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Gastric cancer (GC) is one of the most common cancers and one of the leading causes of
cancer-related death worldwide. Precise diagnosis and evaluation of GC, especially using
noninvasive methods, are fundamental to optimal therapeutic decision-making. Despite
the recent rapid advancements in technology, pretreatment diagnostic accuracy varies
between modalities, and correlations between imaging and histological features are far
from perfect. Artificial intelligence (AI) techniques, particularly hand-crafted radiomics and
deep learning, have offered hope in addressing these issues. AI has been used widely in
GC research, because of its ability to convert medical images into minable data and to
detect invisible textures. In this article, we systematically reviewed the methodological
processes (data acquisition, lesion segmentation, feature extraction, feature selection,
and model construction) involved in AI. We also summarized the current clinical
applications of AI in GC research, which include characterization, differential diagnosis,
treatment response monitoring, and prognosis prediction. Challenges and opportunities
in AI-based GC research are highlighted for consideration in future studies.

Keywords: gastric cancer, artificial intelligence, deep learning, hand-crafted radiomics, methodologies, clinical
applications and challenges
INTRODUCTION

As one of the most common cancers, gastric cancer (GC) ranks as the top three in terms of mortality
rate (1). The American Joint Commission on Cancer (8th Edition) for Gastric Cancer recommends
computed tomography (CT) and endoscopic ultrasound for pretreatment TNM classification,
whereas magnetic resonance imaging (MRI) and Positron Emission Tomography – Computed
Tomography (PET-CT) are effective alternatives for metastasis evaluation. Despite the introduction
of new techniques, the pretreatment diagnostic accuracy of GC varies from 40.8% to 98.1% (2–4).
Efforts have also been made toward the prediction of histological type such as tumor differentiation
grade and Lauren classification, based on enhancement pattern analysis, perfusion analysis, and
spectral analysis, which have moderate discriminating performance and area under the curve
(AUC) ranging from 0.697 to 0.891 (5–7). Given the importance of accurate pretreatment imaging
evaluation and prognostic value of histopathological features, there is an urgent need for better
diagnostic methods for treatment planning.
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Fortunately, there has been considerable progress in artificial
intelligence (AI) during the past decade, which offers promise for
meeting these needs. Of all the AI techniques, hand-crafted
radiomics and deep learning (DL) are the two most frequently
applied methods for medical imaging and have shown the
powerful capacity for converting mass medical images into
minable data. With the ability to detect features that are
invisible to human readers, hand-crafted radiomics and DL
have demonstrated promising performance in tumor detection,
characterization, and monitoring (8).

Therefore, we reviewed the published AI methodologies
utilized in studies on GC imaging to provide an overview of
the latest developments. This included data acquisition, lesion
segmentation, feature design, and model construction.
Furthermore, we summarize the representative clinical
applications, knowledge gaps, and future directions. A total of
47 published AI studies on gastric cancer imaging were selected
through MEDLINE (June, 2021), of which 45 were retrospective
in design (36 single-center and 9 multicenter studies), while the
remaining two were single-center prospective studies (Table 1).
Imaging modalities varied across the studies. Specifically, 39
studies were performed using CT with only one studies based
on dual-energy CT, six used MRI, and two used PET-
CT (Table 1).
METHODOLOGIES OF AI STUDIES ON
GASTRIC CANCER

Data Acquisition
Image preprocessing accounts for the substantial heterogeneity
introduced by different imaging modalities, scanning protocols,
machine types, and manufacturers. Image intensity
normalization and resampling are two mathematical
techniques that are used widely for this purpose. Specifically,
image intensity normalization is performed to transform the
original image into a standardized form to reduce data variability
between cohorts and to generate appropriate inputs for
quantitative radiomic feature calculation (20, 27). Resampling
is used to adapt the input shape of the model by transforming
the original image into the target size by upsampling or
downsampling (32, 33, 36, 44).

In addition to imaging data, clinicopathological data also play
an important role in AI-based modeling and can be used to
improve model performance. These factors included patient age,
gender, body mass index, cancer antigen 72-4 (CA72-4), CA199,
CA242, carcinoembryonic antigen, alpha-fetoprotein, tumor
location, tumor size, and TNM stages (9–13, 15, 17, 18, 20–22,
24–28, 30–36, 38–45, 54).

Lesion Segmentation
Segmentation of region of interests (ROIs) in AI analysis can be
performed using manual, automatic, or semiautomatic methods.
Among the included AI-based GC studies, 42 (89%) studies
utilized manual segmentation methods, four (9%) applied
Frontiers in Oncology | www.frontiersin.org 2
semiautomatic methods (25, 30, 38, 39), and only one study
(2%) used automatic method (48).

Manual segmentation, which is usually carried out by
radiologists, involves placing rectangular/circular boxes that
delineate the two-/three-dimensional (2D/3D) boundary of
the whole lesion. In Di Dong et al.’s study, 2D ROIs were
placed to cover the largest tumor area for predicting lymph
node metastasis in locally advanced GC (32). Yue Wang
et al. segmented the entire tumor and built a 3D-based hand-
crafted radiomics model to diagnose intestinal-type gastric
adenocarcinomas (39). In addition, Wenjuan Zhang et al.
constructed a DL model on 18 layers of residual convolutional
neural network (CNN) with squared segmentation of CT images
to predict overall survival (OS) in GC patients (44). It is
important to note that because subjective judgments regarding
tumor boundaries can vary substantially among radiologists,
manual segmentations by multiple radiologists at multiple time
points are required to minimize intra- and inter-rater variability.
In addition, intra- and interclass correlation coefficients and
coefficients of variation are often calculated to evaluate the
robustness and reproducibility of the extracted features (12, 14,
17, 22, 30, 31, 34, 36, 39, 41).

In contrast to manual segmentation, semiautomatic
segmentation usually comprises two steps. First, several labeling
points are marked by radiologists. Thereafter, the entire ROIs are
generated automatically by computing devices, based on the
labeling points. Satisfactory gastric lesion segmentation
performance has been achieved using this approach (25, 30, 38,
39). All the four studies using semiautomatic segmentation
employed the same software package (Frontier, Syngo via,
Siemens healthcare), which applies a dichotomic classification
algorithm to semiautomatically segment lesions from
perinormal areas.

Feature Extraction
After lesion segmentation, quantitative handcrafted engineer
features can be calculated to profile the intrinsic characteristics
of the ROI. Handcrafted engineer features can be categorized as
first-order statistics, shape-based, or texture-based features.
First-order statistics are used to describe the distribution of
pixel/voxel intensities in the ROIs, shape-based features show
the geometric properties of the ROIs, and texture-based features
are gray level matrices that represent textural patterns in an
image region. Commonly used manual engineered features are
presented in Table 2.

As opposed to handcrafted features, DL features are derived
directly from the artificial neural networks, which encode
medical images into a series of feature maps to extract features
that represent high-dimensional information that cannot be
detected by human readers. Using this method, Yuan Gao
et al. achieved a mean average precision value and AUC of
0.7801 and 0.9541 in predicting perigastric lymph node
metastasis, based on faster region-based CNN (24).

Handcrafted features describe the morphology, intensity, and
textural patterns of ROIs, whereas deep learning network can
automatically learn non-handcrafted feature representations
from sample images.
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TABLE 1 | Summary of published hand-crafted radiomics and deep learning studies on gastric cancer imaging.

g
Statistical analysis (feature
selection and modelling)

Segmentation

LDA+kNN Manual
NA Manual
LASSO Manual
ICC Manual

RF,LOOCV, Univariate analysis,
Multivariate analysis

Manual

ICC Manual

AOV, Spearman correlation
analysis

Manual

Spearman correlation test, ICC Manual
Spearman correlation test Manual
RSF ,Cox Manual

RF, NB, KNN, NNET, SVM, LDA,
LASSO

Manual

LASSO-Cox Manual

RF, Pearson correlation Manual
ICC, ACC, KNN, ANN Manual
LASSO-Cox Manual
FR-CNN Manual
LASSO Semiautomatic
LASSO, LVQ Manual
LASSO Manual
SVM Manual
ICC, RF Semiautomatic
ICC, LASSO-Cox Manual
ICC, LASSO Manual
SVM, ANN, RF, DLRN Manual

ICC, LASSO Manual

ICC, SPM, LASSO Manual

ICC, Logistic Manual
ICC, LASSO Manual
ICC, ANN, KNN, RF, SVM Manual

ICC, RF Semiautomatic
ICC, RF Semiautomatic

ICC, ACC, multivariate logistic
regression

Manual

ICC, LDA Manual
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No. Authors Year Study objectives Study design No. of
patients

Imaging
Modality

Radiomics
Deep learnin

1 Ba-Ssalamah et al. (9) 2013 Gastric tumors differentiation prediction Retrospective, Single-center 48 CT Radiomics
2 Sung Hyun Yoon et al. (10) 2016 HER2-positive and survival prediction Retrospective, Single-center 26 CT Radiomics
3 Zelan Ma et al. (11) 2017 Gastric cancer and lymphoma differentiation Retrospective, Single-center 70 CT Radiomics
4 Song Liu et al. (12) 2017 T and N staging prediction Prospective,

Single-center
80 MRI Radiomics

5 Francesco Giganti et al. (13) 2017 Therapy response prediction Retrospective, Single-center 34 CT Radiomics

6 Shunli Liu et al. (14) 2017 Differentiation degree and Lauren classification
prediction

Retrospective, Single-center 107 CT Radiomics

7 Yujuan Zhang et al. (15) 2017 Histological differentiation prediction Retrospective, Single-center 78 MRI Radiomics

8 Song Liu et al. (16) 2017 Nodal status prediction Prospective, Single-center 87 MRI Radiomics
9 Song Liu et al. (17) 2017 Aggressiveness assessment Retrospective, Single-center 64 MRI Radiomics
10 Francesco Giganti et al. (18) 2017 Association investigation between

preoperative texture and OS
Retrospective, Single-center 56 CT Radiomics

11 Zhenhui Li et al. (19) 2018 Neoadjuvant chemotherapy response
prediction

Retrospective, Single-center 47 CT Radiomics

12 Yuming Jiang et al. (20) 2018 Chemotherapy response and survival
prediction

Retrospective, Multi-center 1591 CT Radiomics

13 Remy KlaassenI et al. (21) 2018 Treatment response prediction Retrospective, Single-center 196 CT Radiomics
14 Zhen Hou et al. (22) 2018 Treatment response prediction retrospective, Single-center 43 MRI Radiomics
15 Yuming Jiang et al. (23) 2018 Survival and chemotherapy benefit prediction Retrospective, Single-center 214 PET/CT Radiomics
16 Yuan Gao et al. (24) 2019 Metastatic lymph nodes prediction Retrospective, Single-center 602 CT Deep Learnin
17 Qiong Li et al. (25) 2019 Adverse histopathological status prediction Retrospective, Single-center 554 CT Radiomics
18 Wujie Chen et al. (26) 2019 Metastatic lymph nodes prediction Retrospective, Single-center 146 MRI Radiomics
19 Yumin Jiang et al. (27) 2019 pN stage Prediction Retrospective, Multi-center 1689 CT Radiomics
20 Qiu-Xia Feng et al. (28) 2019 Metastatic lymph nodes prediction Retrospective, Single-center 490 CT Radiomics
21 Yue Wang et al. (29) 2019 Tumor invasion prediction Retrospective, Single-center 244 CT Radiomics
22 Wuchao Li et al. (30) 2019 OS prediction Retrospective, Single-center 181 CT Radiomics
23 Xujie Gao et al. (31) 2020 Metastatic lymph nodes prediction Retrospective, Single-center 463 CT Radiomics
24 Di Dong et al. (32) 2020 Prediction of the number of lymph nodes

metastasis
Retrospective, Multi-center 679 CT Radiomics,

Deep learning
25 Xujie Gao et al. (33) 2020 Tumor-infiltrating Treg cells and outcome

prediction
Retrospective, Single-center 165 CT Radiomics

26 Xiaofeng Chen et al. (34) 2020 Lymphovascular invasion and clinical outcome
prediction

Retrospective, Single-Center 160 CT Radiomics

27 Na Wang et al. (35) 2020 HER2 over-expression status prediction Retrospective, Single-Center 460 CT Radiomics
28 Xujie Gao et al. (36) 2020 Metastatic lymph nodes prediction Retrospective, Single-center 768 CT Radiomics
29 Jing Li et al. (37) 2020 Lymph node metastasis risk prediction Retrospective, Single-Center 204 CT Radiomics,

Deep Learnin
30 Yue Wang et al. (38) 2020 Lymph node metastasis prediction Retrospective, Single-Center 247 CT Radiomics
31 Yue Wang et al. (39) 2020 Intestinal-type gastric adenocarcinomas

distinction
Retrospective, Single-Center 187 CT Radiomics

32 Shunli Liu et al. (40) 2020 Occult peritoneal metastasis prediction Retrospective, Single-center 233 CT Radiomics

33 Aytul Hande Yardimci
et al. (41)

2020 T and N stages and tumor grade prediction Retrospective, Single-center 114 CT Radiomics
/
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TABLE 1 | Continued

udy design No. of
patients

Imaging
Modality

Radiomics/
Deep learning

Statistical analysis (feature
selection and modelling)

Segmentation

tive, Single-center 170 CT Radiomics Pearson correlation analysis ,
SFFS, logistic

Manual

tive, Single-center 106 CT Radiomics SVM, PCA, Cox Manual

tive, Single-center 160 CT Radiomics ICC,SPM,LASSO Manual

tive, Multi-center 669 CT Radiomics,
Deep Learning

ICC, CV, DCNN Manual

tive,Multi-center 1778 CT Radiomics Logistic Manual

tive, Multi-center 518 CT Radiomics,
Deep Learning

Cox Manual

tive, Single-center 539 CT Radiomics LASSO, logistic regression Manual
tive, Multi-center 189 CT Radiomics,

Deep Learning
U-net based DL model, ICC,
LASSO logistic regression

Automated

tive, Single-center 79 PET/CT Radiomics NA Manual

tive, Single-center 63 CT Radiomics LASSO Manual

tive, Single-center 572 CT Deep Learning ICC, LASSO,DCNNs Manual
tive, Single-center 243 CT Radiomics multivariate COX regression

analysis, LASSO
Manual

tive, Multi-center 1225 CT Deep Learning PMetNet Manual
tive, Multi-center 353 CT Radiomics LASSO, multivariate Cox

regression
Manual

inkage and Selection Operator; ICC, Intra-class Correlation Coefficient; RF, Random Forest; LOOCV, Leave One Out Cross
e; ACC, Absolute Correlation Coefficient; ANN, Artificial Neural Networks; FR-CNN, Faster Region-based Convolutional Neural
orrelation analysis; SFFS, Sequential Forward Floating Selection; PCA, Principal Component Analysis; RSF, Random Survival
rvival.
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No. Authors Year Study objectives S

34 Jing Yang et al. (42) 2020 Lymph node metastasis prediction Retrospe

35 Kai-YuSun et al. (43) 2020 Neoadjuvant chemotherapy response and
survival prediction

Retrospe

36 Xiaofeng Chen et al. (34) 2020 Lymphovascular invasion and outcome
prediction

Retrospe

37 Wenjuan Zhang et al. (44) 2020 Early recurrence prediction Retrospe

38 Yuming Jiang et al. (45) 2020 Tumor immune microenvironment and
outcome prediction

Retrospe

39 Liwen Zhang et al. (46) 2020 OS prediction Retrospe

40 Xiao-Xiao Wang et al. (47) 2020 Lauren classification prediction Retrospe
41 Bao Feng et al. (48) 2021 Primary gastric lymphoma and Borrmann type

IV gastric cancer differentiation
Retrospe

42 Yi-Wen Sun et al. (49) 2021 Gastric cancer and gastric lymphoma
differentiation

Retrospe

43 Rui Wang et al. (50) 2021 Gastric neuroendocrine carcinomas and
gastric adenocarcinomas differentiation

Retrospe

44 Rui-Jia Sun et al. (51) 2021 Serosa invasion evaluation Retrospe
45 Xiang Wang et al. (23) 2021 Prognosis prediction Retrospe

46 Yuming Jiang et al. (52) 2021 Occult peritoneal metastasis prediction Retrospe
47 Siwen Wang et al. (53) 2021 Disease-free survival prediction Retrospe

LDA, Linear Discriminant Analysis; knn, k-Nearest Neighbors; NA, Not Available; LASSO, Least Absolute Sh
Validation; AOV, Analysis Of Variance; NB, Naive Bayes; NNET, Neural Networks; SVM, Support Vector Machi
Networks; LVQ, Learning Vector Quantization; DLRN, Deep Learning Radiomic Nomogram; SPM, Spearman
Forest; DCNN, Deep Convolutional Neural Networks; pmetnet, Peritoneal Metastasis Network; OS, Overall Su
t
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TABLE 2 | Commonly used manual engineered features in gastric cancer.

No. Shape-
based 3D
features
(n=17)

Shape-
based 2D
features
(n=10)

Histogram
features
(n=19)

Textural features (n=75)

Gray Level Co-
occurrence Matrix
(GLCM) Features

(n=24)

Gray Level Run
Length Matrix

(GLRLM) Features
(n=16)

Gray Level Size
Zone Matrix

(GLSZM) Features
(n=16)

Neighbouring Gray Tone
Difference Matrix

(NGTDM) Features (n=5)

Gray Level
Dependence Matrix
(GLDM) Features

(n=14)

1 Mesh Volume Mesh
Surface

Energy Autocorrelation Short Run
Emphasis (SRE)

Small Area
Emphasis (SAE)

coarseness Small Dependence
Emphasis (SDE)

2 Voxel Volume Pixel Surface Total Energy Joint Average Long Run
Emphasis (LRE)

Large Area
Emphasis (LAE)

contrast Large Dependence
Emphasis (LDE)

3 Surface Area Perimeter Entropy Cluster Prominence Gray Level Non-
Uniformity (GLN)

Gray Level Non-
Uniformity (GLN)

busyness Gray Level Non-
Uniformity (GLN)

4 Surface Area
to Volume
ratio

Perimeter to
Surface ratio

Minimum Cluster Shade Gray Level Non-
Uniformity
Normalized (GLNN)

Gray Level Non-
Uniformity
Normalized
(GLNN)

complexity Dependence Non-
Uniformity (DN)

5 Sphericity Sphericity 10th percentile Cluster Tendency Run Length Non-
Uniformity (RLN)

Size-Zone Non-
Uniformity (SZN)

strength Dependence Non-
Uniformity
Normalized (DNN)

6 Compactness
1

Spherical
Disproportion

90th
percentile

Contrast Run Length Non-
Uniformity
Normalized (RLNN)

Size-Zone Non-
Uniformity
Normalized (SZNN)

Gray Level Variance
(GLV)

7 Compactness
2

Maximum 2D
diameter

Maximum Correlation Run Percentage
(RP)

Zone Percentage
(ZP)

　 Dependence
Variance (DV)

8 Spherical
Disproportion

Major Axis
Length

Mean Difference Average Gray Level
Variance (GLV)

Gray Level
Variance (GLV)

Dependence Entropy
(DE)

9 Maximum 3D
diameter

Minor Axis
Length

Median Difference Entropy Run Variance (RV) Zone Variance (ZV) 　 Low Gray Level
Emphasis (LGLE)

10 Maximum 2D
diameter
(Slice)

Elongation Interquartile
Range

Difference Variance Run Entropy (RE) Zone Entropy (ZE) High Gray Level
Emphasis (HGLE)

11 Maximum 2D
diameter
(Column)

　 Range Joint Energy Low Gray Level
Run Emphasis
(LGLRE)

Low Gray Level
Zone Emphasis
(LGLZE)

　 Small Dependence
Low Gray Level
Emphasis (SDLGLE)

12 Maximum 2D
diameter
(Row)

Mean Absolute
Deviation
(MAD)

Joint Entropy High Gray Level
Run Emphasis
(HGLRE)

High Gray Level
Zone Emphasis
(HGLZE)

Small Dependence
High Gray Level
Emphasis (SDHGLE)

13 Major Axis
Length

　 Robust Mean
Absolute
Deviation
(rMAD)

Informational
Measure of
Correlation (IMC) 1

Short Run Low
Gray Level
Emphasis
(SRLGLE)

Small Area Low
Gray Level
Emphasis
(SALGLE)

　 Large Dependence
Low Gray Level
Emphasis (LDLGLE)

14 Minor Axis
Length

Root Mean
Squared
(RMS)

Informational
Measure of
Correlation (IMC) 2

Short Run High
Gray Level
Emphasis
(SRHGLE)

Small Area High
Gray Level
Emphasis
(SAHGLE)

Large Dependence
High Gray Level
Emphasis (LDHGLE)

15 Least Axis
Length

　 Standard
Deviation

Inverse Difference
Moment (IDM)

Long Run Low
Gray Level
Emphasis
(LRLGLE)

Large Area Low
Gray Level
Emphasis
(LALGLE)

　 　

16 Elongation Skewness Maximal Correlation
Coefficient (MCC)

Long Run High
Gray Level
Emphasis
(LRHGLE)

Large Area High
Gray Level
Emphasis
(LAHGLE)

17 Flatness 　 Kurtosis Inverse Difference
Moment Normalized
(IDMN)

　 　 　 　

18 Variance Inverse Difference
(ID)

19 　 　 Uniformity Inverse Difference
Normalized (IDN)

　 　 　 　

20 Inverse Variance
21 　 　 　 Maximum

Probability
　 　 　 　

22 Sum Average
23 　 　 　 Sum Entropy 　 　 　 　

24 Sum of Squares
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Furthermore, studies combining handcrafted engineer and
DL features have been carried out to maximize model efficiency.
In Wenjuan Zhang et al.’s study, three handcrafted features, six
DL features, and several clinical factors were combined to
construct a nomogram, which demonstrated AUCs of 0.806-
0.831 in predicting postoperative early recurrence in GC
patients (44).

Feature Selection
Most commonly used feature selection methods are categorized
into the filter, wrapper, or embedded methods. Among these
approaches, filter-based methods (e.g., correlation analysis,
analysis of variance) are the simplest methods and select
features according to a mutual information criterion (12, 14,
42, 55). Wrappers (e.g., recursive feature elimination, sequential
feature selection algorithms, and genetic algorithms) extract
useful features based on classifier performance. Filters and
wrappers are frequently combined to improve feature selection
ability. Using Pearson correlation analysis and the sequential
forward floating selection algorithm, Jing Yang et al. obtained
optimal tumor and nodal hand-crafted radiomics features to
construct a model, which demonstrated good predictive
performance for GC metastasis (42). Embedded methods
perform variable selection during the model training process.
The least absolute shrinkage and selection operator (LASSO) is a
classical and widely applied embedded method (11, 19, 25, 27, 31,
33, 34, 36, 45). Unlike the aforementioned methods, LASSO
regression adds a penalty against complexity, which can enable
the construction of a simple, yet effective model with a small
number of features.

Model Construction
Regarding modeling strategy, logistic regression models (e.g.,
multivariate logistic regression, LASSO regression) have been
widely used in AI-based GC studies. Random forest and support
vector machines (SVM) are also effective alternatives for model
construction (19, 28, 32, 36, 43). In a multicenter study, Di Dong
Frontiers in Oncology | www.frontiersin.org 6
et al. proposed an AI model that integrated DL, hand-crafted
radiomics, and clinical factors. Their model used various
modeling methods, including SVM, artificial neural networks,
random forest, Spearman’s correlation analysis, logistic
regression analysis, and linear regression analysis, and
demonstrated good predictive performance for lymph node
metastasis in locally advanced GC (32).

The above workflow and key methodologies of AI techniques
in GC imaging are summarized in Figure 1.
CLINICAL APPLICATIONS OF HAND-
CRAFTED RADIOMICS AND DEEP
LEARNING IN GASTRIC CANCER

Major clinical applications of AI in GC research are shown
in Figure 2.

Characterization
The TNM classification is the most widely used staging system in
GC, and pretreatment CT/MRI is vital for making optimal
treatment decisions (56, 57). Considering its widespread
application, most hand-crafted radiomics and DL studies have
utilized CT images for preoperative prediction of TNM stages
(24, 27, 28, 31, 32, 36–38, 40–42, 51, 52). Precise pretreatment
TNM staging of lymph node metastasis is plagued by major
obstacles because of discrepancies in traditional imaging features,
such as shape, size, and enhancement patterns. Therefore, many
researchers have been developing AI-based models to accurately
predict lymph node status in GC patients (24, 27, 28, 31, 32, 36–
38, 41, 42). While Yang et al.’s study combined tumor and nodal
hand-crafted radiomics features (42), other studies selected only
the tumor for the ROI (24, 27, 28, 31, 32, 36–38, 41). Of the 10
studies focusing on lymph node status, seven were designed to
discriminate between N+ and N- (28, 31, 36–38, 41, 42), two to
discriminate specific N stages (N0–3) (27, 32), and one with
FIGURE 1 | The workflow of hand-crafted radiomics and deep learning methodological process.
July 2021 | Volume 11 | Article 631686
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ambiguous lymph node status (24). Models based on hand-
crafted radiomics, DL, or the combination of the two have shown
AUC and C-indices of 0.79–0.95 in the training and 0.76–0.89 in
the validation cohorts, respectively (24, 27, 28, 31, 32, 36–38, 41,
42). Three studies tested model efficacies for T stage prediction,
where two aimed to discriminate T1/2 from T3/4 (29, 30, 41),
and one to classify all T1–4 stages (25), with all yielding good
discriminatory performance with AUCs ranging from 0.82 to
0.90. Liu et al. investigated venous CT images of primary tumors
in advanced GC and built a hand-crafted radiomics model to
predict occult peritoneal metastasis (40). Because of the
popularity of CT, MRI has been used less frequently in GC
patients, with only four studies focused on MRI-based prediction
of TNM staging (12, 16, 17, 26). Using hand-crafted radiomics
analysis, the authors found that diffusion-weighted imaging and
apparent diffusion coefficient maps demonstrate potential in
preoperative T and N staging for GC.

Using histopathological results as a reference, six studies
explored the correlation between AI-based models and
prognosis-related factors of tumor differentiation grade (9, 14,
15, 25), Lauren classification (14, 39, 47), and lymphovascular
and neural invasion (14, 17, 25, 34). Two studies were based
on MRI images (15, 17) and four were on CT images (14, 25,
34, 39), and all models exhibited good predictive ability for GC
before operation. In addition, researchers carrying out
immunohistochemistry studies have developed hand-crafted
radiomics models to predict human epidermal receptor 2
status, which could serve as a noninvasive prediction tool for
Frontiers in Oncology | www.frontiersin.org 7
GC for selecting candidates suitable for Herceptin (10, 35).
Furthermore, Gao’s hand-crafted radiomics model showed
good performance in estimating tumor-infiltrating regulatory T
(TITreg) cells, with AUCs of 0.85–0.88 in various cohorts (33).

Differential Diagnosis
Five studies were conducted to differentiate between different
gastric tumors (9, 11, 48–50). By applying texture analysis, Ba-
Ssalamah et al. classified adenocarcinomas, lymphomas, and
gastrointestinal stromal tumors from artery and portal venous
CT images, respectively, and misclassification rates ranged from
0%–10% (9). Ma, Feng and Sun et al. focused specifically on
differentiating Borrmann type IV GC from primary gastric
lymphoma. By combining hand-crafted radiomics signatures,
subjective CT findings, age, and gender, Ma’s model achieved a
diagnostic accuracy of 87.1% (11). All these models demonstrated
potential for accurate gastric tumor discrimination.

Treatment Response and Prognosis
Neoadjuvant chemotherapy (NAC) can decrease tumor size and
reduce mortality (58) and is recommended for potentially
resectable advanced GCs. However, response rates of NAC
vary among studies (59). In patients who do not benefit from
NAC, the delay in surgery can lead to tumor progression and
poor prognosis. Therefore, noninvasive selection of NAC
responders before treatment is crucial for treating patients with
advanced GCs. Three studies have utilized CT-based hand-
crafted radiomics analysis build models to predict non-
FIGURE 2 | Clinical application of hand-crafted radiomics and deep learning in gastric cancer.
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responders, which have yielded AUCs of 0.65–0.82 (13, 19, 43).
Notably, Sun et al. demonstrated that their hand-crafted
radiomics model performed better for NAC response
prediction compared with a clinical model (43).

Chemotherapy and radiation therapy are two mainstays for
advanced GCs. Three studies have been carried out to predict
chemotherapy response (20, 21, 23). Jiang et al.’s model showed
that higher scores of their CT-based hand-crafted radiomics
signature indicated a favorable response to chemotherapy for
stage II-III patients (20). Similarly, Jiang et al. built a Rad-score
system based on hand-crafted radiomics features from PET
images, where higher scores indicated chemotherapy
responders (23). Klaassen et al. focused on individual liver
metastases in esophagogastric cancers and developed a CT-
based hand-crafted radiomics model to predict responsive
lesions; the resulting AUCs ranged between 0.65–0.87 in
various cohorts (21). Only one study tested model efficacy for
radiotherapy responders in GC patients with abdominal cavity
metastasis. Based on pretreatment CT images, Hou et al.
constructed two prediction models with high accuracies
ranging from 0.71 to 0.82 (22).

Prognosis is the research highlight of AI-based studies and
numerous researchers have explored the potential of hand-
crafted radiomics and DL features for prognosis prediction
(10, 18, 20, 23, 25, 30, 33, 34, 43–46, 53, 60). Nine
studies directly correlated hand-crafted radiomics and DL
features with prognosis (10, 18, 20, 23, 30, 44, 46, 53, 60),
and five constructed AI-based models to predict certain
clinicopathological features, which were shown to be related to
prognosis (25, 33, 34, 43, 45). Only one study extracted hand-
crafted radiomics features from PET images (23), whereas all
others used CT images (10, 13, 18–22, 25, 30, 33, 34, 43–46, 53,
60). Earlier studies reported OS-related hand-crafted radiomics
features (10, 18), with later studies building hand-crafted
radiomics and DL models that integrated hand-crafted
radiomics features with and without clinicopathological
features; these achieved good performance in OS, disease-free
survival (DFS), and early recurrence prediction (20, 23, 30,
33, 44). Furthermore, hand-crafted radiomics models to
predict clinicopathological features, such as TITreg cells,
lymphovascular invasion, adverse histopathological status,
tumor immune microenvironment, and NAC response have
also been developed, which have yielded AUCs of 0.75–0.89
for predicting OS, DFS, and progression-free survival (25, 33, 34,
43, 45).
FUTURE CHALLENGES AND
OPPORTUNITIES

To date, numerous studies have demonstrated the prediction
potential of hand-crafted radiomics and DL in GC
characterization, differential diagnosis, treatment response, and
prognosis. Despite the frequent application of MRI in clinical
practice, it is not routinely recommended for GC evaluation.
Most studies have focused on CT images and few have used MRI
Frontiers in Oncology | www.frontiersin.org 8
images. Considering its excellent resolution of soft tissue, MRI
images may reveal more intrinsic tumor features and improve
prediction. Therefore, future investigations should aim to
include more patients undergoing MRI examinations for GC
evaluation. Lymph node metastasis status is a key component of
pretreatment and postoperative evaluation, and many studies
have developed methods for pretreatment AI-based prediction,
which include prediction of the existence of lymph node
metastasis and N stage. However, there have not been any
studies that have focused on individual lymph nodes, which is
fundamental for precise pretreatment N stage evaluation and
treatment plan modification during follow-up. We encourage
future studies to focus on individual lymph node metastasis
status prediction based on rigid pathological correlations.
Moreover, few studies have analyzed the relationship between
imaging features and treatment response. There is still a
considerable knowledge gap in this field; further research is
needed to improve patient selection and develop better
treatment plans.

In addition, future efforts should continue to be actively
pursued regarding the methodologies of AI. More intensive
and standardized quality controls throughout the entire
workflow of AI are warranted to meet this requirement. By
analyzing a total of 77 hand-crafted radiomics-based oncology
researches, Park et al. reported insufficient overall scientific
quality of current hand-crafted radiomics studies (61). Similar
dilemmas arose at every stage of GC from data acquisition,
segmentation, feature extraction, feature selection, model
construction to model performance reporting. In this context,
compliance with widely-accepted quality systems [e.g. Hand-
crafted radiomics Quality Score (RQS) (62), Transparent
Reporting of a multivariable prediction model for Individual
Prognosis Or Diagnosis (TRIPOD) (63), etc.] may offer appeal.
In addition, prospective multi-institutional collaborations to
establish well-curated databases and networks are encouraged
in future studies. Furthermore, considering the inherent capacity
of AI in analyzing parallel streams of information, including
clinical and genomics characteristics (64–66), multi-omics
studies which integrate these data may pave the way for better
personalized and precision medicine. Collectively, we hope the
fruit of these efforts could help to shift the landscape of AI in GC
from exploratory research settings to routine clinical settings.
CONCLUSION

GC has a high incidence and mortality rate, which have been the
clinical research emphasis over the past decades. Hand-crafted
radiomics and DL are emerging quantitative subsets of AI that
have been widely utilized in medicine. The exploration of GC
using hand-crafted radiomics and DL has led to promising results
for every step of the clinical pathway. However, most studies have
been retrospective, conducted in a single center, and analyzed
using a single image modality, which have limited the utility of the
constructed AI models. Therefore, further prospective and
multicenter studies are needed to validate the models. Moreover,
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other imaging modalities, such as endoscopic ultrasound may be
integrated into the models to further improve model efficacy.
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