX1 impairs the goat MZT in  vitro. We could 
not determine the dynamic changes of the transla-
tion due to the limited embryo samples. Nevertheless, 
using bioinformatic analysis, YBX1 was predicted to 
cross-talk with EIF4G1, which was down-regulated 
at the 8-cell stage YBX1 knockdown embryos. Previ-
ous studies revealed that EIF4G is the major scaffold-
ing protein in the translation initiation complex [32], 
and YBX1 displaces EIF4G from capped and uncapped 
transcripts through its C terminal domain [29]. There-
fore, YBX1 might target the EIF4G1 to medicate the 
translation during the MZT in goat.

AS plays a critical role in the regulation of gene 
expression and protein diversity in a variety of eukar-
yotes. Previous studies revealed that major wave of 
AS switches around MZT and there was relationship 
between the AS events and the gene transcription dur-
ing MZT in mice [26, 27]. Consistent with these data, 
we identified 21,348 AS events and 3284 differential 
AS events in the present study. Specifically, AS events 
occur in exons of BRCA1 and EED. Consistently, AS 
of these genes have been reported in cancer cells [33, 
34]. Given that EED and BRCA1 is required for the 
early embryo development [35, 36], the differential 
AS in exons of BRCA1 and EED might lead to abnor-
mal development of pre-implantation. In addition, we 
found that YBX1 medicates the AS events in the early 
embryo development. Supporting this finding, Jayavelu 
et  al. reported that knockdown of YBX1 promotes 
RI events in mouse JAK2VF cells [37]. In the present 
study, targeting of YBX1 promotes SE and MXE events 
at the 8-cell stage YBX1 knockdown embryos. Thereby 
YBX1 might medicate the pre-implantation develop-
ment by regulation of AS in exons of critical genes.

Conclusions
Our results identify that YBX1 is essential for the early 
embryo development. We further reported that YBX1 
serves an important role in maternal mRNA degrada-
tion, alternative splicing, and the transcriptional activ-
ity. These data will advance the current understanding 
of YBX1 functions during the MZT process.

Methods
In vitro fertilization
In vitro maturation (IVM) was performed as previ-
ously described [38]. Briefly, cumulus-oocyte com-
plexes (COCs) with more than two layers of compact 
cumulus cells and a dense, homogeneous cytoplasm 
were obtained and cultured in groups of 20 in 60-μL 
droplets of IVM medium at 38.5 °C, with 5% CO2, 95% 
air, and saturated humidity, for 22–24 h. Subsequently, 
in  vitro fertilization (IVF) was performed as previ-
ously described [10]. After culturing for 16 h at 38.5 °C, 
with 5% CO2, 5% O2, 90% N2, and saturated humidity, 
the zygotes were collected for knockdown experiment. 
Mice IVF were performed as described in our previous 
study [39].

Expression of YBX family during goat, bovine, human, 
and mice MZT
RNA sequencing (RNA-seq) data of goat (PRJNA543590), 
bovine (GSE59186), human (GSE36552), and mice 
(GSE98150) were downloaded from Gene Expression 
Omnibus. Gene expression was normalized with fragments/
reads per kilobase of exon model per million mapped frag-
ments (FPKM/RPKM).

Knockdown of YBX1
As goat YBX1 shared high homology with that of 
bovine, human, and mice (Additional file  1: Fig. S1), 
we obtained the sequence of small interfering RNA 
(siRNA) against YBX1 from a previous study [40], and 
synthesized at GenePharma (Shanghai, China). In gen-
eral, 5–10 pL of 20  µM siRNAs targeted YBX1 were 
microinjected into the cytoplasm of zygotes. The MIS-
SION siRNA universal negative control was served as 
a negative control (NC) for knockdown experiment. 
Goat microinjected zygotes were cultured as described 
in our previous study [41]. Development status was 
determined at 72 and 168  h after microinjection. 
Embryos were collected at 72 h after microinjection for 
RNA-seq.

Gene expression analysis
Gene expression analysis was performed as described 
in our previous study [10]. Briefly, cDNA was synthe-
sized using cellAmp whole transcriptome amplification 
kit (Takara, Dalian, China) following the manufactur-
er’s instruction, and quantitative PCR was performed 
on an ABI 7300 Real-Time PCR System. Relative mRNA 
expression was normalized to Gapdh and calculated 
using the 2−ΔΔCt method. Primers are shown in Addi-
tional file 4: Table S3.
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RNA library construction and sequencing
To profile RNA expression in the 8-cell stage YBX1 
knockdown embryos and the controls, 30 of each (in 3 
replicates) were pooled and directly lysed. RNA librar-
ies were constructed using the Smart-seq2 method. 
Then, cDNA was fragmented by dsDNA fragmentase 
(M0348S, NEB) by incubating at 37  °C for 30  min, 
and size selection was performed with provided sam-
ple purification beads, then the fragmented cDNA at 
the size of 150–300  bp was used for library construc-
tion. Followed by paired-end sequencing on an illumina 
Novaseq 6000 platform (LC bio, Hangzhou, China).

Read alignment and differential expression analysis
Quality control was performed to remove adaptors and 
low-quality bases using fastp (v0.19.6). All reads that 
passed quality control were mapped to goat genome 
ARS1 using HISAT2 (v2.2.1) with default settings. 
Uniquely mapped reads were subsequently assembled 
into transcripts guided by the reference annotation using 
featureCounts (v2.0.1). Differential expression analysis 
was performed using DESeq2 (v3.11). Genes with log 
2 (fold change) > 1 or < -1 and with p-value < 0.05 were 
deemed as DEGs.

GO, KEGG, and GSEA analysis
Gene Ontology (GO) annotation and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway enrich-
ment analyses of upregulated and downregulated DEGs 
were conducted separately using clusterProfiler R pack-
age (v3.12.0). GO and KEGG terms with an FDR adjust 
p-value < 0.05 were deemed statistically significant. Gene 
Set Enrichment Analysis (GSEA) of all DEGs were per-
formed with clusterProfiler and enrichplot R package 
(v1.10.2). The minimal and maximal size of each gen-
eSet and pvalue cutoff were set to 10, 1000, and 0.05, 
respectively.

Series test of cluster analysis
To classify the stage-specific gene expression, we per-
formed k-means clustering on DEGs in YBX1 knock-
down and the control embryos (k = 2) as described in our 
previous study [42].

5‑EU incorporation assay
Newly synthesized mRNA was detected as previously 
described [38]. Briefly, embryos were placed in BO-IVC 
medium containing 2  mM 5-EU for 2  h at 38.5  °C, fol-
lowed by fixing in 4% paraformaldehyde for 30 min, per-
meabilizing in 0.5% Triton X-100 for 10 min, incubation 
with Apollo reaction cocktail for 30 min, and permeabi-
lizing in 0.5% Triton X-100 for another 10 min at room 
temperature. After staining with DAPI for 3  min, the 

embryos were mounted on glass slides with a drop of 
antifade mounting medium (Beyotime, Beijing, China). 
Imaging was obtained using LSM710 laser scanning con-
focal microscope (Carl Zeiss, Oberkochen, Germany), 
and signal intensity was assessed with ImageJ software 
(v1.52a).

Differential alternative splicing identification
The improvement of single cell RNA-seq technology and 
computational analysis have facilitated comprehensive 
analysis of AS in single cells. Using the bam files gener-
ated in RNA-seq data analysis, we identify the different 
types of AS events using the rMATS (v4.1.1). Cutoffs of 
FDR and inclusion level difference [△percent spliced 
index (PSI)] at 0.05 were used to screen for statistically 
significant differential AS. The AS genes were visualized 
with rmats2sashimiplot (v2.0.4).

Data visualization and statistical analysis
R programming language was mainly used in statistical 
analysis (student’s t test) and data visualization. Heatmap 
and boxplot of volcano, gene expression, GO, KEGG, and 
signal intensity were generated using R package pheat-
map (v1.0.12) and ggplot2 (v3.3.2), respectively. Cluster-
ing analysis was performed using hclust, using average 
method.
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