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Abstract: Cancer has been considered, for a long time, a genetic disease where mutations in key
regulatory genes drive tumor initiation, growth, metastasis, and drug resistance. Instead, the
advent of high-throughput technologies has revolutionized cancer research, allowing to investigate
molecular alterations at multiple levels, including genome, epigenome, transcriptome, proteome,
and metabolome and showing the multifaceted aspects of this disease. The multi-omics approaches
revealed an intricate molecular landscape where different cellular functions are interconnected
and cooperatively contribute to shaping the malignant phenotype. Recent evidence has brought
to light how metabolism and epigenetics are highly intertwined, and their aberrant crosstalk can
contribute to tumorigenesis. The oncogene-driven metabolic plasticity of tumor cells supports
the energetic and anabolic demands of proliferative tumor programs and secondary can alter the
epigenetic landscape via modulating the production and/or the activity of epigenetic metabolites.
Conversely, epigenetic mechanisms can regulate the expression of metabolic genes, thereby altering
the metabolome, eliciting adaptive responses to rapidly changing environmental conditions, and
sustaining malignant cell survival and progression in hostile niches. Thus, cancer cells take advantage
of the epigenetics-metabolism crosstalk to acquire aggressive traits, promote cell proliferation,
metastasis, and pluripotency, and shape tumor microenvironment. Understanding this bidirectional
relationship is crucial to identify potential novel molecular targets for the implementation of robust
anti-cancer therapeutic strategies.
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1. Introduction

Cellular metabolic alterations have been recognized as a crucial hallmark of cancer due to their
numerous implications in cancer-promoting signals. In their rapid and uncontrolled proliferation, solid
tumors generate hostile microenvironments because the tumor mass can outgrow the existing tissue
vascularization, thus limiting cellular access to oxygen (O2) and nutrients. Although angiogenesis is
constantly stimulated during cancer progression, tumor blood vessel system is disorganized and leaky.
As a consequence, many solid tumors grow in a hypoxic environment, which increases intracellular
reactive oxygen (ROS) and nitrogen species (RNS) generation and causes endoplasmic reticulum (ER)
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stress [1]. Additionally, in these stressful and dynamic microenvironments, the concentrations of
crucial nutrients, such as glucose, glutamine, and O2, have a spatially and temporally heterogeneous
distribution [1] undermining the survival of cells in the tumor core. Thus, tumor cells promote
adaptive metabolic reprogramming strategies to improve their fitness, support a selective proliferative
advantage, and sustain new redox homeostasis to counterbalance the hypoxic/oxidative stress of
dynamic tumor microenvironments [2–8].

Generally, the non-cancer cell metabolic program relies on ATP production to satisfy energetic
requirements and maintain homeostatic processes. In contrast, highly proliferating cancer cells require
not only enough energy to sustain cell replication, but also neo-synthetized macromolecules for rapid
growth demand and maintenance of redox balance in response to intensive production of toxic reactive
species. The growth and survival of tumor cells are fundamentally dependent upon the generation
of metabolic adaptive solutions that meet these requirements. Thus, cancer cells implement various
metabolic strategies to coordinate their core functions, such as bioenergetics, anabolic biosynthesis,
and appropriate redox balance [3]. In such a context, the major biochemical pathways altered in cancer
cells are glycolysis and tricarboxylic acid (TCA) cycle. Accelerated glucose uptake and consumption,
in parallel with inhibition of pyruvate oxidation and its conversion into lactate in the presence of O2,
guarantee the continuous ATP production to satisfy energetic requirements of highly proliferative
cells and contextually supply some intermediates for biosynthesis of macromolecules, such as lipids,
nucleotides, and amino acids, preserving redox homeostasis as well [9]. Nevertheless, like glycolytic
intermediates, TCA intermediates are also used as precursors for macromolecule synthesis, but their
availability is not enough under increased glycolytic flux conditions. Thus, tumor cells activate
anaplerotic pathways, such as glutaminolysis and pyruvate carboxylation, for “refilling” the TCA cycle
with its lacking intermediates [10].

Several intrinsic and extrinsic signals can shape the plasticity of cancer cells driving transformation
and progression by reprogramming or rewiring cellular metabolism [11]. Among numerous intrinsic
factors (i.e., genetic alterations, cell/tissue of origin, tumor grade, histological subtype), which
impact potentially on cancer metabolic alterations, in the last years, the interplay between cellular
metabolism and gene expression regulation has fascinated the scientific community because their strict
coordination allows cancer cells to comply rapidly with ever-changing environments [12]. Indeed,
epigenetic regulation of gene expression is one of the most highly and quickly responsive mechanisms
available for cell dynamic adaptation to external stimuli and environmental changes. Epigenetic
effectors, known as writers, readers, and erasers, shape chromatin through reversible post-translational
modifications of histones and DNA, making it easily accessible or closed off to transcription factor
complexes [13] (Figure 1). Similar to other enzymes, epigenetic effectors require the availability of
cofactors or substrates, generally intermediary metabolites, to perform their remodeling activity;
additionally, several metabolic intermediates can modulate their tasks, inhibiting them or affecting
their specificity for the substrate [14–17]. Undoubtedly, the tight regulation of epigenetic processes
for the correct development of organisms, as well as their crucial role in changing the epigenome of
cancer cells, has been extensively demonstrated [18–20]. Aberrant epigenetic patterns are crucial in
tumorigenesis, especially DNA and histone methylation and histone acetylation, for their potential
role in silencing tumor suppressor genes and/or activating oncogenes. Consequently, the effect of
metabolic alterations in cancer cells, changing availability of intermediates with a part in epigenetic
modulations, might affect cellular epigenome in an uncontrolled manner, thus producing a cascade
of unpredictable effects [14–17]. Also, many pieces of evidence suggest that the interplay between
epigenetic mechanisms and metabolic changes is bidirectional [2,4,21,22]. Indeed, as tumor metabolism
provides molecules able to control and influence epigenetic mechanisms and sustain tumor progression,
equally epigenetic modifications might regulate the metabolism of cancer cells, inducing a metabolic
reprogramming to achieve rapidly the best responses to adverse environmental conditions [22]. In
such a view, this bidirectional communication between metabolism and epigenetics is still a matter of
research due to its complexity and numerous implications in cellular physiology. This review aimed to



Cells 2019, 8, 798 3 of 23

describe how the bidirectional interaction between cancer metabolism and epigenome might promote
cancer initiation and progression. A better comprehension of their underlying roles in the acquisition of
malignant phenotypes might help to identify new potential molecular strategies to target this crosstalk
and counteract tumor progression.

Figure 1. Most representative epigenetic chromatin modifications. The most representative epigenetic
modifications on chromatin are histone acetylation and DNA/histone methylation. Epigenetic enzymes
(writers or erasers) introduce or remove chemical tags, reversing chromatin shape from euchromatin
to heterochromatin or vice versa, thus causing changes in gene expression. DNA methyltransferases
[DNMTs] and Ten Eleven Translocation hydroxylases [TETs], respectively, add or remove the methyl
groups on DNA. Histone methyltransferases [HMTs] and lysine demethylases [KDMs] are responsible
for histone methylation/demethylation, whereas histone acetyltransferases [HATs] and deacetylases
[HDACs] are the competitors for, respectively, addition or removal of acetyl groups at histone
lysine residues.

2. As the Metabolic Rewiring Controls the Epigenome

The metabolic reprogramming of tumor cells can affect the epigenetic landscape (Figure 2) through,
at least, three major mechanisms: (1) altering the cellular concentration of specific metabolites, which act
as epigenetic cofactors or substrates; (2) generating alternative metabolites, known as oncometabolites,
whose accumulation drives cancer growth and progression due to their ability to inhibit or activate
epigenetic enzymes; (3) producing epigenetic cofactors or applying epigenetic modifications directly
into nucleus by means of translocated metabolic enzymes [23,24].
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Figure 2. Crosstalk between metabolism and epigenetics. Numerous metabolic intermediates
contribute to epigenetic machinery as cofactors, likeα-ketoglutarate [α-KG] for Ten Eleven Translocation
hydroxylases [TETs] and Jumonji C domain-containing histone demethylases [JHDMs] activity, or as
substrates, such as S-adenosyl-methionine [SAM] in DNA and histone methylation and acetyl-CoA
[Ac-CoA] in histone acetylation. Moreover, metabolic reprogramming in cancer cells might promote
the accumulation of particular metabolites, such as 2-hydroxyglutarate [2-HG], fumarate [FH], and
succinate [SH], with tumorigenic driving effect due to their ability to interfere with epigenetic effectors.
Nevertheless, epigenome alterations may influence cellular metabolism, controlling the expression of key
metabolic enzymes involved in cancer metabolic reprogramming. DNMTs: DNA methyltransferases;
HMTs: Histone methyltransferases; HATs: Histone acetyltransferases; HDACs: Histone deacetylases;
TCA: Tricarboxylic acid; SAH: S-adenosyl homocysteine; PG: phosphoglycerate.

2.1. Metabolites as Cofactors and/or Substrates of Epigenetic Players

The epigenetics control gene expression, through hundreds of distinct covalent modifications on
DNA and histones, is carried out by different enzymes. The addition or removal of these marks is strictly
managed by epigenetic players through the availability of substrates, cofactors, or allosteric regulators.
Aside the severe effects of metabolic rewiring in cancers, the resulting alteration of physiological levels
of specific metabolites have a notable impact on the epigenetic machinery because it affects enzymatic
parameters, such as Km, Vmax, and allosteric and inhibitory binding constants, thus altering enzyme
activities or kinetic and thermodynamic properties of epigenetic reactions [15].

The most common metabolic intermediates of epigenetic methylation and acetylation processes
are S-adenosyl methionine (SAM), acetyl-coenzyme A (acetyl-CoA), nicotinamide adenine dinucleotide
(NAD+), α-ketoglutarate (α-KG), and flavin adenine dinucleotide (FAD). These metabolites are strictly
connected with glycolysis and TCA cycles, the major metabolic pathways affected by cancer metabolic
reprogramming; thus, they could be critical players in the crosstalk between metabolism and chromatin
remodeling (Figure 2).

DNA and histones methylation requires the universal methyl donor SAM, produced in the
methionine cycle that forms the ‘one-carbon metabolism’ with the folate cycle. After the transfer of a
methyl group, SAM is converted to SAH (S-adenosyl homocysteine), which is recycled in the methionine
cycle via hydrolysis in homocysteine. The carbon units that feed the one-carbon metabolism derive from
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specific amino acids, i.e., threonine, serine, glycine, and methionine. In particular, serine metabolism is
frequently dysregulated in cancer [25,26] and gives a significant contribution to tumor homeostasis [27],
growth, and proliferation [25]. Many pieces of evidence support interconnection between glycolysis
and serine synthesis: 3-phosphoglycerate (3PG), an intermediate metabolite of glycolysis, can be
shunted into serine metabolism for amino acid biosynthesis, thus, fueling cells of precursors for SAM
synthesis [28]. Methylation status of histones and DNA is sensitive to the SAM/SAH ratio because
SAM is an essential co-substrate for methyltransferase activity of DNA methyltransferases (DNMTs)
and histone methyltransferases (HMTs), while SAH is a potent inhibitor of all methyltransferases.
Alterations in the SAM/SAH ratio impact profoundly on chromatin methylation, producing aberrant
expression profiling. Indeed, increased SAM level is linked with DNA hypermethylation at CpG
sites and gene silencing of several key genes implicated in cancer progression and metastasis [29–32].
In conditions of methionine restriction, the intracellular SAM concentration is low, and the global
methylation of several histone lysines is decreased, in particular, H3K4me3, which is associated with
open chromatin and active transcription. In cancer cells, the effect of methionine starvation is negligible
on genome-wide distributions of H3K4me3 peaks, but it is considered on the height and area of
H3K4me3 peaks, which is correlated with modulation of genes involved in cell cycle progression and
cancer-related pathways [33].

Histone acetylation is a dynamic and reversible modification regulated by the competing activity
of histone acetyltransferases (HATs) and deacetylases (HDACs) that, respectively, add or remove
acetyl groups at histone lysine residues. The activity of these enzymes is sensitive to the availability of
metabolites that act as substrates or allosteric regulators. Acetyl-CoA is the acetyl group donor for
acetylation of histones. It is an important metabolite synthetized in different subcellular compartments
(mitochondria, cytosol, and nucleus) from several sources: pyruvate, acetate, fatty acid β-oxidation,
amino acid catabolism. The intracellular concentration of acetyl-CoA is dynamic and strictly dependent
on nutrient availability and cellular energy status. The changes in acetyl-CoA abundance can affect
histone acetylation levels and gene expression [12,16], especially in cancer cells [34,35]. Indeed,
acetyl-CoA modulates kinetic and binding parameters of epigenetic writers and erasers involved in
histone acetylation. HATs have a similar affinity for their cofactor, acetyl-CoA, and their inhibitor,
CoA, a product of histone acetylation reaction. This indicates that the acetyl-CoA/CoA ratio is the
crucial regulator of the enzymatic activity and specificity of HATs, rather than the absolute levels of
acetyl-CoA [36]. Many HATs have also a relatively high dissociation constant KD (low affinity) for
acetyl-CoA, thus the physiological fluctuations in the abundance of acetyl-CoA within the cellular
compartment, where such acetyltransferases are expressed, can affect their catalytic activity and histone
acetylation levels [36,37].

The oncogene-driven metabolic reprogramming of cancer cells stimulates high glycolytic flux
furnishing cells of pyruvate, essential for acetyl-CoA synthesis. It has been demonstrated that
the abundance of acetyl-CoA triggers epigenetically the up-regulation of a gene involved in cell
cycle progression, proliferation, cell migration, metabolism, and macromolecular biosynthesis, upon
remodeling of chromatin structure [16,34,35]. Additionally, the expression of acetyl-CoA synthase
enzymes (i.e., ATP citrate-lyase and acetyl-CoA synthase short-chain family member 1) is frequently
upregulated in cancer cells, leading to elevated intracellular acetyl-CoA levels and, in turn, histone
acetylation, an epigenetic mark associated with open chromatin and active gene expression [12].
Moreover, a positive feedback control loop of acetyl-CoA derived from glucose on genes connected
with glucose uptake and metabolism has been observed, as well as acetyl-CoA from acetate on genes
involved in lipid biosynthesis [16].

Furthermore, in their metabolic rewiring, cancer cells, unable to perform normal oxidative
phosphorylation (OXPHOS) in mitochondria, use the glutamine reductive carboxylation to provide both
energy and carbon source for cancer growth and replenish the TCA intermediates for macromolecules
biosynthesis. This catabolic pathway also produces citrate and acetyl-CoA and represents the dominant
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metabolic pathway for cytosolic acetyl-CoA, refueling in rapidly growing malignant cells, with
mutation or inhibition of electron transport chain [38].

The metabolic rewiring in cancer cells might also control histone deacetylation to promote gene
silencing. There is some evidence that histone deacetylation is influenced by the intracellular pH
(pHi). Under low pHi, histone deacetylation catalyzed by HDACs is accelerated, and released acetate
anions are co-exported with protons in the extracellular environment to maintain the intracellular
pH and prevent acidification of intracellular space [39], which could inhibit glycolysis by direct and
indirect inhibition of phosphofructokinase (PFK) activity [40]. Intriguingly, an alkaline pHi, essential
for driving aerobic glycolysis, reduces HDACs catalysis, leading to a global histone hyperacetylation.

Another connection between the energetic cells state and histone acetylation is provided by
sirtuins, a class of HDACs (class III HDAC), dependent from NAD+ levels for their deacetylation
activity. The NAD+/NADH ratio is closely associated with the energy status in cells. Indeed, when
energy is plentiful, like in cancer cells where the glycolytic activity is intensive, the NAD+/NADH
ratio drops down, inhibiting the sirtuin catalysis [12]. The low NAD+/NADH ratio, together with an
increase of HATs activity for high acetyl-CoA levels, may contribute to histone hyperacetylation and
aberrant gene expression in tumors.

Additionally, the activity of Zn2+-dependent class I, II, and IV HDACs could be influenced by
metabolism due to sensitivity to the inhibitory effect of butyrate and its derivatives [41], produced
by gut microbiota fermentation in the colon. Generally, butyrate is metabolized by β-oxidation,
followed by TCA cycle in colonocytes. Nevertheless, cancerous cells are unable to metabolize butyrate
efficiently; thus, this metabolite is accumulated in the nucleus where it inhibits HDACs, upregulating
the expression of downstream target genes. The effect of HDACs butyrate-dependent inhibition on cell
growth depends on cell metabolism [42]. It inhibits cell proliferation as an HDAC inhibitor in cancer,
but stimulates the proliferation of noncancerous cells, being a source of acetyl-CoA for HATs activity.
The critical factor of the “butyrate paradox” is the Warburg effect [42].

α-ketoglutarate is a TCA cycle metabolite involved in many cellular processes due to its function
as an obligatory cofactor of 2-oxoglutarate-dependent dioxygenases (2-OGDO), a family of non-heme
oxidizing enzymes that catalyze hydroxylation and demethylation of proteins and nucleic acid [43].
Ten-eleven translocation hydroxylases (TETs), involved in DNA demethylation, and the Jumonji C
domain-containing lysine demethylases (JmjC-KDMs or JHDM) are the major histone demethylases
and are part of the 2-OGDO family, reflecting a strong dependence of DNA and histone methylation
on α-KG availability. α-KG is produced from isocitrate in mitochondria, by mitochondrial isocitrate
dehydrogenase isoforms IDH2 and IDH3, and in the cytosol, by peroxisomal and cytoplasmatic
isoform IDH1, starting from citrate exported by mitochondrial citrate/isocitrate carrier. Alternative
sources of α-KG are amino acids, especially glutamine via transamination of derived glutamate.
Glucose and glutamine catabolism maintain high levels of α-KG, thus promoting demethylation of
H3K27me3, H3K9me3, H4K20me3, and TET-dependent DNA demethylation. This modification on
methylation pattern contributes to the regulation of pluripotency-associated genes and supports stem
cell self-renewal and pluripotency maintenance [44], even if the effect of α-KG on cells differentiation
is strictly dependent on the specific pluripotency stage of stem cells and the physiological context [45].
In a different type of solid cancers (glioblastoma, chondrosarcoma, and cholangiocarcinoma), the
decrease of α-KG leads to a dramatic DNA and histone hypermethylation, which is associated
to cell dedifferentiation and drug resistance [46,47]. It is noteworthy that the epigenetic mark
H3K4me3, regulated by the Trithorax complex [48], is less sensitive to changes in α-KG intracellular
concentrations [49] respect to H3K27me2/3 and H3K9me3, mediated by polycomb-group complex
2 (PRC2) [48]. This means that metabolic rewiring of cancer cells could regulate gene expression,
targeting a specific subset of genes to sustain tumorigenesis.

The flavin-adenine dinucleotide (FAD)-dependent lysine demethylases (LSD1 and LSD2) remove
methyl groups from H3, using as a cofactor FAD, a metabolite derived from riboflavin and ATP [12].
Besides FAD biosynthesis, as a limiting factor for cellular FAD availability, the redox status may also
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affect cellular FAD levels, and consequently LSD1/2 activity [50]. Indeed, some oxidoreductase enzymes
known as flavoproteins (i.e., succinate dehydrogenase, acyl-CoA dehydrogenase, α-ketoglutarate
dehydrogenase) reduce FAD to FADH2 to oxidize their substrates; thus, they compete with
LSD-demethylases for the cofactor FAD reducing their activity. Additionally, during the early
phase of hypoxia, an increase of FAD level is observed due to the effect of O2 depletion on cellular
respiration, whereas, during prolonged hypoxia, FAD drops down because of a negative feedback
mechanism of LSD1 inactivity on FAD biosynthetic enzymes [51]. The role of LSD demethylases on
cancerogenesis is controversial. Some studies demonstrated that increase in FAD-precursor riboflavin
reduces cancer risk in colorectal and cervical cancers. However, promoting LSD1 activity could increase
cancer risk since it is essential for the maintenance of the pluripotency in embryonic stem cells [52,53].
The function of LSD2 is less known, but its involvement as a suppressor in lipid metabolism has been
suggested [50].

2.2. Oncometabolites

In the context of metabolic alterations, malignant cells can change their metabolic status by two
mechanisms. One is the “reprogramming” of conventional metabolic pathways, namely enhancing
or suppressing their activities respect to normal tissues. The other one is the “rewiring” of the
metabolic status, which means the acquisition of metabolic features, not founded in normal cells,
ascribable to mutation events [2]. For example, mutations in metabolic enzymes, as fumarate
hydratase (FH), succinate dehydrogenase (SDH), and isocitrate dehydrogenase (IDH), cause the
production/accumulation of particular intermediary metabolites with oncogenic intracellular signaling
function. “Oncometabolite” is a new term coined to indicate these particular metabolites, whose
abundance increases markedly in tumors, often caused by loss-of-function or gain-of-function
mutations of genes encoding for enzymes involved in their production [54]. Succinate, fumarate,
2-hydroxyglutarate (both enantiomers D and L), andβ-hydroxybutyrate are considered oncometabolites
due to their driving role on cancer transformation through a profound impact on epigenetic effectors’
activity [55].

β-hydroxybutyrate is a ketone-body with HADCs inhibitory capability, which induces histone
H3K9 and H3K14 hyperacetylation and specific changes in gene expression [41]. Its oncogenic role is
controversial because its anti-proliferative [56,57] or growth-promoting effect [58,59] depend on the
metabolic state of cancer cells [60].

The structural similarity of L/D-2-hydroxyglutarate, succinate, and fumarate compared to α-KG
makes these oncometabolites antagonist competitors of α-KG for 2-OGDO. Due to their inhibitory
effect, these oncometabolites can drive cellular transformation and oncogenesis. As potent inhibitors
of TETs and JHDMs, their accumulation causes an epigenetic dysregulation due to DNA and histone
hypermethylation and triggers a transcriptional program with downregulation of genes involved in
suppression of metastasis and simultaneously promotes dedifferentiation, epithelial-mesenchymal
transition (EMT), and invasiveness [55,61–63]. Loss-of-function mutations of SDH and FH enzymes
cause the accumulation of, respectively, succinate and fumarate in different types of human malignancies.
Instead, gain-of-function mutations of IDH1 and IDH2 isoforms lead to the production and accumulation
of L- and D-2-hydroxyglutarate (L-/D-2HG) in acute myeloid leukemia, glioma, chondrosarcoma, and
cholangiocarcinoma. An unexpected role in the accumulation of the oncometabolite succinate is played
by the molecular chaperone tumor necrosis factor receptor associated protein 1 (TRAP1), which inhibits
SDH, thus contributing to the downregulation of mitochondrial respiration [64–66]. Marked up levels
of succinate induce widespread alterations of epigenetic landscape due to TETs and JHDMs inhibition.
Fumarate accumulation, caused also by reduced expression of FH in cancer [67], interferes with
TET-mediated DNA demethylation in a regulatory region of an anti-metastatic miRNA (mir-200ba429),
leading to the expression of EMT-related transcription factors and promoting migration [68]. Also, the
tumor microenvironment contributes to metabolic rewiring in wild-type IDH1/2 tumors, that under
hypoxia generate the oncometabolite L-2-HG through a ‘promiscuous’ reduction of α-KG [69]. The
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acid intracellular environment, a common feature of cells with active glycolysis, stimulates lactate
dehydrogenase A (LDHA) and, in a lesser manner, malate dehydrogenase (MDH), to produce L-2-HG
using the alternative substrate α-KG. When pH is decreased, the Km of LDHA for α-KG is reduced by
about four-fold [70], hence the enzyme’s affinity for this substrate increases.

Therefore, it can be concluded that the accumulation of oncometabolites is necessary and sufficient
for alterations of the methylation status of both DNA and histones, as well as for histone acetylation,
leading to epigenetic modifications in gene expression.

2.3. Metabolic Enzymes Moonlighting in the Nucleus

Nowadays, a new paradigm of gene regulation is emerging in which the nuclear localization
of specific metabolites or metabolic enzymes can modulate epigenetics to target the expression of
nearby genes [71,72]. The subcellular localization of metabolic effectors and/or products might
supply the essential intermediates to epigenetic machinery locally to direct epigenetic modifications in
specific chromatin regions. For example, the nuclear production of the methyl donor SAM, generally,
biosynthesized in the cytoplasm, has been observed in cancer cells. Splicing variants of MATs
(S-adenosylmethionine synthetase) with nuclear localization have been found [73], and redox stress
might be a putative mechanism to control the subcellular localization of these enzymes [74]. The
hypothesis is that the nuclear translocation of MATs provides SAM production locally to support
epigenetic methyltransferases activity and direct epigenetic methylation processes at target sites. The
physical association of MATIIα with some chromatin- and transcription-related factors, forming a
complex known as serine-responsive SAM-containing metabolic enzyme complex [SESAME] [75–77],
reinforces the above hypothesis that local generation of methyl donors can have relevant functions for
targeted epigenetic repression.

Acetyl-CoA is compartmentalized into mitochondria and cytosol, but it can diffuse freely through
the nuclear pores; thus, the nuclear synthesis would not be needed. However, under particular
environmental or cellular conditions [78,79], four enzymes involved in acetyl-CoA synthesis, including
ACSS2 (Acetyl-CoA synthetase short-chain family member 2) [80,81], ACLY (ATP citrate-lyase) [34,82],
PDC (pyruvate dehydrogenase complex) [83,84], and CAT (carnitine acetyltransferase) [85], can
transiently localize to the nucleus, thus increasing the local concentration of acetyl-CoA, even if its total
intracellular level does not change significantly. The nuclear translocation of these enzymes has been
detected in different cancer cell lines with an impact on transcriptional programs in a context-dependent
manner (i.e. nutrition, disease, microenvironment) [82].

Numerous glycolytic enzymes can moonlight in the nucleus where they perform autonomously
and often play unrelated functions involved in epigenetic regulation of gene expression [23]. The
pyruvate kinase embryonic isozyme M2 (PKM2), resulting from alternative splicing of PKM pre-mRNA,
is a promoter of Warburg effect [86] and it is over-expressed in different types of cancer [87]. The
tumor microenvironment can promote cell proliferation and reprogramming of cancer metabolism,
controlling epigenetic processes as well [86,88,89] and providing suitable stimuli, as growth stimuli [88]
or hypoxia [90], for PKM2 nuclear translocation. Here, it works synergistically with nuclear pyruvate
dehydrogenase complex (PDC), sustaining histone acetyltransferases activity by locally acetyl-CoA
production [91]. PKM2 might also modulate histone methylation, as demonstrated by Li and colleagues
who found Pyk1, the yeast PKM2 homolog, to participate in the upregulation of H3K4me3 as member
of the SESAME complex [77].

The metabolic enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4), highly
expressed in cancer cell lines under hypoxia [92], regulates cellular levels of fructose-2,6-bisphosphate
(F2,6BP), an important sugar-phosphate metabolite that stimulates glycolysis by allosteric activation of
PFK1. PFKFB4 contributes to cell survival and tumor growth [93], increasing the amount of F2,6BP and
ATP, whose cellular production is limited by electron transport chain blockage. Recently, Dasgupta
and colleagues reported a moonlight kinase function of PFKFB4, activated by the Warburg effect, on
steroid receptor coactivator-3 (SRC-3) [94], a transcriptional co-activator with several nuclear receptor
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interacting domains and intrinsic histone-acetyltransferase activity. PFKFB-phosphorylated SRC-3
promotes the expression of genes involved in driving glucose flux towards purine synthesis, a critical
determinant of metastatic progression in breast cancer [94].

Mitochondrial and nuclear membranes are impermeable to NAD+ and NADH, so the regulation of
NAD+/NADH ration, a critical factor for various epigenetic processes, is compartmentalized. Nuclear
NAD+ availability may be guaranteed by the metabolic enzymes LDH and glyceraldehyde 3-phosphate
dehydrogenase (GAPDH), whose compartmentalization in the nucleus has been demonstrated. It has
been established that the nuclear translocation of LDHA, induced by ROS stress, is crucial to activating
gene transcription by histone deacetylation, modulating the activity of sirtuin 1 (SIRT1) through the
availability of NAD+ directly in the nucleus [95]. Moreover, GAPDH can activate a particular apoptotic
pathway promoting histone acetylation under intracellular or external stress stimuli [96]. Nitric oxide
promotes GAPDH S-nitrosylation, which induces its binding with the protein Siah1 and its nuclear
translocation [97]. In the nucleus, S-nitrosylated GAPDH, in turn, transnitrosylates both HDAC1,
promoting its dissociation from chromatin and gene transcription activation, and SIRT1, inhibiting its
activity and, consequently, the autophagy program [98].

Unlike the glycolytic enzymes, only few TCA enzymes translocate from mitochondria to the
nucleus and take part in epigenetic rewiring. Nuclear translocation of mitochondrial proteins could
represent a simple and direct mechanism of retrograde communication between the two organelles,
which also involves epigenetic processes. Fumarate hydratase is a TCA cycle enzyme with a nuclear
‘echoform’ that regulates the response to DNA damage [99], inhibiting lysine demethylase 2B (KDM2B)
histone demethylase activity through local fumarate production [100]. The nuclear accumulation of
fumarate inhibits the activity of other epigenetic erasers, influencing the epigenetic landscape and
contributing to tumorigenesis. IDH3, a mitochondrial heterotetrameric enzyme, is a rate-limiting step
of the TCA cycle. Despite its central role in TCA cycle, recently a group of researchers found the
accumulation of IDH3α in the cytosol and nuclear periphery in S phase-arrested cells. Here, IDH3α
colocalizes and interacts with serine hydroxymethyltransferase (SHMT) and, in this way, it regulates
locally the one-carbon metabolism, modulating pyrimidine synthesis as well as DNA methylation.
Loss of IDH3α function results in an increase of the methyl group donor SAM and DNA methylation
level due to a decrease of α-KG availability for TET activity [101]. The cytoplasmatic isoform IDH1 is
found in the nuclei of glioma cells [102], likely involved in histone and DNA methylation. At present,
the specific role of nuclear IDH1 is still unclear, but its contribution to producing NADPH from NADP+

is worthy of attention, whose ratio may modulate gene expression by initiating redox signaling [103].

3. As Epigenetics Control Metabolic Reprogramming

Epigenetic dysfunction is another rising hallmark of malignancy, even though its effect on human
carcinogenesis is not entirely acknowledged. Indeed, besides genetic mutations, epigenetic alterations
are the cause of metabolic enzymes deregulation in cancer cells since epigenetic modulation of metabolic
enzymes represents an efficient mechanism to obtain a reversibly and rapid response to environmental
short-term changes. Epigenetics can regulate cellular metabolism directly, controlling transcription
of metabolic genes, or indirectly, dysregulating oncogenic cascades, as AKT serine/threonine kinase
(AKT), AMP-activated protein kinase (AMPK), or hypoxia-inducible factor 1 (HIF1) signaling.

Numerous evidence link DNA methylation status and glycolysis. For example, the upregulation
of the glycolytic enzyme PKM2 is associated with hypomethylation of its promoter 1 in several
cancer types [87]. Promoter hypomethylation of hexokinase 2 (HK2), a Warburg effect mediator,
increase HK2 gene transcription and protein availability, favoring glycolytic flux in hepatocellular
carcinoma [104,105] and glioblastoma [106,107]. Furthermore, DNA hypermethylation mediates
silencing of fructose 1,6-biphosphatase (FBP1), thus inhibiting gluconeogenesis and inducing higher
glycolytic rates in gastric, colon, and liver cancers (Figure 3) [108]. DNMTs are recruited at FBP1
promoter by transcription factors cooperating with histone writers and erasers, such as HMTs (G9a
and SUV39H1) [109,110], or HDACs (LSD1) [111]. In glioblastoma, the promoter regions of other
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glycolytic genes, including ENO1, GAPDH, HKI-III, and LDHA, have been found hypermethylated in
IDH1-mutant cells [107]. Epigenetics may modulate indirectly cancer metabolic reprogramming via
overexpression of the glucose transporter, GLUT1, due to promoter hypermethylation of derlin-3, a
degradation mediator of the solute carrier [112]. Epigenetic silencing of derlin-3 promotes Warburg
effect and tumorigenesis.

Figure 3. Direct and indirect epigenetic control of cellular metabolism. The DNA and
histones methylation status influences the glycolytic flux through promoter hypermethylation or
hypomethylation of enzymes with key-roles in the glycolytic pathway. Indeed, hypomethylation
of PKM2 (pyruvate kinase embryonic isozyme M2) or HK2 (hexokinase 2) promoters is associated
with the high glycolytic flow, whereas the downregulation of fructose 1,6-biphosphatase (FBP1)
expression, due to promoter hypermethylation, inhibits gluconeogenesis and favors glycolytic
metabolism. Moreover, epigenetic mechanisms indirectly control cell metabolism by promoter
hypermethylation and consequent silencing of numerous tumor suppressor genes that repress
PI3K/AKT/mTOR and HIF1α signaling pathways, two pro-tumorigenic cascades involved in prompting
Warburg metabolism. Additionally, numerous histone demethylases, remodeling histone methylation
patterns, influence cellular metabolism promoting transcriptional activation of several glycolytic
genes, such as glucose transporter type 1 (GLUT1) and monocarboxylate transporter 4 (MCT4), as
well as mediating the activity and/or availability of crucial transcription factors. Abbreviations:
G6P-Glucose 6-Phosphate; F6P-Fructose 6-Phosphate; F1,6BP - Fructose 1,6-Biphosphate; DHAP
Dihydroxyacetone Phosphate; G3P-Glyceraldehyde 3-Phosphate; 1,3BPG-1,3-Biphosphoglycerate;
3PG-3-Phosphoglycerate; 2PG-2-Phosphoglycerate; PEP-Phosphoenolpyruvate; TKRs-Tyrosine Kinase
Receptors; PTEN-phosphatase and Tensin homolog; LKB1- Liver kinase B1; VHL-Von Hippel-Lindau
tumor suppressor; PHD-Prolyl Hydroxylase Domain-containing protein.

DNA methylation contributes indirectly to the Warburg effect, driving transcriptional silencing of
tumor suppressor genes involved in signaling cascades linked to tumor metabolism. PI3K/AKT/mTOR
and HIF1 signaling play crucial roles in the activation of glycolysis and other cancer-related metabolic
pathways, acting as bioenergetic sensors. Several tumor suppressors that repress PI3K/AKT/mTOR and
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HIF1 signaling are epigenetically silenced by promoter hypermethylation, including PTEN [113–117],
LKB1 [118,119], VHL [120–122], and PHD1/2/3 [123,124] (Figure 3). Hence, PI3K/AKT/mTOR pathway
and HIF1-mediated hypoxic response are constitutively activated, contributing to glycolytic phenotype
in cancer cells.

Several histone demethylases take an active part in metabolic rewiring in human cancers, as well.
Lysine demethylases (KDMs) are often overexpressed and constitutively activated in solid tumors.
For example, in bladder cancer, KDM3A overexpression is associated with the metabolic shift to
glycolysis because the enzyme catalyzes H3K9me2 demethylation of glycolytic genes’ promoters,
including SLC2A1, HKII, PGK1 (phosphoglycerate kinase 1), LDHA, and SL16A4 (monocarboxylate
transporter 4), leading to their transcriptional activation [125]. KDM4C overexpression is associated
with increased glycolytic metabolism through HIF1α interaction in breast cancer [126]. Active LSD1 is
implicated in the inhibition of gluconeogenesis through H3K4me2 demethylation, leading to FBP1
and G6P transcriptional repression [111]. Moreover, LSD1, decreasing the methylation of H3K4 at the
v-Myc avian myelocytomatosis viral oncogene homolog (MYC) locus, elevates its expression, leading
to glycolytic shift [127]. Among the enzymes involved in histone modification, the role of sirtuins in
cell metabolism reprogramming has been extensively studied. SIRT6 controls glucose homeostasis by
modulating histone acetylation [128]. SIRT6 deletion is frequent in several human cancers, like colon,
pancreatic, and hepatocellular carcinomas, and it is associated with the increase of H3K9 acetylation
and upregulation of glycolytic genes [128,129]. Additionally, SIRT6 interacts directly with HIF1α
and MYC, repressing HIF1-mediated glycolytic switch and MYC-dependent ribosome biogenesis
and glutaminolysis [21]. SIRT1 is another sirtuin with tumor-suppressor function. It represses
glycolytic metabolism, indirectly through HIF1α deacetylation and directly by inhibiting the glycolytic
enzyme PGAM1 (phosphoglycerate mutase 1) via deacetylation [130]. SIRT2 takes part in metabolic
dysregulation in cancer, indirectly stabilizing MYC [131]. Upon deacetylation of histone H4K16, SIRT2
suppresses the transcription of neural precursor cell expressed developmentally down-regulated 4
(NEDD4), a negative regulator of N-MYC and C-MYC, promoting their ubiquitination and proteasomal
degradation [131].

Epigenetics might regulate indirectly OXPHOS in cancer, impairing mitochondrial functions as
the last result. Even if researches in this field are still at an early stage, some evidence is heading the
interest toward this issue. For example, the histone methyltransferase set domain containing lysine
methyltransferase 7 (SETD7) or histone demethylases LSD1 and KDM5 are epigenetic enzymes whose
activity or inactivity regulates mitochondrial function and/or gene expression [132].

The direct and indirect mechanisms implemented by epigenetics for metabolism control are
numerous and not completely identified, so much remains to be understood concerning the role of
epigenetic factors in prompting cancer metabolic rewiring and/or reprogramming.

4. Metabolic/Epigenetic Changes Modify Tumor Microenvironments Promoting Immune Escape
and Tumor Progression

The metabolism-epigenetics interplay needs to be discussed also in the dynamic context of the
interactions between cancer cells and tumor microenvironment (TME) because they influence each
other. Metabolic and epigenetic changes, occurring in cancer cells, contribute to shape tumor
microenvironment (TME) and surrounding cell phenotype (i.e., fibroblasts and myofibroblasts,
neuroendocrine, adipose, immune, endothelial and inflammatory cells, blood and lymphatic vascular
networks, and extracellular matrix), eliciting immune tolerance, drug resistance, and, consequently,
tumor progression [133,134]. The imbalanced metabolism of cancer cells results in excessive production
and secretion of various metabolites, among which the most important is lactic acid [134,135]. High
lactate levels in TME, together with low oxygen and nutrients, seems to play an important role in
enhancing the immunosuppressive activity of macrophages, T cells, myeloid-derived suppressor cells
(MDSCs), and other immune cells [134,136,137]. Recent studies showed that hypoxia and high levels
of lactate in TME influence the phenotype of tumor-associated macrophages (TAMs) and, in particular,
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their differentiation and polarization towards the M2 phenotype [138]. Indeed, TAMs-M2 express
low levels of major histocompatibility complex class-II (MHC-II), high levels of Arginase-1 (Arg-1),
mannose receptor C type 1 (CD206), and vascular-endothelial growth factor (VEGF), thus promoting
angiogenesis and tissue remodeling [136,139,140]. Furthermore, in response to high concentrations
of lactic acid, TAMs enhance the production of inflammatory cytokines, such as interleukin-10 IL-10,
which play an immunosuppressive function [135]. In agreement with these observations, it has been
recently suggested that the suppression of lactate dehydrogenase (LDHA) and consequently of lactate
in myeloid cells leads to regression of lung cancer and favors a more pronounced anticancer immune
response [141]. Consistently, lactate promotes the expression of programmed death-ligand 1 (PDL1) by
a mechanism that likely engages the lactate-mediated HIF1α stabilization [141].

The activation of T cells against tumor cells involves their expansion and proliferation, but
this process is highly dependent on the availability of oxygen and nutrients whose concentration is
extremely limited in TME [142,143]. In particular, hypoxia, low availability of nutrients, and high levels
of lactate inhibit T cells expansion and change their metabolism towards glycolysis with consequent
loss of their anti-cancer response [143].

Epigenetic changes, occurring in tumor cells, lead to production and secretion of a large
variety of cytokines, chemokines, and growth factors, such as prostaglandin E2 (PGE2), IL-6, IL-10,
granulocyte-macrophage colony-stimulating factor (GM-CSF), VEGF, and transforming growth factor β
(TGFβ), that induce the accumulation of immune and stromal cells with immunosuppressive functions
in TME [144,145]. Thus, tumor cells shape TME, driving immunological escape through impairment of
the functionality of cytotoxic T lymphocytes (CTLs), Natural Killers (NKs), antigen-presenting cells
(APCs), and Dendritic Cells (DCs) [145]. Many proinflammatory cytokines, including interleukins,
are epigenetically regulated in human malignancies. In particular, IL-1B, IL6, and IL8 genes are
downregulated upon promoter methylation in Non-Small-Cell Lung Cancer (NSCLC) [146], whereas
IL23, a member of IL6 family, is epigenetically regulated by both histone acetylation and DNA
methylation [146]. The epigenetic silencing of these molecules and the consequent lack of their
secretion in TME is one of the main mechanisms of tumor immunological evasion, drug resistance,
and tumor progression.

Moreover, the metabolic reprogramming of cancer cells, with the consequent remodeling of TME,
has an indirect control on the epigenetic machinery of cancer and stromal cells [22,147]. For example,
the release of lactate causes the acidification of surrounding microenvironment and negatively regulates
HDACs activity and, consequently, gene expression [148]. Instead, glutamine depletion in TME, due
to excessive uptake and its metabolization by cancer cells and/or low oxygen levels during hypoxia,
inhibits KDMs-mediated histone demethylation processes, leading to repression of histone markers,
and consequent downregulation of numerous genes [149].

Thus, besides the effects that metabolic reprogramming or epigenetic alterations have on TME,
it is also important to underline the role of TME on the promotion and maintenance of malignant
phenotypes. Intriguingly, the metabolic-epigenetics-TME crosstalk seems to work symbiotically
favoring tumor proliferation, progression, and drug resistance. This intertwined relationship might
offer new perspectives on the role of metabolites, in particular, lactate, and epigenetic regulation
of cytokines, chemokines, and growth factors in shaping TME and vice versa. Altogether, these
observations suggest a strong rationale for the development of potential therapeutic strategies based
on the inhibition of these tumor-promoting mechanisms.

5. Epigenetics/Metabolism Crosstalk: New Therapeutic Opportunities

Innovative therapeutic strategies that target the crosstalk between epigenome and metabolome
may provide the basis for novel anticancer therapies. To date, most information regarding the
effectiveness of metabolic/epigenetic inhibitors is derived from in vitro studies that poorly reflect the
complex scenario of epigenome and metabolome interaction in vivo and do not reflect the influence
that this crosstalk has on TME. The most interesting cancer therapies, developed recently, have been
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designed against metabolic targets, with a downstream effect on epigenetics, and against epigenetic
effectors with a synergistic effect on cancer metabolic reprogramming.

For example, to reshape aberrant DNA and histone methylation patterns of cancer cells, it is possible
to modulate the SAM/SAH ratio acting on SAM synthesis pathway. Interestingly, 3-deazaneplanocin A
(DZNep), the inhibitor of s-adenosylhomocysteine hydrolase (AHCY), the enzyme which catalyzes the
hydrolysis of SAH into adenosine and homocysteine, participating in the maintenance of methylation
homeostasis, causes the reduction of SAM, which is essential for the activity of DNMTs and HMTs [150].
In combination with the DNMTs inhibitor, 5-aza-2′-deoxycytidine (5-Aza), DZNep showed synergistic
anti-tumor activity in leukemia, through the reactivation of the expression of genes aberrantly silenced
by histone and DNA methylation [151,152]. Instead, to counteract the aberrant DNA hypermethylation
caused by 2-HG production in IDH1/2 mutant cancers, promising IDH1/2 mutant inhibitors are
available, and Ivosidenib has been recently approved from FDA for acute myeloid leukemia [153].
Among several IDH1/2 mutant inhibitors, AG-120, AG-881, ML309, GSK321, and GSK864 exhibited
remarkable anti-tumor activity [21], showing a significant histone and DNA demethylation activity
in vitro. Moreover, AG-221 is a specific inhibitor of the IDH2 mutant, currently under phase I and II
investigations, which is shown to reduce 2HG levels in plasma and bone marrow and induce durable
remissions in patients with IDH2 mutant advanced hematologic malignancies [21,154].

Histone acetylation is dependent on glycolytic flux and glutaminolysis, thus promising therapeutic
strategies are based on the modulation of acetyl-CoA levels upon inhibition of these two metabolic
pathways. 2-deoxyglucose (2-DG), a glucose analog, suppresses acetyl-CoA levels, leading to a
global reduction of histones H3 and H4 acetylation and sensitizing tumor cells to DNA damaging
agents [155]. Another glycolytic inhibitor—3-bromopyruvate—reduces acetyl-CoA levels and induces
differentiation in embryonic stem cells [156]. Instead, glutaminase (GLS) inhibitors, including
bis-2-(5-phenylacetamido-1,2,4- thiadiazol-2-yl) ethyl sulfide (BPTES) [157], CB-839, and compound
968, can alter the acetylation of histones H4 and H3 and downregulate the expression of many
tumor-related genes in breast cancer [158]. Additionally, a compound studied as IDH1 inhibitor,
Zaprinast, showed an unexpected GLS inhibitory activity [159]. Surprisingly, the molecular mechanism
of this drug consists mainly of remodeling histone methylation rather than histone acetylation, probably
because GLS-mediated glutaminolysis plays a crucial role in providing α-KG for methyltransferases
activity [160].

It has been widely demonstrated that several targeted epigenetic agents, in use for cancer treatment,
might affect cancer metabolism as a secondary effect. This is the case of HDAC inhibitors, which have
a direct suppressing effect on glucose metabolism. Studies conducted on colorectal, breast, and lung
cancer cell lines reveal that the treatment with HDAC inhibitors, such as butyrate and trichostatin A
(TSA), causes a reduction in glucose uptake, glycolytic flow, and lactate production and triggers a shift
towards oxidative phosphorylation [161]. Instead, use of DNMTs inhibitors, such as 5-Aza, seems to
reverse the methylation in IDH-mutant tumors, suppressing tumor growth and inducing differentiation
in IDH mutant glioma cells, but their effect on tumor metabolism is not yet known [162,163].

Altogether, these data, although preliminary, suggest that metabolic/epigenetic targeting may
represent a valid anticancer strategy.

6. Conclusions

Despite genetic and tissue-specific heterogeneities, tumor initiation and progression involve
common dysfunctions in specific genes and crucial biological functions acquired during a multistep
process that drives the transformation of normal into malignant cells. In such a context, the recently
defined hallmark of “metabolic rewiring” [164] has established a central role for metabolism as a driver
of the malignant phenotype responsible for providing to tumor cells a selective advantage respect to
the normal counterpart. Noteworthy, metabolic reprogramming is not a merely passive consequence
of cancer transformation finalized to support the core demands of rapidly proliferating cells, as
anabolism, catabolism, and redox balance, but it is an active driver of carcinogenesis responsible for
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favoring rapid adaptation of cancer cells to environmental modifications. Indeed, it contributes to the
regulation of genes essential for cell growth, survival, differentiation, and overall cell homeostasis and
influences the epigenetic machinery through the regulation of steady-state levels of metabolites with
epigenetic involvement. Per contra, epigenetics aberrations, another rising hallmark of cancer [20],
play an important role in the etiology of cancer, modulating the expression of oncogenes and/or
oncosuppressor genes implicated in cancer initiation and progression. Additionally, epigenetics
promote cancer metabolic rewiring through reprogramming of genes with metabolic functions, thus
resulting in remodeling of metabolic pathways in the perspective of tumor development.

Therefore, it is incontrovertible that epigenetics and metabolism interact dynamically and
reciprocally with the purpose to rapidly shape phenotype of cancer and environmental cells in response
to multifactorial intracellular and extracellular stimuli. Deep comprehension of this bidirectional
crosstalk could represent an important step towards the design of specific and effective therapeutic
strategies to target the metabolism-epigenetic network in malignant cells. In such a perspective, three
alternative therapeutic approaches have been proposed:

1. To target epigenetics to remodel cancer cell metabolism and, thus, use epigenetic inhibitors [161,165–167]
as a surrogate of metabolic agents;

2. To target metabolic pathways to inhibit the production of specific metabolites with epigenetic
functions [155,156,158,159,168–172] and, thus, remodel the expression of key cancer-related genes;

3. To simultaneously target epigenetic and metabolic pathways by combination therapies [173,174] to
inhibit dynamic adaptive mechanisms of tumor cell reprogramming and obtain synergistic effects.

In conclusion, while there is a strong biological rationale to target the epigenetic-metabolic
crosstalk as anticancer strategy and several preclinical studies validated this approach, further studies
are needed to design innovative and effective epigenetic and metabolic agents, with acceptable toxicity
profile, that can be evaluated in clinical studies.
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