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INTRODUCTION

Bone age assessment is crucial for evaluating pediatric 
growth and maturity [1]. Bone age is an important 
parameter for the assessment of the progress and 
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treatment of various pediatric endocrine diseases. 
Furthermore, it can be used to predict adult height [2,3]. 
Recently, the high prevalence of precocious puberty [4], 
increased interest in the height of children, and increased 
usage of growth hormone therapy emphasize the need for 
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assessing bone age [5].
In clinical practice, left hand and wrist radiography-based 

bone age assessments, such as the Greulich-Pyle (GP) [6] 
and the Tanner-Whitehouse 3 (TW3) methods [7], are widely 
used. The GP method is an atlas-based method, which 
determines bone age by comparing the radiographs of the 
hand and wrist with the most similar standard radiographs 
in the GP atlas. It is a simple method that is readily 
available in clinical practice. However, several studies 
have suggested possible issues, including inter- and intra-
observer variability and the dependency of the accuracy 
on the experience of the clinician [8-10]. Furthermore, it 
is a semi-quantitative method because the GP atlas mainly 
covers one year. Recently, deep learning-based automatic 
bone age assessment models have been developed to 
overcome these issues [11-13]. According to Stanford 
University researchers, the mean absolute difference (MAD) 
between the automatic bone age assessment tools based on 
the GP atlas and standard bone age, which is determined by 
three radiologists, is 0.5 years [14].

The TW method is a scoring system that measures the 
individual bone maturity score and evaluates bone age by 
summing the scores. After two revisions, the current version 
(TW3) was proposed, which used the maturity of the radius, 
ulna, and short bones [7]. It is a quantified method and, 
therefore, is more accurate and has a higher reproducibility 
than the previous GP method [8-10]. However, the TW 
method also has certain limitations. First, it is a more 
complex method that takes a longer time than the GP 
method [8,15]. Second, it classifies individual bones based 
on nine maturity grades (A to I); thus, the classification is 
sometimes ambiguous and has inherent deviation because 
one particular bone shape can have two different pre-
defined labels of the same feature [16,17]. 

To overcome the limitations of both methods, we 
developed a hybrid GP and TW artificial intelligence (AI) 
bone age assessment software. This software was trained 
using hand and wrist radiography based on both the GP 
and modified TW methods, which use seven regions (radius, 
ulna, distal phalange, middle phalange, and proximal 
phalange, metacarpal of the third digit, and metacarpal of 
the first digit) instead of 13 regions for the TW3 method. 
The holistic hand image analysis based on the GP method in 
our software can cover all the regions that are not included 
in the TW3 method, and the holistic hand image analysis 
is further reinforced by minutely assessing the individual 
region of interest (ROI) based on the modified TW method, 

which improves the classification performance by zooming 
in more relevant regions, as discussed in a previous study 
[13]. Eventually, the final bone age in this software was 
obtained from the integrated analysis of both holistic image 
analysis and ROI analysis in a fully automatic manner. The 
purpose of this study was to evaluate the accuracy and 
clinical efficacy of a deep learning-based hybrid GP and 
modified TW AI model for assessing bone age.

MATERIALS AND METHODS 

This study was approved by the Institutional Review 
Board and Ethics Committee of the Korea University Anam 
Hospital (IRB No. 2019AN0010). Informed consent was 
waived because the data were collected retrospectively and 
analyzed anonymously. The study complied with the ethical 
principles of the Helsinki Declaration of 1964, which was 
revised by the World Medical Organization in Edinburgh 
in 2000. This study involved three major steps: model 
development, external validation, and statistical analysis. 
Details about the steps and the study population are 
provided in Figure 1.

Model Development
The model consists of three steps: ROI detection, region 

maturity classification, and integrated bone age. The steps 
are summarized in Figure 2. First, seven regions based on 
TW3 were automatically detected using the convolutional 
neural network (CNN) algorithm. While TW3 used 13 ROIs 
for bone age assessment, the proposed modified method 
used seven regions (radius, ulna, distal phalange, middle 
phalange, proximal phalange, metacarpal of the third 
digit, and metacarpal of the first digit) to improve the 
labelling efficiency during the training steps. We postulated 
that the short bones of the first and fifth fingers, except 
the metacarpal of the first finger, correlate highly with 
those of the third finger, as reported in a previous study 
[18]. Second, each ROI and the holistic hand image 
were automatically classified for maturity using the CNN 
algorithm. While TW3 uses nine stages, from A to I, to 
assess the maturity of each ROI, our method used 34 stages 
with a 6-month gap from 1.5 to 18 years for maturity, 
which could be more accurate and intuitive. In addition, 
the holistic hand image is automatically classified and 
applied to our AI model because the holistic image can 
provide the maturity features of regions that are not 
included in the ROIs of TW3. In this ROI and the holistic 
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hand image maturity classification procedure, we used the 
doctors’ ratings as the reference standard for each CNN 
model training. Finally, the features from each ROI and 

the entire hand were integrated and classified to provide 
the final bone age estimate of the input image. Basically, 
the prediction probability distributions of the maturity 

Fig. 1. Overview of entire steps of the study including participant selection. The model was developed using two public datasets. A total 
of 15611 hand radiographs were used as training, validation, and test sets. A total of 102 hand radiographs were used for external validation. 
Finally, statistical analysis was performed. GP = Greulich-Pyle, RSNA = Radiological Society of North America
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stages of the regions were concatenated and inputted to 
the final integration step, which used a fully connected 
neural network model. This entire procedure for bone age 
assessment, composed of three steps, is fully automatic. 
The model was implemented using an open-source machine 
learning library (TensorFlow version 0.9.0; Google). Figure 3 

shows a sample image of the mediAI-BA, the automatic 
solution interface of this software.

We used two public datasets. The first is from the 
Radiological Society of North America (RSNA) 2017 
challenge, which includes 14236 hand radiographs from 
Stanford University and Colorado University [19], and the 

Fig. 2. Overview of Greulich-Pyle and modified Tanner-Whitehouse hybrid bone age assessment models. ROI = region of interest

Fig. 3. Result of automatic bone age assessment program (mediAI-BA) including analysis of detailed area of interest. 
Automatic hybrid method-derived bone age is observed in the left upper corner ①. The user can choose from ② the seven regions of interest 
(DP, MP, PP, and MC of the third finger; radius, ulna, and MC of the first finger), and third digit middle phalanx image with its respective maturity 
degree is shown ③. Heatmap overlay is selected ④ and is shown. DP = distal phalange, MC = metacarpal, MP = middle phalange, PP = proximal 
phalange
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other is from the Digital Hand Atlas [20], which includes 
1375 hand radiographs from the University of Southern 
California. We used 10% of the dataset as the validation set 
and 200 images as the test set.

External Validation
Among 1646 the participants aged 2–18 years who 

visited the pediatric department and underwent left hand 
radiography at Korea University Anam Hospital between 
June 2017 and August 2018, those with a congenital 
anomaly (Down syndrome, Noonan syndrome, congenital 
adrenal hyperplasia, and methylmalonic acidemia) and 
poor imaging quality were excluded. According to stratified 
random sampling, we selected 102 participants (51 male 
and 51 female; mean age ± standard deviation [SD] = 10.95 
± 2.37 years) for external validation.

Three reviewers independently estimated the bone age 
based on the GP atlas with the first digit after the decimal 
point (year). They intended to judge the bone age according 
to the GP standard bone age if possible; however, they were 
allowed to use the median age according to their level of 
experience. Reviewer 1 is a pediatric endocrinologist with 
29 years of clinical experience who is familiar with bone 
age estimation based on radiographs. Reviewers 2 and 
3 are musculoskeletal radiologists with 19 and 12 years 
of clinical experience, respectively. The average of the 
independent bone age estimates of the three reviewers was 
then used as the reference standard for this study. If there 
was a discrepancy of more than 2 years, the image was re-
evaluated until a consensus was reached.

Two different one-year fellowship-trained musculoskeletal 
radiologists (reviewers 4 and 5) conducted bone age 
assessments in two different sessions. During the first 
session, they independently estimated the bone age based 
on the GP atlas. The time was measured in seconds using 
a stopwatch. Two weeks after the washout period, they 
repeated the bone age assessment with model assistance 
and the GP atlas shown in the model. Time was measured 
using the same method. Finally, the clinical research 
coordinator conducted the bone age assessment using the 
model.

Statistical Analyses
We checked the intraclass correlation coefficient (ICC) 

for the three reviewers (reviewers 1–3) who participated 
in generating reference standards for the validation of the 
reference standard. The results of the bone age assessment 

by the model and the reviewers are summarized as the 
mean, SD, median, minimum, and maximum values. To 
evaluate model performance, the model estimates were 
compared with the reference standard. The results of the 
bone age assessment were compared using a paired t test. 
The difference in bone ages between the model assessment 
and the reference standard was also evaluated by the MAD 
with its 95% confidence interval (CI). The upper limit of 
the 95% CI (< 0.5) indicated no statistically significant 
systematic bias in bone age assessment. This value (0.5 
years) was adopted as the same equivalence limit in 
previously published articles [8,14]. Furthermore, we 
calculated the root mean squared error (RMSE). 

We determined the amount of time required to evaluate 
the clinical efficacy of the model. A paired t test was used 
to compare the time required for reading with and without 
model assistance for reviewers 4 and 5. Furthermore, we 
calculated the MAD and ICC for reviewers 4 and 5 for the 
reading with and without model assistance.

All analyses were conducted using SAS version 9.4 (SAS 
Institute Inc.). Statistical significance was set at p < 0.05.

RESULTS 

Characteristics of the Participants
Table 1 shows the demographic data of the participants. 

The mean chronological age ± SD of the participants was 
10.95 ± 2.37 years (male: 11.18 ± 2.88, female: 10.72 ± 
1.71). The age range was 4.92 to 17.00 years. According 
to the age distribution, the largest group included 63 
participants aged 10 or more years but under 15 years, 
while the second largest group included 33 participants 
aged 5 or more years but under 10 years.

The most common causes for examination were precocious 
puberty (n = 50), followed by short stature (n = 40). 
The remaining 12 participants had an endocrine disease, 
including diabetes mellitus, obesity, thyroiditis, vitamin D 
deficiency, and growth hormone deficiency.

 
Validation of Reference Standard

The ICC (95% CI) of the three reviewers (reviewers 1–3) 
was 0.993 (0.990–0.995). This value was sufficiently 
high to use the average bone age assessment value as a 
reference standard.

Model Accuracy in Bone Age Assessment
Table 2 shows the results of the bone age assessment 



2022

Lee et al.

https://doi.org/10.3348/kjr.2020.1468 kjronline.org

using the model and the reference standard determined by 
three human experts. The mean bone ages ± SDs assessed 
with the model and the reference standard were 11.35 ± 2.76 
and 11.39 ± 2.74 years, respectively, without a statistically 
significant difference (p = 0.31). The MAD between the 
model and the reference standard was 0.39 years (95% CI, 
0.33–0.45), which is less than 0.5 years. The RMSE was 
0.498 years. 

Clinical Efficacy: Effect on Reading Time and 
Inter-Observer Reliability 

Table 3 summarizes the results related to the clinical 
efficacy. The mean interpretation times (seconds) of reviewer 
4 with and without model assistance were 31.72 seconds and 

56.81 seconds, respectively. The mean difference was 25.10 
seconds (95% CI, 21.41–28.79), which was significantly 
different (p < 0.001). The mean interpretation times 
(seconds) of reviewer 5 with and without model assistance 
were 38.82 seconds and 51.76 seconds, respectively. The 
mean difference was 12.1 seconds (95% CI, 7.07–17.1), 
which was statistically different (p = 0.001). Combining the 
two readers, he bone age assessment with model assistance 
took 35.27 seconds, while the initial bone age assessment 
time was 54.29 seconds, which was 1.54 times more. The 
mean difference was 18.6 (95% CI, 12.9–24.3), which 
indicated a significant reduction (p < 0.001).

There was no significant difference between the 
diagnostic accuracies of the bone ages assessed by reviewer 

Table 1. Demographic Data of Subjects
Total (n = 102) Male (n = 51) Female (n = 51)

Age, year
Mean ± SD 10.95 ± 2.37 11.18 ± 2.88 10.72 ± 1.71
Median 10.88 11.17 10.67
Range, min–max 4.92–17.00 4.92–17.00 7.67–14.58

Age distribution, years
< 5 1 (0.98) 1 (1.96) 0 (0)
≥ 5 and < 10 33 (32.35) 14 (27.45) 19 (37.25)
≥ 10 and < 15 63 (61.76) 31 (60.78) 32 (62.75)
≥ 15 5 (4.90) 5 (9.80) 0 (0)

Data are number of patients with % in parentheses, unless specified otherwise. max = maximin, min = minimum, SD = standard deviation

Table 2. Results of Bone Age Assessment
Total (n = 102) Male (n = 51) Female (n = 51)

Automatic bone age assessment by model
Mean ± SD 11.35 ± 2.76 11.58 ± 3.47 11.11 ± 1.80
Median 11.30 12.10 11.10
Range, min–max 3.60–16.90 3.60–16.90 6.90–14.80

Reference standard bone age reference by three reviewers
Mean ± SD 11.39 ± 2.74 11.42 ± 3.52 11.37 ± 1.61
Median 11.50 11.83 11.33
Range, min–max 3.17–17.00 3.17–17.00 7.60–14.93

Data are years. max = maximin, min = minimum, SD = standard deviation

Table 3. Results of Clinical Efficacy Evaluation
MAD (95% CI), Year* Mean Interpretation Time, Sec ICC (95% CI)

First session: without model
Reviewer 4 0.42 (0.35–0.50) 56.81 0.945 (0.919–0.963)
Reviewer 5 0.88 (0.75–1.01) 51.76

Second session: with model
Reviewer 4 0.42 (0.35–0.50) 31.72 0.990 (0.985–0.993)
Reviewer 5 0.32 (0.27–0.37) 38.82

*MAD between each reviewer’s estimated bone age and reference standard. CI = confidence interval, ICC = intraclass correlation 
coefficient, MAD = mean absolute deviation
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4 with and without the model. The MAD (95% CI) for the 
assessment of reviewer 4 based on the model and the 
reference standard was 0.42 (0.35–0.50), while that (95% 
CI) for the assessment of reviewer 4 not based on the model 
and the reference standard was 0.42 (0.35–0.499). However, 
the MAD (95% CI) for the assessment of reviewer 5 not 
based on the model and the reference standard was 0.88 
(0.75–1.01) while the MAD (95% CI) for the assessment of 
reviewer 5 based on the model and the reference standard 
was 0.32 (0.27–0.37). Therefore, the diagnostic accuracy of 
reviewer 5 was significantly improved by model assistance 
(p < 0.001).

Furthermore, the ICC (95% CI) for reviewers 4 and 5 
without the model was 0.945 (0.919–0.963); that (95% CI) 
for reviewers 4 and 5 with the assistance of the model was 
0.990 (0.985–0.993).

DISCUSSION 

Our study verified the accuracy and clinical efficacy of 
the newly developed GP and modified TW hybrid AI bone 
age assessment model. Our model had an accuracy similar 
to that of human experts, with the upper limit of the 
95% CI of the MAD between the AI bone age assessment 
measurement and the reference standard being less than 
0.5 years. Our model shortened the reading time by 
approximately 35% for two additional radiologists. Kim et 
al. [21] showed that reading times were reduced by 18.0% 
and 40.0% for each of the two reviewers. Other studies 
have also reported that AI-assisted bone age assessment 
can reduce the interpretation time [22]. Furthermore, the 
accuracy of bone age assessment was significantly improved 
in the case of one additional radiologist (reviewer 5). 
Additionally, the ICC of two additional radiologists was 
somewhat improved during model assistance. This means 
that this model could help improve the inter-observer 
reliability, as in previous studies [12,14,23].

Recently, AI with deep learning has been applied to 
musculoskeletal radiology, including image interpretation, 
such as fracture detection and bone age assessment 
[24]. Several studies have suggested that CNN bone age 
assessment is as accurate as that of experts and has clinical 
efficacy [11,12,14,23]. Tajmir et al. [23] showed that 
AI assistance improves the performance of radiologists. 
Our study also showed that the AI tool improved the 
performance of the radiologist in terms of reducing the 
interpretation time and improving the inter-observer 

reliability. Furthermore, our model improved the diagnostic 
accuracy of bone age assessment for less experienced 
radiologists.

Contrary to previous studies [22], our model has the 
following advantages. First, our hybrid model complemented 
the limitations of GP and TW by focusing on the regions 
that are highly related to bone maturity changes and by 
applying finer-grained maturity stages than TW3, which 
resulted in a reliable and accurate bone age estimate. 
Second, our model reflects the comprehensive human 
decision-making process in a clinical setting whereby 
experts exploit the ROIs of bone rather than strictly use 
the GP atlas. Finally, the black box nature of CNNs [25,26], 
we thought, could be partially resolved by integrating two 
different methods (GP and TW) within the medical domain 
during the model development process.

Our model showed the integrated bone age, as well as 
two different results, based on the detailed ROIs and a 
holistic image. The current commercial automated bone 
age assessment system, BoneXpert (Visiana Aps, Holte, 
Denmark, http://www.boneexpert.com) with its recently 
launched version 3.0 (September 2019), is accurate [27], 
and it evaluates the bone age according to both the GP 
and alternative TW2 methods [28], which is similar to 
our model. BoneXpert is based on a feature extraction 
technique that reconstructs the border of 15 bones 
(including metacarpal, phalangeal bones, distal radius, and 
ulna) [29], which is different from our model. Several AI 
bone age assessment models have been developed using all 
the bones included in the radiograph and sometimes display 
the sensitive region of the image like a heat map [14,21]. 
The mean sensitive regions of the image were determined 
by the model, not by clinicians, and were different during 
the serial follow-up. 

The MAD and RMSE of our model were 0.39 and 0.50, 
respectively. This value shows that the accuracy of 
our hybrid model is similar to that of previous studies 
[14,15,18,29]. The MAD and RMSE of the GP method-based 
AI model MAD and RMSE were 0.50 and 0.63 [14]. Another 
GP method-based model called “HH-boneage” has a MAD 
of 0.46 and an RMSE of 0.62 [15]. The 9-stage TW method 
showed the MAD and RMSE for 7 ROIs of 0.59 and 0.76 [18]. 
BoneXpert version 3.0 showed an RMSE of 0.63 [29]. It 
was observed that the test data sets, including the number 
of images, differ among these studies, and the values for 
comparing the automated assessed bone age with the 
standard reference were obtained by the different expert 
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groups. Therefore, the results cannot be directly compared 
with the RMSE and MAD values. However, these values 
corroborate the accuracy of the proposed model.

However, our study had some limitations. First, this 
was a single-center retrospective study with only a few 
participants; in particular, only six participants aged 
< 5 years and > 15 years were enrolled. In the future, 
prospective multicenter large-sample studies are needed. 
Second, our study included a single-ethnicity external 
validation. Previous studies have shown racial differences 
in certain age bone growth patterns, which can affect bone 
age assessment [30,31]. However, our model was trained 
on open data, including those on ethnicity; therefore, 
we believe that it could be used globally. Third, we only 
compared the accuracy of our model and the GP method. 
A recent article suggested that the question of whether AI 
bone age assessment should be compared with other bone 
age assessment methods, including the TW method or using 
other imaging modalities such as MRI or ultrasonography 
instead of the left hand and wrist radiography persists 
[15]. Therefore, further comparative studies are required to 
confirm this. Finally, our model could not detect disorders 
such as congenital syndrome or rickets, a similar limitation 
to that of other recent AI models. However, the purpose of 
AI bone age assessment models is to assist the radiologist 
and not to use it independently in a clinical setting.

In conclusion, this new hybrid GP and modified TW AI 
bone age assessment model was accurate for bone age 
assessment. Furthermore, it appeared to improve the clinical 
efficacy by reducing the interpretation time and improving 
the inter-observer reliability.
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