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a b s t r a c t 

The COVID-19 pandemic is posing significant challenges to public transport operators by dras- 

tically reducing demand while also requiring them to implement measures that minimize risks 

to the health of the passengers. While the collective scientific understanding of the SARS-CoV-2 

virus and COVID-19 pandemic are rapidly increasing, currently there is a lack of understanding of 

how the COVID-19 relates to public transport operations. This article presents a comprehensive 

survey of the current research on COVID-19 transmission mechanisms and how they relate to 

public transport. We critically assess literature through a lens of disaster management and survey 

the main transmission mechanisms, forecasting, risks, mitigation, and prevention mechanisms. 

Social distancing and control on passenger density are found to be the most effective mecha- 

nisms. Computing and digital technology can support risk control. Based on our survey, we draw 

guidelines for public transport operators and highlight open research challenges to establish a 

research roadmap for the path forward. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Ever increasing urbanization has made public transportation a vital function of urban society. The COVID-19 pandemic is posing

significant challenges for public transportation operations resulting in decline of demand and revenue ( Tirachini and Cats, 2020 ) while

being seen as a potentially contributing factor to the growth of major outbreaks ( Dzisi and Dei, 2020 ). As scientific understanding of

the pandemic is accumulating and evolving, it is important to understand to which extent the pandemic affects transportation and

what measures are the most effective for mitigating the possible risks of transmission in public transportation. For example, while

indoor environments generally are seen as posing higher transmission risks than outdoor environments ( Nishiura et al., 2020 ), factors

such as social distancing, ventilation, and air quality affect the overall transmission risk ( Bhagat et al., 2020 ). While there are several

studies on the transmission mechanisms of the SARS-CoV-2 virus which cause the COVID-19 disease ( Harrison et al., 2020 ), there is

a lack of understanding of how these findings relate to public transportation systems and what can be used to manage risks during

public transportation. Similarly, while there have been efforts to study and survey different risk mitigation measures ( de Bruin et al.,

2020 ) including mask use ( Feng et al., 2020 ), social distancing ( Lewnard and Lo, 2020 ), and digital technologies ( Gasser et al., 2020;

Ting et al., 2020 ), their suitability for public transport has not been comprehensively assessed. 

This article contributes by presenting a comprehensive survey of the current research on COVID-19 transmission mechanisms and 

how they relate to public transport. We critically assess literature through a lens of disaster management, synthesize and reflect on

scientific literature drawn from transportation research, epidemiology, medical sciences, environmental sciences and computing. We 

cover the transmission mechanisms, risks, mitigation, and prevention mechanisms to establish the potential links and effects between 
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Fig. 1. Scope of the article presented as relationships among the different sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COVID-19 transmission and public transportation systems. We separate different transport modalities as much as possible and reflect 

on how the current scientific understanding relates to transmission risks and their management inside them. We also consider how

different mediating factors – such as ventilation, lay-out and seat arrangement, occupancy rate, duration of the trip, passenger density, 

cleaning and hygiene – affect the transmission risk of the virus. Through our survey we derive novel insights that can be used to help

manage risks inside different public transportation vehicles and identify open issues and challenges for the research community. 

2. Scope and methodology 

Public transportation providers are facing significant challenges due to the COVID-19 pandemic as plummeting passenger numbers 

have reduced revenue streams while in parallel the providers have needed to take additional measures to ensure the safety of pas-

sengers and vehicle operators. The severity and widespread global implications of the pandemic have also fueled significant research 

activity, with Google Scholar listing over 211 000 results for the keyword COVID-19 in 2020 alone, and over 60 500 for the first eight

months of the year 2021. Despite this significant research activity, currently the scientific landscape relating to COVID-19 in public

transportation has been understudied. Indeed, existing surveys on COVID-19 and transportation focus on the effect of the COVID-19 

on public transport providers without considering the effects of the pandemic on the transit event itself. Our survey addresses this

gap by providing a thorough review of the research field and mapping the road forward. 

2.1. Survey scope 

COVID-19 pandemic is a prominent example of a biological natural disaster and managing the response to the pandemic has many

similarities to management of other disaster situations ( Ricciardi et al., 2011 ). This view is also supported by the all-hazards theoretical

framework for disaster management, which currently is the principal framework for disaster preparedness ( Lettieri et al., 2009 ). This

theory stipulates effective disaster management to be achievable through a consolidated strategy that covers different types of hazards. 

While there are some limitations to this theory, e.g., it offers limited adaptability for tailoring response to characteristics of a disaster

situation ( Bodas et al., 2020 ), it nevertheless provides a widely-used and unified theoretical framework that we use as a foundation for

setting the scope of this survey. In a survey on disaster management literature, Lettieri et al. (2009) highlight common features of the

all-hazards approach to be continuous monitoring for risks and a multi-phase response model. The canonical phases of the response

model, which also are in line with the disaster management recommendations of the Federal Emergency Management Agency (FEMA),

are mitigation, preparedness, response, and recovery. In this survey, we focus on the role of epidemiology, technologies and other

potential mechanisms to support the mitigation, preparedness, and response phases of disaster management in public transportation 

systems. Specifically, we target solutions that pertain to the ongoing COVID-19 pandemic while also addressing their relevance for

possible future pandemics. 

The overall scope of the survey is illustrated in Fig. 1 and focuses on understanding the effects of COVID-19 on transportation

systems. We first provide the necessary scientific understanding for assessing, evaluating, and understanding the effects and risks 

of COVID-19 by detailing the transmission mechanisms, modeling and forecasting of disease spread, and different risk factors in

public transport systems (left part of the figure). We then contextualize these from the point-of-view of disaster management, focus-

ing on mitigation, prevention and response phases (middle part of the figure) as these correspond to the main phases that public
2 
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Table 1 

Existing surveys related to COVID-19. 

Scope Survey 

Economics Effects for economics and measures for mitigating them ( Padhan and Prabheesh, 2021 ) 

Effects, social distancing, and government response ( Brodeur et al., 2021 ) 

Technology Enabling and emerging technologies for social distancing ( Nguyen et al., 2020a; 2020b ) 

AI in image processing for COVID-19 ( Shi et al., 2020 ) 

Diagnosis Different diagnosis methods and analytical efficiency ( Giri et al., 2021 ) 

Role of Images and techniques for COVID-19 diagnosis ( Dong et al., 2020 ) 

Image processing using AI for COVID-19 diagnosis ( Shi et al., 2020 ) 

Interventions Potential measurements (surface disinfectants, hand sanitization, and personal 

protective equipment) for fighting against COVID-19 ( Pradhan et al., 2020 ) 

Diagnosis, treatments, and prevention ( Hafeez et al., 2020 ) 

Transport Rules for use of public transport, economic and social effects, and policy direction for intervention ( Tirachini and Cats, 2020 ) 

Factors affecting COVID-19 transport measures and their effects ( Shortall et al., 2022 ) 

Transport planning and adaptation ( Gkiotsalitis and Cats, 2021 ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

transportation operators and individuals through their travel mode choice can have an effect. Finally, we synthesize the discussion 

by drawing recommendations for public transport on how to minimize risks and adverse effects of COVID-19 – and other potential

respiratory illnesses (right part of the figure). Specifically, Sections 1 and 2 provide an introduction and present the scope of the

article. Section 3 provides an overview of the virus transmission mechanism, offering the necessary background for understanding 

the SARS-CoV-2 virus and countermeasures against it. Section 4 details modeling solutions including epidemiological, forecasting, 

and mechanistic models which can be used to estimate transmission dynamics in the short and long term. These models are essential

for assessing the risks and impacts of COVID-19 on a city-scale and help guide policy makers in making strategies to cope with the

current epidemic situation. For example, if the number of infected people can be predicted beforehand, guidance could be given in

advance before traveling. Section 5 details the risk factors that mediate transmission risk and discusses how they affect public trans-

port. Section 6 focuses on the mitigation phase, covering traditional public health strategies such as screening and detection and how

they can be augmented through technological means, such as using thermal screening and contact tracing. The section also provides

recommendations for risk mitigation measures in public transports. Section 7 details prevention mechanisms including social distanc- 

ing along with the monitoring technologies suitable for public transport systems, and the non-pharmaceutical interventions (NPIs). 

Section 8 discusses key insights and presents future outlook based on the survey, highlighting possible solutions while addressing 

potential research directions. Finally, Section 9 summarizes and concludes the survey. 

2.2. Related surveys 

Table 1 summarizes existing surveys related to different aspects of COVID-19 and disaster management in transportation systems. 

In terms of the former, there are surveys that provide a general review of the economic effects caused by COVID-19, government

response, and measures for mitigating the adverse economic effects ( Brodeur et al., 2021; Padhan and Prabheesh, 2021 ). There are also

surveys on different technologies (such as wireless technology, machine learning, and computer vision) for supporting specific parts 

of disaster management. For example, there are surveys related to detection and mitigation that cover technological means for social

distancing ( Nguyen et al., 2020a; 2020b ) and artificial intelligence (AI) in image data processing for COVID-19 diagnosis ( Shi et al.,

2020 ). These have focused on technologies without relating them with public transportation systems. Other surveys have provided 

a general overview on the intervention measurements for fighting against the COVID-19 ( Hafeez et al., 2020; Pradhan et al., 2020 ).

These surveys partially overlap in scope with our work from a general point of view but are not specifically linked to the public

transport system. As highlighted, there currently is a lack of comprehensive research related to the COVID-19 pandemic and public

transportation. Indeed, only isolated studies with a narrow focus have been carried. For example, Schwartz (2020) investigates the 

possible links between transit ridership and the number of infections, measures for risk mitigation, and service adjustments based

on changes in demand. The international union of railways ( UIC, 2020 ) has published a report that discusses the contamination on

trains, but that does not provide a holistic understanding of the situation or potential measures that can be used to alleviate issues or a

discussion of how to generalize to other means of transportation. Shortall et al. (2022) identify favorable contextual factors relevant to

transport related measures from socio-economic, cultural, political, and individual perspectives, and discuss how those factors affect 

the measures. Gkiotsalitis and Cats (2021) cover planning requirements from the point-of-view of public transport operators and 

synthesize findings from research to provide an overview on how to best adapt operations against disruptions caused by COVID-19.

Our survey focuses specifically on individual transit events instead of the operations of the transport provider. Finally, Tirachini and

Cats (2020) focus on transport governance and provide an overview related to COVID-19 and transport, specifically rules (such 

as physical distancing, wearing face masks, hygiene, sanitization, and ventilation) for use of public transportation, economic and 

social effects caused by COVID-19, policies for pandemic response in public transportation. Unlike ours, the survey of Tirachini and

Cats (2020) does not discuss COVID-19 related to individual transportation events or different means of transport, focusing instead

on the governance of transport systems. Indeed, prior to our work, no article has systematically surveyed pandemic response of

individual transit events. Our article addresses these gaps in these existing surveys, offering a complementary view, and providing
3 
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Table 2 

Keywords used for collecting the papers. 

Section Keyword 

3 transmission, mechanism, air pollution, airborne, pollutant 

4 epidemiological, prediction, forecast, spreading 

5 transportation, transport, bus, train, airplane, transmit, cluster, humidity, temperature, ventilation, filtration, mobility 

6 crowd, contact tracing, screening, detection, diagnosis 

7 social distancing, prevention, NPI 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a comprehensive survey on the transmission mechanism, epidemiological and forecasting models, risk factors affecting transmission 

risks, mitigation and prevention measurements for COVID-19 on public transit. 

2.3. Selection of articles 

The articles are initially selected by searching recent research articles using a small number of keyword seeds on Google Scholar,

PubMed, Scopus, medRxiv, Web of knowledge, IEEE Xplore, and ACM Digital Library. The queries combine a keyword from the

set { COVID-19 , SARS-CoV-2 , coronavirus } , and a topic-specific keyword, summarized in Table 2 . The initial article set is

expanded by taking into consideration articles that cite or are being cited in the article set. We complement the set of articles by

adding prominent research featured in media to cover a comprehensive set of important publications in this area. This process is

continued until no new articles are found. We then discuss the papers among the authors and analyze the relevance and importance

of the selected articles by reading the abstract and the main findings of the papers. Papers that are deemed less relevant for the scope

of the survey are filtered out during this process. Some papers are relevant, but express quite similar opinions related to the topic. In

such a situation, the papers are discussed among the authors and the most representatives are selected for inclusion. This is done to

minimize overlap and ensure comprehensive coverage of all relevant topics. The final selected 168 research papers form the core of

this survey paper, and we have performed minor updates during the survey writing process to cover papers published since the start

of our process. 

3. COVID-19 transmission 

Preventing the spread of COVID-19 requires a comprehensive knowledge about the transmission mechanisms of the virus. We 

begin the survey by presenting an overview of the current scientific understanding of the COVID-19 transmission mechanisms. We

cover the currently known transmission mechanisms and environmental contributors such as air pollutants to the transmission of the 

SARS-CoV-2 virus. 

3.1. Transmission mechanisms 

The pandemic has lasted for over two years and there is a better understanding of the SARS-CoV-2 virus transmission compared

to the initial breakout. The current research understanding states that the main transmission mechanism is exposure to respiratory 

droplets containing the virus ( Centers for Disease Control and Prevention, 2021 ). The exposure occurs mainly in three ways: through

inhalation of air carrying the virus, virus deposition, or the hand touching the mucous membranes while containing virus parti-

cles ( Centers for Disease Control and Prevention, 2021 ). Respiratory droplets are generated by exhalation and the resulting particles

then remain suspended in the air. The time they remain suspended depends on their size, with two main groups being distinguished

in the literature ( Alsved et al., 2020 ). Larger droplets rapidly fall to the ground in close proximity to the source whereas smaller

droplets can remain suspended in the air for several minutes – or even hours in some cases – and move away from the source with

air currents. The smaller particles become diluted over time and distance as the volume of air they encounter grows. Traditionally, a

threshold of 5 𝜇m has been used to differentiate between large and small particles. Specifically, droplets are particles that exceed 5 𝜇m

in diameter, whereas droplet nuclei are aerosols that form when smaller respiratory droplets, of a diameter at most of 5 𝜇m, evaporate

in the air. Inhalation of smaller particles, i.e., droplet nuclei, is also referred to as airborne transmission in the literature ( Siegel et al.,

2007; World Health Organization, 2014 ). Asymptomatic but infectious people can transmit the virus when they are close to another

person (within 6 feet contact distance) and cough or sneeze – or even as they exhale during respiration or speaking. Public transport

generally takes place inside crowded enclosed spaces and hence there can be an elevated risk of the SARS-CoV-2 virus transmission

during the transit. As will be discussed later in the article, wearing masks and keeping a distance greater than 6 feet from other

passengers have been suggested as ways to mitigate the risks. 

The scientific understanding of the SARS-CoV-2 virus transmission is continually evolving, e.g., initially airborne transmission 

was considered unlikely ( Lewis, 2020 ), but this has later been disputed. The most recent guidance by the WHO states that a virus

can spread through both large and small respiratory droplets, and transmission can also occur during a prolonged stay in an enclosed

space where the air contains viral particles ( World Health Organization, 2021a ). Indeed, laboratory studies have shown the virus to

be able to remain active while suspended in the air for over an hour ( Kampf et al., 2020; Van Doremalen et al., 2020 ). Therefore, a

healthy passenger located further than 6 feet from an infected person can become infected due to the exposure to the virus suspended

in the air over long distance. Furthermore, even when an infected passenger gets off the vehicle prior to a healthy passenger boarding
4 
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the vehicle, it is possible for the healthy passenger to become infected by inhaling virus-containing respiratory droplets suspended in

the air left by the infected passenger. However, airborne transmission over longer (i.e., non-contact) distance or time can only occur

when the conditions are suitable ( Morawska and Cao, 2020; World Health Organization, 2021b ). Examples of conditions where such

transmission has been reported include diverse enclosed spaces that have inadequate ventilation or air exchange ( Li et al., 2007;

2020 ). Hence, good ventilation is essential for reducing the transmission risk of passengers. 

Besides airborne transmission, the SARS-CoV-2 virus can also be transmitted through so-called fomites , which refer to objects or

surfaces that become contaminated with the virus ( Tellier et al., 2019 ). Fomites form when droplets carrying the virus are released

by an infected individual ( Asadi et al., 2019; Contini and Costabile, 2020 ) and fall onto a surface that becomes contaminated with

the virus as a result. For example, seats and handholds can become contaminated in a vehicle. Passengers can then become infected

by first touching a contaminated surface and then touching a mucous membrane. In laboratory studies the virus has been able to

survive on surfaces even for days when the conditions are optimal ( Van Doremalen et al., 2020 ). Viral particles can remain alive

on the surfaces for hours increasing the threat for healthy passengers that use public transport systems. However, the overall role

of surface-based fomites is contested as the average count of particles that are released is typically small compared to those used

in laboratory studies. Indeed, recent scientific understanding suggests that fomites are a possible but not a prominent mechanism 

for disease transmission ( Lewis, 2021 ). Regular cleaning the surface and personal hygiene are effective measurements for reducing

the risk. However, due to the characteristics of the public transport system, such as enclosed space, hard to keep the social distance

specially during the rush hour, and high mobility, the public transport is subject to significant challenges. 

3.2. Transmission and air pollutants 

Air pollutants and aerosols are widely considered as a mediating factor for the transport of the SARS-CoV-2 virus and they also are

a factor that can affect the severity of the disease ( Domingo et al., 2020; Hadei et al., 2020 ). The association between transmission

risk and air pollution stems from studies of other respiratory diseases. For instance, there are studies that have shown a positive

association between death sourced from SARS cases and air pollution ( Cui et al., 2003 ) and similar studies have been carried out

to investigate links between air pollutants and COVID-19 incidence and fatality rates ( Contini and Costabile, 2020; Copat et al.,

2020; Fattorini and Regoli, 2020; Wu et al., 2020 ). These studies have shown that both meteorological variables (i.e., temperature

(T), relative humidity (RH), and pressure (P)) and air pollutants (particulate matter (PM) or diverse gaseous pollutants) can affect

the risks and severity of infections. While there have been several studies exploring the impact of air pollutants and meteorological

factors on SARS-CoV-2 transmission, there currently is no consensus on the pollutants that are the most significant factors to affect

infection and mortality rates ( Contini and Costabile, 2020 ). Table 3 presents a summary from the related studies. In the table, positive

correlation refers to an increase of the number of COVID-19 infected persons, whereas negative correlation indicates a decrease of such

a number. The term case refers to the number of infected people or the number of fatalities. 

The studies summarized in Table 3 have not reached any unanimous conclusions, indicating that the relationships between mete- 

orological factors, air pollutants and COVID-19 is intricate. The relationships of different variables are also potentially intertwined. 

However, some general trends have emerged from these studies. First, many studies correlate a high concentration level of particulate

matter (PM 2 . 5 or PM 10 ), CO 2 , NO 2 , and relative humidity to an increase of the number of COVID-19 confirmed cases. In contrast, tem-

perature (T), pressure (P), sulfur dioxide (SO 2 ) and ozone (O 3 ) have shown the opposite effect. The studies also suggest that industrial

and urban areas may have higher incidence and mortality rates than rural and agricultural areas, even after adjusting for differences

in population density. Similarly, areas with a PM concentration exceeding 50 𝜇g/m 

3 tend to have higher incidence rates. Both NO 2 
and PM 10 concentrations exceeding the mean concentration level have been associated with a higher likelihood of a positive test case

and long term exposure to either pollutant is used as a measure to estimate the spreading of the COVID-19 ( Saez et al., 2020 ). Note

that these pollutants result mostly from traffic, and thus they also serve as a proxy for overall mobility. As such, the association with

the COVID-19 may simply be a result of increased mobility and more studies are needed to fully uncover the role of air pollutants in

spreading the COVID-19. 

Reversely, public transport systems not only generate air pollutants but also continuously expose the passengers to them. The total

exposure, however, also depends on many factors such as the seating location, route of the vehicle, and age of the transportation

fleet. They all affect the extent to which a person is exposed to pollution ( Motlagh et al., 2021b ). The levels of air pollutants,

temperature and humidity increase as a result of higher number of commuters in public transportation systems. As a result, higher

pollution concentrations also serve as a proxy for crowding and human mobility, which in turn partially explains the higher risk of

the COVID-19 transmission. 

4. Modeling and forecasting 

The transmission mechanisms of COVID-19, covered in Section 3 , govern how COVID-19 spreads from an infected individual 

to another. For the purposes of transportation planning, however, it is also necessary to understand how transmissions between

individuals propagate to the entire population. Indeed, lockdowns, international travel bans, and other restrictions on transit were 

among the earliest COVID-19 related countermeasures for stemming the tide of infections. This section covers the main approaches 

for modeling and forecasting infections within an entire population, and discusses how these findings relate to public transportation

operations. 
5 



X. Liu, P. Kortoçi, N.H. Motlagh et al. Multimodal Transportation 1 (2022) 100030 

Table 3 

Example studies based on air pollution and meteorology data analysis. 

Case Study Period Analysis Method Positive Correlation Negative 

Correlation 

Note 

120 cities, China 

Zhu et al. (2020) 

2020/01/23 & 

2020/02/29 

Generalized additive 

model and Spearman 

correlation 

CO, NO 2 , PM 2 . 5 , PM 10 , 

O 3 , P, T, RH, and Wind 

Speed 

SO 2 Reduction of air 

pollutants (except SO 2 ) 

can be useful approach 

in controlling COVID-19 

spreading 

154 cities, China 

Ran et al. (2020) 

2019/12/10 & 

2020/02/29 

Spearman’s rank 

correlation and Spline 

regression 

— O 3 O 3 concentration should 

be above a certain 

threshold 

29 provinces, China 

Lin et al. (2020) 

2020/01/21 & 

2020/04/03 

Regression analysis CO T and P Efficient ventilation 

system reduces 

COVID-19 

Kuala Lumpur, Malaysia 

Suhaimi et al. (2020) 

2018/03/11 & 

2020/04/21 

Spearman’s correlation 

test 

PM 2 . 5 , PM 10 , CO, NO 2 , 

SO 2 , and RH 

T Data before COVID-19 

time used to highlight 

long-term exposure to air 

pollution 

Huanggang, Wuhan, & 

Xiaogan, China 

Jiang et al. (2020) 

2020/01/25 & 

2020/02/29 

Multivariate Poisson 

regression models 

PM 2 . 5 and T RH and PM 10 Study period is short. 

Results may change by 

using longer period and 

more detailed data. 

Milan and Florence Italy 

Lolli et al. (2020) 

2019/03/08 & 

2020/05/30 

Kendall rank correlation 

tests and Non-linear 

Spearman 

PM 2 . 5 T, Absolute 

Humidity, Dew 

Point, and Water 

Vapor 

Virus transmission 

prefers dry and cool 

environments as well as 

polluted air 

219 cities China 

Zhang et al. (2020) 

2020/01/24 & 

2020/02/29 

Kendall and Spearman 

tests and multivariate 

regression analysis 

AQI and RH T Higher wind speed may 

decrease infection risk. 

Catalonia Spain 

Saez et al. (2020) 

2020/02/25 & 

2020/05/16 

Generalized linear mixed 

models (GLMM) 

NO 2 and to PM 10 — Long-term exposure to 

NO 2 and PM 10 are 

predictors of the spread 

of COVID-19 

The names of the abbreviated variables are as follows. AQI: Air Quality Index, P: Pressure, T: Temperature, RH: Relative Humidity, CO: Carbon 

monoxide, NO 2 : Nitrogen dioxide, O 3 : Ozone, SO 2 : Sulfur dioxide, PM 2 . 5 and PM 10 : Particulate Matters with diameters of 2.5 𝜇𝑚 and 10 𝜇𝑚 , 

respectively. 
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4.1. Epidemiologic models 

Epidemiologic models are important forecasting and planning tools that facilitate the work of policymakers, clinicians, and public 

health practitioners, and help keep people safe during epidemic outbreaks ( Holmdahl and Buckee, 2020 ). Epidemiologic models are

always abstractions that attempt to capture the key mechanisms governing the spread of infection and as such are limited by the

intrinsic uncertainty of how to accurately parameterize them. This is particularly the case for new and emerging threats where the

characteristics of the infection are not known or well understood in advance. In practice this means that epidemiologic models are

always tailored to the situation in hand, with particular attention put on the amount of available data, the situations captured by the

data, and the assumptions of the model. The factors that most affect a model are: 

(i) Spatial scale. The geographical context – local, regional, national, or worldwide – of the data sets limits the model accuracy as

well as its validity when applied to broader areas than that of the collected data. 

ii) Population density. The intercontact-rate of people is a function of the population density, and thus this parameter needs to be

normalized to provide a clear interpretation of the data. 

ii) Data. While hospitalization and deaths are well-reported, data from people with light symptoms or those that are asymptomatic

is less reliable. Such cases are difficult to capture accurately and thus the data is unlikely to provide a clear indication of the

spread of the infection. 

v) Assumptions. Oversimplified models can produce outputs that are misleading. For instance, it might sound intuitive to assume 

that people gain immunity after recovering from the infection but this may not be the case. Similarly, assuming asymptomatic

people as healthy or non-infected/non-infectious could considerably underestimate the infection rates in the future. 

Compartmental models are the most common type of epidemiological models. They estimate the spread of a disease by assigning

people into different compartments over time, and estimating the spread of the disease within the population through interactions and

progressions between the different compartments. A widely-used compartmental model for many infectious diseases, including the 

COVID-19, is the SEIR model, where S, E, I, and R represent susceptible, exposed, infectious , and recovered people, respectively ( He et al.,

2020 ). The classic version of this model accounts for four different ways that people can be affected by an epidemic. Specifically, the

total number of people sums up to those S, E, I, and R by the disease. Future predictions of the spread of a disease rely on accurately

defining key parameters governing the transmission probability, and thus also the reproduction potential of the disease. 
6 
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A commonly used parameter is the basic reproduction number 𝑅 0 which evaluates the transmissibility rate of an agent causing the

disease in a population that is susceptible to it ( Delamater et al., 2019; Diekmann and Heesterbeek, 2000 ). 𝑅 0 is used extensively

by public health care authorities to evaluate the developing transmission of an epidemic. The severity of the transmission of an

agent can be deducted by 𝑅 0 as follows. If 𝑅 0 > 1 , the infection is expected to spread further in the population, and thus a potential

outbreak continues. A value of 𝑅 0 = 1 means that the number of infections remains stable, whereas 𝑅 0 < 1 signals that the spread of

the disease is slowing down. In practice, the entire population rarely is susceptible as people may be immune or have already had

a prior infection. The effective reproduction number 𝑅 represents the effect of infectious cases further spreading the disease and thus

causing secondary infections. The value of 𝑅 is time and situation specific, and thus is not dependent on complete susceptibility of the

population to the disease. As the effective reproduction number 𝑅 does not rely on assumptions about the population characteristics,

it is a better measure for characterizing the pathogen transmission probability during an outbreak. 

4.2. Forecasting models 

Epidemiological models are crucial building blocks upon which we predict the future course of an epidemic and forecast its

progress in time. Forecasting models operate by learning data patterns and extrapolating these patterns to new data points that are

in the near future using statistical or machine learning techniques. Forecasting models tend to suffer from a substantial decrease

in accuracy as the forecasting time-window size increases, especially if the initial data set is small. In addition, data pertaining to

epidemics, including the COVID-19, is bound to vary unpredictably. This intrinsic characteristic is due to the fact that the infection

rate of an epidemic depends not only on the disease itself, but also on factors such as preventive measures that local, regional or

global governments and policymakers implement. 

Forecasting models can be classified into two main groups, mathematical models that are based on stochastic theory and data

science models that are based on machine learning techniques ( Shinde et al., 2020 ). Similarly, the approaches can be categorized

based on the data sets that are used to run the forecasting models either as big data-based (e.g., data provided by the World Health

Organization or national databases) or based on data collected via various social media communication platforms. The advantage of

using big data, i.e., population statistic data, is that there is better coverage and thus the forecasting model is not prone to sparsity.

In contrast, studies carried out in smaller data sets such as clinical data, are better suited to cases where a large-scale data collection

is not feasible and the data from only a short period of time is needed. Such is the case of pharmaceutical industries and research

labs when working with a new drug or vaccine ( Shinde et al., 2020 ). 

Bertozzi et al. (2020) show how epidemic growth, such as the spread of COVID-19, exhibit an exponential trajectory, especially

in the early stages of the outbreak when public health interventions (such as social distancing, mask-wearing, and self isolation)

are not yet in place. By applying the exponential model to new infections and reported death data, the authors were able to fore-

cast the course of the epidemic for South Korea, Italy, Germany, France, Spain, UK, and US for the next 15 and 20 days. Other

works ( Dehning et al., 2020; Fanelli and Piazza, 2020; Nkwayep et al., 2020; Rahimi et al., 2021; Shinde et al., 2020 ) overview vari-

ous short-term forecasting methods. For instance, the particle swarm optimization algorithm is often used to estimate the Susceptible,

Infected, and Recovered (SIR) model parameters with a high accuracy ( Putra and Mutamar, 2019 ). Mbuvha and Marwala (2020) and

Qi et al. (2020) tuned the SIR model based on the number of reported infection cases in South Africa and China to forecast accurate

infection rates. Salgotra et al. (2020) modeled the course of the SARS-CoV-2 virus spread in India by means of genetic programming

algorithms. 

The work in Bherwani et al. (2020) assesses the spreading of COVID-19 in India over a period of two weeks. The article uses

the SEIR model with data from the first quarter of 2020 to establish a connection between socio-behavioral aspects – such as social

distancing and mandates of other policymakers (i.e., nationwide total lockdown and suspension of tourist and e-visas for all tourists) –

and the rate of population infected with the SARS-CoV-2 virus. The research reported not only an increase in the number of infections

if mandates are eased but also found correlation of such numbers with different environmental parameters such as temperature and

humidity, mirroring the studies described in the previous section. 

Similarly, other works by Ribeiro et al. (2020) , Roosa et al. (2020a) , and Roosa et al. (2020b) focus on forecasting COVID-19

cases in the near future. For instance, research by Ribeiro et al. (2020) forecasts the progress of the COVID-19 over a period of

one, three, and six days in different Brazilian states. The forecast evaluation is based on a data set of cumulative confirmed cases

until 19 April 2020, and leverages different machine learning models. The models achieved, on average, an error of 0.87% 3.51%,

1.02% 5.63%, and 0.95% 6.90% for one, three, and six days, respectively, suggesting that they are accurate for short periods of

time and should otherwise be interpreted with caution. Similarly, Roosa et al. (2020b) generated 5- and 10-day forecasts based on

cumulative cases reported in two provinces in China up until mid February 2020. Best results were obtained using a so-called sub-

wave model ( Chowell et al., 2019 ) that considers each spike of infections as a sub-wave and models the overall disease progression

as a trajectory that aligns with these spikes. This suggests that forecasting models may work best when they support complex and

varying dynamics in the different phases of the outbreak. It is important to stress, however, that the results of any forecasting models

are always susceptible to the way the cases are modeled and how the parameters are defined. Nevertheless, forecasting models are

important tools for estimating short-term developments and, as such, are highly relevant for public transport operations, e.g., by

predicting the possibility of new countermeasures and making demand predictions. 
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4.3. Mechanistic models 

Mechanistic models, unlike forecasting ones, provide long term projections of infection rates, hospitalizations, and 

deaths ( Holmdahl and Buckee, 2020 ). These models consider different parameters that are strictly related to the infectious disease

itself, as well as the actions taken by governments and corresponding authorities. For instance, disease-related parameters include 

(i) transmission methods (e.g., airborne particulates, breathing, physical contact with infected person and objects touched by them), 

(ii) ease of transmission (e.g., minimum time of exposure to infected person or objects), and (iii) possible immunity triggered upon

recovering from the infectious disease. 

The model forecasts are a function of the used methods and of the (possible) interventions that policymakers can implement. Both

types of parameters can be modified at any moment in time as the understanding of COVID-19 and its transmission increases. Similarly,

control measures are constantly tailored to the situation at hand. This up-to-date non-linear feedback on the current situation leads to

a higher accuracy of the model projections. By injecting these information into the models, the long-term projections are best suited

to assist policymakers with the next steps toward a safer environment. 

The dynamics of an epidemic, though, are too complex to be represented by such a relationship. Therefore, many other non-linear

features such as the seasonality and the stochastic nature of infections are introduced into the model. As an example, He et al. (2020) in-

troduce additional variables such as the susceptible class, infections with and without intervention, quarantined , and hospitalized , alongside

with system parameters such as temporary immunity rate, rate of transitioning from exposed to infected class, rate of recovery of

symptomatic people, and the rate of transitioning from quarantined to the recovered class to produce a new flowchart of a tailored

SEIR model. Another example is presented in Reiner et al. (2020) where a SEIR model is fitted on real case and mortality data to

model expected infection trajectories and the effects of different non-pharmaceutical interventions on case trajectories. The study 

also covers the effect of social distancing mandates (SDMs) such as closure of schools and other nonessential businesses, stay-at-home

mandates, and limitations regarding gatherings and recreational activities at reducing the infection rate. Overall, the models suggest 

that lowest infection rates and fatalities are obtained with a high rate of mask usage. 

The work in R ǎdulescu et al. (2020) investigates the effect of different disease prevention management strategies, pointing out that

in the first stages of the epidemic a relatively low mortality rate (around 3.3%) was observed. While this is comparable to that of less

threatening and common epidemics (e.g., the seasonal flu), the spread factor 𝑅 0 however was bigger ( ≈ 3). This raised concern and

triggered international coordination regarding travel bans or functional shutdown of certain non-indispensable economic branches. 

Entertainment and recreational activities were among the last to close during the exponential growth of the pandemic. Not only

they are a viable source of hotspots, but their closure affects only the corresponding group category, similar to the effects of closing

schools or kindergartens. In addition, hygiene measures show a wide variability of overall acceptance and abiding, while more strict

measures such as total lockdown and long-term isolation might yield non-negligible psychological effects in the population. Regardless 

of several measures implemented locally or world-wide, COVID-19 has already shown several subsequent waves and hotspots. This 

suggests that the timing, scheduling, and efficiency of these measures requires further optimization ( R ǎdulescu et al., 2020 ). 

Better understanding of these factors can improve existing SEIR models to generate informed predictions of long-term sustain- 

able mitigation strategies with the least impact on the economy and mental well-being of the population. Accurately modeling the

spread of SARS-CoV-2 is a fundamental step toward identifying risk factors – whether environmental, logistic, policymaker-related, or 

individuals’ behavioral patterns – that might increase infection rates. The effects of such risk factors can be exacerbated in physically-

constrained environments, such as public transport, which are characterized by large flows of people that move in given directions

(e.g., people must follow strict path ways to get out of an underground metro station) and thus exhibit certain mobility patterns. This

knowledge can thus be used to assess the risk of infection and design appropriate mitigation strategies to the situation at hand. 

Table 4 summarizes forecasting and mechanistic models used in the literature to predict the spread of the SARS-CoV-2 virus in

the short (e.g. days or few weeks) and long term (e.g., months or 1-2 years), respectively. 

5. Transmission risk 

Infected and often asymptomatic people expose others in their proximity to the virus and potentially carry the virus to other cities

during the incubation period through traveling. The COVID-19 pandemic has spread globally and infections are drastically higher in

cities compared to rural areas, which has led to worries of public transit being a major cause for outbreaks ( Schwartz, 2020 ) and to

fears of public transportation usage. To ensure safe operations of public transportation and safe travel of citizens, it is vital to have

a detailed understanding of the possible factors affecting transmission risks and how they relate to public transportation systems. 

Below we discuss these in detail. 

5.1. Risk factors 

While public transportation vehicles represent enclosed indoor spaces, the transmission risks inside them are mediated by various 

environmental, social, and behavioral factors. Below we summarize the current scientific understanding about the factors that mediate 

COVID-19 transmission risks. 

Seating location and duration of transport. Seating location affects the physical distance to other people and therefore it can

affect the risk of disease transmission. One way to characterize the transmission risk associated with a specific seat is to use the

so-called attack rate of a seat which characterizes the likelihood of being at risk of disease transmission ( Hu et al., 2020 ). Immediately

occupying a seat that is previously occupied by an infected individual has an attack rate of 0 . 075% , i.e., a relatively low risk of
8 
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Table 4 

List of models to forecast the spread of the COVID-19 disease in the short and long term. 

Reference & Authors Model Forecasting method Forecasts submitted 

Bertozzi et al. (2020) Forecasting Parsimonious SEIR model Viral infection rate 

Putra and Mutamar (2019) Forecasting SIR model with particle swarm algorithm Infected and recovered cases 

Mbuvha and Marwala (2020) Forecasting SIR model based on reported infection cases Infection rates in South Africa 

Qi et al. (2020) Forecasting SIR model based on reported infection cases Infection rates in China 

Salgotra et al. (2020) Forecasting Genetic programming algorithms Viral infection rates in India 

Bherwani et al. (2020) Forecasting SEIR model based on 3-month data Infection rates as a function of environmental 

parameters (temperature and humidity) and 

various policymakers’ mandates in India 

Ribeiro et al. (2020) Forecasting Machine learning models Progress of COVID-19 over a period of 1, 3, and 6 

days in Brazilian states 

Roosa et al. (2020b) Forecasting Sub-wave model based on cumulative reported 

cases 

Progress of COVID-19 over a period of 5 and 10 

days in two Chinese provinces 

Holmdahl and Buckee (2020) Mechanistic SEIR model with non-linear feedback of biological 

features of virus transmission 

Long-term epidemiologic outcome of COVID-19 

under different policy responses 

He et al. (2020) Mechanistic SEIR model with additional variables such as 

infections with and without intervention, 

quarantined, and hospitalized, as well as system 

parameters such as temporary immunity rate, rate 

of transitioning from exposed to infected class, etc 

Spread of COVID-19 

Reiner et al. (2020) Mechanistic SEIR model fitted on real case and mortality data Expected infection trajectories and effects of 

non-pharmaceutical interventions on case 

trajectories 

R ǎdulescu et al. (2020) Mechanistic SEIR model Effects of disease prevention management 

strategies such as non-pharmaceutical 

interventions and strict measures (e.g., total 

lockdown and long-term isolation) in the spread of 

COVID-19 infection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

transmission, whereas passengers that are within three rows and five columns of an infected passenger can reach an attack rate of up

to 10 . 3% ( Hu et al., 2020 ). The attack rate increases with physical proximity and persons occupying the seats in the immediate vicinity

of an infected individual have the highest risk of disease transmission ( Zhen et al., 2020 ). However, also the duration of travel and

the ventilation of the carriage influence the risks. As an example, a case study related to potential disease transmission during a bus

trip with an infected person was carried out and in total 243 individuals were investigated ( Luo et al., 2020 ). Of these people, 12 later

are tested positive. None of the infected cases wore a face mask, which was the most important factor to elevate transmission risk. As

another example, a 10 h airplane journey has been investigated to assess risks of in-flight transmission ( Khanh et al., 2020 ). Out of

217 passengers 16 got infected. The only symptomatic person traveled in business class and in total 12 of the 16 cases are reported

with other business class passengers. We note that the study is conducted prior to mask recommendations becoming widespread and

that the movements of the passengers were not tracked prior, after, or during the flight. As a result, infections could have already

existed prior to travel or they might have been caused by other behaviors rather than the flight. As these two case studies highlight,

the closer a person sits to an infected individual the higher the risk of infection. The results also show that even more spacious seating

arrangements, such as those in airplane business class, are not guaranteed to ensure the safety of the passengers, and that long

duration of travel and lack of mask use can significantly increase the risk of disease transmission. Recent research also investigates

how to assign the seat in order to reduce the transmission risk while having an acceptable number of passengers which is helpful

both from passengers and transportation system aspects ( Pavlik et al., 2021 ). 

Ventilation and filtration. Air ventilation and filtration can be used to mitigate risk of COVID-19 transmission and the current

recommendations suggest both to increase the rate of outdoor air ventilation and to improve air filtration ( Katzer, 2020 ). The con-

centration of virus in the air is generally lower when air exchange rate is high ( Riffi, 2020 ) and it has been argued that increasing

ventilation rates to reach a sufficiently high rate can significantly reduce the transmission possibility of SARS-CoV-2 virus– as well as

the transmission of other flu-type viruses. The recommended rate of air exchange is twelve times an hour. In public transportation,

and especially urban transportation such as subway, buses, and trains, the air circulation rates are typically closer to 18-times an

hour, i.e., 50% more frequent compared to the recommended criteria. Alternatively, efficient air filtration systems can reach similar

results as effective air circulation systems ( Zhu et al., 2012 ) and even opening the windows of the carriage can help to reduce risks.

Airplanes, in contrast, use so-called displacement ventilation where air enters from the floor and exists through the ceiling. Hence,

displacement ventilation does not cause air to pass among passengers and this can further help to reduce the virus transmission risk.

The effectiveness of ventilation and filtration is also dependent on the age of the transport fleet with modern vehicles typically having

better ventilation and filtration systems than older ones. Taken together, the current scientific understanding suggests that effective 

ventilation and filtration are important for reducing transmission risks, particularly for aerosol transmission. However, contact and 

droplet transmission occurring in close proximity remains a threat and other measures, such as social distancing and face masks, are

equally important. 

Temperature and humidity. Both the temperature and the relative humidity can affect the rate at which SARS-CoV-2 virus 

decays. The Department of Homeland Security (DHS) has developed predictive models that can be used to estimate the decay time
9 
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in different temperatures and (relative) humidity conditions. Generally, increasing temperature and relative humidity accelerates 

the speed at which the virus becomes inactive ( Biryukov et al., 2020 ) and restricts the travel distance of droplets ( Noti et al., 2013 ).

Temperature also affects the survival rates of SARS-CoV-2 virus. Recent research work shows that the virus inactivation time can drop

from approximately two days to mere hours when the temperature increases from 20 ◦ C to 40 ◦ C ( Riddell et al., 2020 ). The correlation

between temperature, humidity and the effective reproduction number of the SARS-CoV-2 virus is analyzed by using data from China

and US. The analysis is adjusted to control for geographical, socio-economical, demographic and other potential mediating factors to

ensure unbiased estimates. The results show a negative correlation for both temperature and humidity with the virus, and the effect

is smaller post interventions (lockdown). Nevertheless, temperature and humidity affect transmissibility of the SARS-CoV-2 virus but 

they alone are not sufficient for controlling the virus. Indeed, in all of the authors’ analysis, the effective reproduction number exceeds

2.5 when no interventions or countermeasures take place. These findings highlight that mitigation strategies and countermeasures 

are essential throughout the year. 

Physical distancing and wearing mask. Physical distancing is one of the most effective actions to mitigate the transmission

risk. Badr et al. (2020) investigate the role of social distancing on the new infection rate, where they try to formulate the distancing

matrix based on the mobility trend generated from mobile phone data. The study shows that not only people already implement

social distancing – despite the lack of a centralized (nationwide) recommendation and guideline system – by reducing their mobility 

by 35–63%, but also that social distancing slows down the transmission rate. The effects can only be seen after a period of 2–3 weeks,

which coincides with the incubation period of the virus. Wearing masks significantly reduces airborne transmission, particularly 

in enclosed spaces ( Prather et al., 2020 ). Wearing a face mask and keeping a distance of more than two meters (six feet) apart

results in the lowest infection risk. Farther distances increase protection, but generally distances of one meter or higher already

provide good protection ( Chu et al., 2020 ), especially when combined with face mask use. Respirator masks, such as N95, provide

better protection than disposable surgical masks and eye protection can further decrease infection rate. Nevertheless, none of these 

solutions is completely effective and in practice combining face mask use with physical distancing, effective ventilation and other 

measures, is the most effective strategy. Mask effectiveness is also dependent on the mask being properly worn and on the mask

having a good fit, further motivating the need to combine multiple intervention strategies. 

5.2. COVID-19 transmission in public transportation 

Estimating the overall transmission risk or infection rate during travel is highly complex. Indeed, as discussed above, many factors

affect the risk of disease transmission and there are complex interdependencies between the factors that make it difficult to estimate

the overall risk. UIC had published a state of art for addressing the contamination rate on trains in 2020 ( UIC, 2020 ). We will briefly

survey the main approaches for modeling and estimating transmission risks in public transportation. 

Model-based approaches attempt to construct statistical models that can be used to provide an estimate of the overall risk

given different parameters of the travel. As an example, the Rail Safety and Standards Board (RSSB) together with collaborators has

developed an approach for estimating travel risk in a train by considering three elements: number of person contacts during the whole

journey (including in the station buildings, during boarding, in the train, disembarking, and exiting the station), risk of infection per

person contact, and the impact of mitigating factors (including wearing masks, ventilation and filtration) ( Hunt, 2021 ). The model is

based on input values derived from data obtained from the UK and the infection risk is reported as below 0.01% per average journey

with exact values depending on the type of carriage and if masks are worn. On average, the model estimates the risk of infection to

be one infection per 11 068 journeys when no face masks are worn and one infection per 19 765 journeys when face masks are worn,

respectively. The European Union Agency for Railways conducted a study to investigate the travel safety of passengers using train and

other transport modes in long distance travel by building a mathematical model that estimates the increase in COVID-19 infection

risk for passengers by considering the probability of a passenger being contagious, the probability of the virus being transmitted from

the contagious passenger to a healthy passenger, and the probability of death or hospitalization due to the disease ( European Union

Agency for Railways, 2021 ). The model suggests that rail travel is safer than a car for long distance travels. The safety in this place

is mainly related to the low risk of death or hospitalization from the SARS-CoV-2 virus infection. Generally, it is difficult to build a

model to estimate the infection rate in the transportation system. Indeed, it is hard to track the passengers’ contacts, their mobility

during the travel event, and the later infection status. Therefore, there have been efforts to investigate the transmission risk using

simulated virus particles. For example, Silcott et al. (2020) focus on modeling the aerosol transmission risk in flight and find the

risk of disease transmission to be very low. Note that this only holds for aerosol transmission and contact or droplet transmission in

close physical contact has much higher risk of transmission. The international air travel industry also recently has issued guidance

related to flight travel, suggesting the transmission risks to be very low ( IATA, 2020 ). As discussed, these findings need to be taken

in their corresponding contexts as countermeasures such as face masks and social distancing, and behaviors before, during, and after

the transit also play a major role in disease transmission. 

Transit ridership-based approaches investigate the relationship between transit and COVID-19. Early research focuses on assess- 

ing the potential links between transportation volume and the spread of COVID-19 infections. For example, Zheng et al. (2020) in-

vestigate how public transportation affects the spatial transmission of COVID-19. They try to identify the relationship between the 

transportation frequency from Wuhan, the daily number of infections, and the cumulative total of infections in cities which have

transportation connection with Wuhan. The analysis shows that there is a positive association, which indicates that the public trans-

portation can import COVID-19 to other cities within the same country. However, the study focused on the initial phase of the outbreak

in China, before any lockdowns or other measures were in place, and specifically on public transportation bringing imported cases to

other cities rather than on the risks during the transportation process itself. Similarly, Kraemer et al. (2020) show that correlation be-
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tween the number of infections and travel between cities is strong during the initial breakout stage. Cartenì et al. (2021) also showed

that a positive correlation existed between the number of confirmed cases and the volume of the public transport trips carried 17

to 26 days ago for the period of September to December 2020 in Italy. Schwartz (2020) surveyed 1 300 patients admitted into New

York City hospitals in early May 2020. Only 4% of the patients had recently used public transport. Indeed, the study reports that for

most cities in the US, the correlation between infection rate and transit ridership was weak or even negative. Thus, separating the

effect of the transportation effect from mobility, cultural and other factors is challenging. 

Conversely, the human mobility patterns have suffered great changes due to the pandemic caused by COVID-19. For example,

Huang et al. (2020) use data collected from Baidu Maps to investigate the impact of COVID-19 on human mobility and behavior.

The proportion of people visiting residential areas greatly increased while the proportion of people using transportation systems 

decreased dramatically. Similar findings have been reported in numerous other studies. For example, compared with other transport 

modes transit, the transit of public transport decreased drastically during the spring of 2020 in the three most populated regions

of Sweden ( Jenelius and Cebecauer, 2020 ). Similar findings were obtained from a study in Istanbul which showed public transport

ridership to decrease during the COVID-19 compared to the period pre-COVID-19 ( Aydin et al., 2022 ). According to the study, people

prefer to use travel modes with few contacts, such as private cars, biking, and walking to avoid infection. However, the distribution of

different public transport modes, such as metro and different buses, was similar between the pre-pandemic and the pandemic period

(year 2019 compared to January-April of 2020). In another study, the public transport ridership changes in ten US cities was analyzed

for the first five months of 2020, and the public transport ridership decreased significantly since the beginning of the pandemic with

the heaviest decline immediately after the start of the pandemic ( Ahangari et al., 2020 ). Another study related to public transit

changes in the US using data collected from mobile phone applications also shows the decline of transit ( Liu et al., 2020a ). There

have also been many studies related to the impact of COVID-19 on travel mode choice ( Beck and Hensher, 2020; Luan et al., 2021;

Shakibaei et al., 2021 ) and how this impacts the transport operators ( Gkiotsalitis and Cats, 2021 ). Detailed comparison of the studies

is difficult due to differences in the socioeconomic context and characteristics of the public infrastructure at different locations. For

example, the stage of the COVID-19 pandemic and the overall socioeconomic situation of the country (or city) affect travel choice.

For example, in some locations people had limited options to use public transport during the pandemic and instead shifted to motor

vehicles ( Shakibaei et al., 2021 ). People also have suggested that they plan to return to pre-pandemic use of public transportation as

the restrictions are eased and the pandemic situation stabilized ( Przybylowski et al., 2021 ). Finally, human mobility patterns changes

on transport modes due to COVID-19 in ten countries are investigated and it indicates that airplanes and buses might suffer higher

infection risk compared with other transport modes ( Barbieri et al., 2021 ). 

Cluster-based approaches are a top-down method that observes actual infections and try to identify the source of transmission.

COVID-19 cases often appear in clusters and understanding the factors causing these clusters can thus help combat the virus. A

systematic review of the main cluster types in the literature identified 108 different types of clusters, only one of which corresponded

to transportation ( Liu et al., 2020b ). Another systematic review ( Leclerc et al., 2020 ) of available literature reports 22 clusters for

211 transmission events, with only one event connected with transportation. Furuse et al. (2020) analyzed 3184 cases of coronavirus

disease in Japan for the period from January 15 to April 4, 2020 and identified 61 clusters. Health care facilities are the primary

source of clusters and one transportation-related cluster was identified – linked to an airplane journey. A study conducted in Paris

from early May to June 2020 found that none of the city’s 150 coronavirus clusters came from transportation systems. The only four

clusters related to transport were identified during 15th to 28th July in Paris, which accounted for about 1% of all 386 coronavirus

clusters ( Joselow and News, 2020 ). Meanwhile, Ireland publishes weekly report where the infection categories are well documented,

for example, one infection out of 199 confirmed cases is related to travel for week 41 in 2021, no infection is related to travel for

week 40 in 2021, and one infection out of 203 confirmed cases is related to travel for week 39 in 2021 ( Health Protection Surveillance

Centre, 2021 ). The clusters’ information in North Carolina is updated every other week and there is no transport or travel related

cluster in the main tracked cluster categories in the latest report updated on October 25, 2021 ( North Carolina Department of Health

and Human Services, 2021 ). The possible reasons might be the infection risk in transportation is not high due to the high vaccination

rate and protective measurements, or it is hard to track the infections from the transport. In contrast to these results, analysis of 318

outbreaks in China excluding Hubei province involving 1245 confirmed cases in 120 prefectural cities during 4th January to 11th

February found that 34% of the outbreaks were associated to transport, which was the second most important category following

households ( Qian et al., 2021 ). However, it is not possible to determine the mode of transport and corresponding duration for the

transport category. The main challenge with cluster-based approaches is that their accuracy usually depends on voluntary cooperation 

and patients may not recall or want to disclose their entire contact history. These studies nevertheless indicate that transportation

generally is not the primary source for infections. However, transportation is often needed to go to venues that end up being the main

source of infection and thus there are risks of disease transmission during the transit periods, even if they would not be the primary

reason for outbreak clusters. 

Staff-based approaches compare the infection rates of transportation staff to the general public in an attempt to see whether 

transport has elevated risks of disease transmission. A study by the German railway company (Deutsche Bahn (DB) Fernverkehr 

AG) investigated the infection rate of the operational staff to identify the main transmission mechanisms of the virus, to better

understand the current health situation of the employees, and to guarantee safe traveling for customers and safe operation for

employees ( Gravert et al., 2020 ). The infection rate of the board service staff and train attendants was found to be statistically

significantly lower compared to the general population (0.26% vs. 0.36%). Finland railway company VR also carried out a study to

compare the infection rate of VR employees compared to general populations in Finland by using data recorded on 1st February 2021.

The infection ratio of VR employees is lower compared to the infection ratio of general population in Finland (0.62% vs. 0.82%),

specifically, the infection ratio of VR long distance employees is lower compared to the general population (0.34% vs. 0.82%) and the
11 
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infection ratio of VR short distance employees is a little bit higher compared to the general population (0.92% vs. 0.82%). Protective

masks, social distancing and other measures that are in place can help to reduce risks for transport staff, even if individual journeys

have the possibility of spreading the disease. 

6. Mitigation 

Mitigation seeks to reduce the impact and negative consequences of hazards. In disaster management literature, mitigation is 

traditionally seen as a phase that takes place prior to the disaster. However, during a continuous natural hazard, such as the COVID-

19 pandemic, mitigation is actively pursued throughout the entire lifetime of the disaster. The main methods for mitigation are

screening and detection. The former focuses on early identification of people that are potentially at risk, whereas the latter focuses

on identifying people that have already been affected. Below we briefly summarize the main mechanisms for screening and detection

and discuss how they relate to public transport. 

Scent dogs can be used for early screening of infections, particularly for asymptotic people. Scent dogs have been shown to be

capable of detecting early signs of infection with as little as one week of training, reaching an average diagnostic sensitivity of 82 . 63%
in one study ( Jendrny et al., 2020 ). The main use for scent dogs is at major transit hubs, such as airports or large railways stations,

where they can offer a cost-effective way to perform pre-screening of large passenger volumes. As an example, the Helsinki airport

adopted scent dogs in 2020 through a test where a skin swipe is presented to a scent dog ( Nations, 2020 ). Individuals testing positive

were then directed to a laboratory PCR test to verify the diagnosis. 

Thermal screening refers to the use of thermal cameras for identifying people whose body temperature is elevated. The main

benefit of thermal screening is that it does not require contact, i.e., it is a non-invasive method for screening individuals. Similarly to

scent dogs, the main use for thermal screening is at airports and other large commuter hubs – or points-of-entry – where the volume of

passenger traffic is significant. Indeed, the main potential for thermal screening is to offer a passive solution for screening at locations

where traditional care methods are not practical or otherwise feasible ( Maguire et al., 2021 ). Besides transit hubs, there have also

been solutions that integrate thermal screening in other public transport. For example, South Korea deployed smart shelters that are

equipped with air-conditioning, ultraviolet light air sterilizers, and thermal cameras that allow only people whose body temperature 

is below 37.5 ◦ C to enter the bus. The main limitation of thermal screening is that thermal cameras have limited sensitivity ( Emenike

et al., 2021; Malmivirta et al., 2019 ). For example, off-the-shelf FLIR technology has an average error of ± 2 ◦ C whereas more accurate

technologies cost significantly more and require special cooling mechanisms. Another challenge with thermal screening is that the 

measurements are dependent on the body part that is monitored ( Dzien et al., 2021 ), with the best and most consistent results coming

from the side of the face and especially from the earlobe at a distance of at most 50 cm ( Chan et al., 2004 ). Finally, thermal screening

can only identify individuals that are already symptomatic. Thus, currently there is very little support for thermal screening to be an

effective method for limiting the spread of COVID-19 ( Cardwell et al., 2021 ). 

Contact tracing is a key mechanism for slowing down the spread of COVID-19 – and other communicable diseases. Contact tracing

identifies people that have been in possible contact with an infected person, directs them to testing, and encourages them to avoid

contact with others until their disease status is known ( Eames and Keeling, 2003 ). Traditionally contact tracing has been implemented

using manual interviews and personal contact to individuals at risk of disease exposure ( Klinkenberg et al., 2006 ), but such efforts are

only feasible when the number of infections and the potential exposures remain small ( Farrahi et al., 2014; House and Keeling, 2010 ).

Digital contact tracing augments this process using smartphone-based monitoring tools that can inform individuals if they are at risk

of infection due to having been in contact with an infected individual ( Ferretti et al., 2020 ). While digital tools for contact tracing

have been available previously ( Sacks et al., 2015 ), only the current COVID-19 pandemic has made their use widespread due to the

availability of programmable tools for contact detection ( Anglemyer et al., 2020 ). These apps use short-range wireless communication

technology, such as Bluetooth, WiFi or ultra wideband to detect people within proximity of each other and later contact the people

that are known to have a close contact with an infected individual ( Nguyen et al., 2020a ). Many governments have released contact

tracing apps for COVID-19. Ensuring the privacy of individuals is a key design consideration for contact tracing ( Cho et al., 2020;

Morley et al., 2020 ). For more details on contact tracing we refer to a comprehensive survey by Ahmed et al. (2020) which covers

system architecture, security, privacy, data management, and proximity estimation techniques. In terms of effectiveness of contact 

tracing, Kretzschmar et al. (2020) found the coverage of tracing and the delay between testing and tracing being the most important

factors for achieving effective contact tracing. 

Testing is the only guaranteed way of detecting individuals that are infected. The available testing methods are continually evolv-

ing with the main differences relating to the accuracy, intrusiveness, and costs of conducting and analyzing the results. Detailed cov-

erage of the test mechanisms is outside the scope of this survey and we refer to the papers of Guglielmi (2021) , Yuan et al. (2020) and

Carter et al. (2020) for more details of the different tests. Public transport providers can play an important role in facilitating large-

scale testing by supporting passengers in finding their nearest testing center and by providing guidance on how to reach there without

putting others at risk. 

7. Prevention 

Prevention is defined as regulatory, physical and other measures that strive to ensure that hazards are prevented or their effects

are mitigated. Prevention is thus complementary to mitigation, which typically operates prior to the occurrence of a hazard and

focuses on mitigating the possibility of the hazard taking place in the first place. In case of COVID-19 pandemic, full prevention

is only possible by isolating people and completely avoiding contacts and hence the prevention phase focuses on mitigating the
12 
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impacts of potential risks. The main prevention measures that are related to public transport are social distancing and different

non-pharmaceutical intervention measures. Below we discuss these mechanisms and their role in public transport. 

7.1. Social distancing 

Social distancing is an essential method for limiting the spread of diseases by minimizing the physical contact between individuals.

As discussed in Section 5.2 , the infection risk during a transportation is linked to the number of contacts, the number of people infected

by virus and susceptible co-passengers, passenger density, and the total travel time. In practice, this means that, in the context of

public transportation, social distancing refers to controlling the passenger density inside vehicles, e.g., by limiting the number of

passengers at a given time, by blocking certain seats, or by adopting real-time monitoring technology that identifies possible risks

and informs the passengers of them. 

Crowd detection is the main technological solution for supporting social distancing. A common approach for crowd detection is

to rely on wireless communications technology ( Nguyen et al., 2020a; 2020b ) such as Wi-Fi, Bluetooth, Ultra-wideband, and Zigbee

or RFID. The main idea is to identify and track the position and location of passengers using signals from their devices and detect

crowds by analyzing the locations of these devices. 

The main alternative is to rely on camera-based methods which have a long tradition in crowd monitoring and crowd den-

sity estimation ( Junior et al., 2010 ). Camera-based methods traditionally use standard cameras, and apply computer vision tech-

niques ( Li et al., 2008 ) for crowd detection and people counting. While images provide rich information about interactions between

individuals and occupancy, they can be extremely intrusive as they capture sensitive and private data of people, e.g., facial features.

Obfuscation techniques, such as blurring, can be applied over images to protect individuals ( Chan et al., 2008 ), but these require

intensive processing over the images, which is difficult to achieve in real-time. Privacy concerns can be alleviated by adopting thermal

cameras for crowd detection ( Abuarafah et al., 2012; Flores et al., 2020; Rinta-Homi et al., 2021 ). The use of direct thermal radiation

estimates is similarly intrusive as the use of regular cameras, but it is also possible to rely on indirect measurements of individuals

that result from interactions with the environment. Indeed, when individuals touch objects or even walk, thermal footprints caused 

due to their human-emitted thermal radiation are visible. By analyzing this residual thermal information ( Emenike et al., 2021 ), it

is possible to understand not just occupancy of the room, but also the density of interactions that the room has experienced from

people visiting it. Another approach is to use air quality sensors to measure PM 2 . 5 , CO 2 , (relative) humidity and temperature for

extrapolating the occupancy in the spaces ( Motlagh et al., 2019 ). For example, an increase in CO 2 level or temperature in a room

can be caused by a higher number of people inside a room ( Motlagh et al., 2021a ). Naturally, these estimations require also to know

other factors like room dimension and space distribution. While this method can provide meaningful data about the amount of people

in an area, it fails on providing insights about individuals’ proximity. Variations in temperature and CO 2 levels can also be used to

distinguish between indoor and outdoor areas, which can be used to separate cases where devices are in close proximity but sepa-

rated by a barrier. Finally, sound measurement can be used for identifying the crowd by using different spectrum of sound to detect

proximity of devices. For example, low level (near) ultrasound can be used to fingerprint places and even be used as an identifier

for devices ( Peng et al., 2007 ). Another option is to take advantage of the Doppler effect in sound measurements to detect proximity

of objects and potentially people ( Malik et al., 2020 ). The main problem with sound is the difficulty of being captured through the

microphone of a phone or other IoT device. Indeed, heterogeneity of microphones influences the accuracy at which sound can be

detected by the devices and hence different devices understand the same sound differently. 

7.2. Non-Pharmaceutical Interventions (NPIs) 

NPIs are non-medical measures that help reduce the spread of any kind of disease. NPIs are essential for prevention and offer

the best direct mechanism for countering disease transmission when no medical remedies or vaccines are available ( NCEZID and

DGMQ, 2020 ). NPIs can be divided into three categories depending on the target subject of the measure ( European Centre for Disease

Prevention and Control, 2020 ): (i) Individual – they refer to practicing hand hygiene, respiratory hygiene, use of face masks, and self

isolation. (ii) Environmental – they consist of cleaning and ventilating indoor or otherwise enclosed spaces. (iii) Community-based –

they promote social distancing, limited and strict movement, school closures, public event bans, and even complete lockdown. 

NPIs are typically combined together to combat the spread of disease. While this can help prevent disease spread more effectively,

at the same time it makes it difficult to analyze the effectiveness of each measure individually. As discussed in Section 5.1 , effective

ventilation and air filtration can help reduce the risk of COVID-19 transmission. Morawska et al. (2020) argue that these, and related

environmental and engineering controls, can also improve the effectiveness of NPIs. Specifically, the study recommends 1) reminding 

facility and building managers to apply suitable engineering controls; 2) enhancing the ventilation effectiveness and the ventilation 

rates; 3) eliminating indoor air re-circulation and supplying fresh air from outdoors; and 4) using portable air purifiers. 

To study the effectiveness of NPIs on COVID-19 transmission, Bo et al. (2020) use information from 190 countries from 23 January

to 13 April 2020 and compare four types of NPIs: social distancing, quarantine, restrictions on traffic, and compulsory use of face

masks in public. The findings suggest that social distancing is the most effective individual measure, but simultaneously combining

two or more NPIs is the most effective overall strategy for limiting COVID-19 infections. Zamir et al. (2020) investigate the optimal

control of COVID-19 through NPIs. They narrow down four major NPIs to be effective in reducing the size of a disease outbreak: (i)

staying home, (ii) washing hands, (iii) using face mask, and (iv) early detection of cases via PCR tests. 

Moreover, the study indicates that if NPIs are not applied, 9 out of 10 susceptible individuals may be infected by COVID-19 within

a very short period. Brauner et al. (2020) use a data-driven approach to approximate how NPIs affect the reproduction number
13 
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and the growth of COVID-19 epidemics in 34 countries in Europe and 7 countries in other continents. They collected chronological

data about the NPIs implementation from January to the end of May 2020. The NPIs included closures of businesses, schools and

universities, as well as limiting gathering sizes and stay-at-home mandates. 

Similarly to the other studies, the findings suggest that applying several NPIs at the same time results in a clearest decrease in

the disease transmission and the corresponding reproductive number. Closing universities and schools, mitigating people’s crowds 

and gatherings to less than ten, and stopping face-to-face meetings in businesses each reduced the transmission considerably. While

modeling assumptions vary for the exact estimates of effectiveness, the results also show that some NPIs outperformed the others.

For instance, stay-at-home was comparatively more effective than other NPIs. Flaxman et al. (2020) explore the effect of major NPIs

in eleven countries in Europe from February until early May 2020. The study analyzed five categories of NPIs: social distancing, self

isolation, school closures, public event bans, and complete lockdown. The results demonstrate that NPI measures, and in particular

a complete lockdown, had a large effect on reducing transmission. 

While NPIs are only indirectly related to public transport, their role in minimizing disease transmission risk is essential and in

practice NPIs work in tandem with other countermeasures. Understanding the effectiveness and limitations of NPIs helps public 

transport providers in selecting the best countermeasures based on the current regulations and restrictions, and also provides a

context for interpreting the results of studies on individual countermeasures. Indeed, as NPIs are actively used, the effectiveness of

any prevention or mitigation measure is always a function of the currently adopted NPIs and the individuals’ adherence to follow

guidance on their use. From the point-of-view of public transportation operators, the main NPI is social distancing, and controlling

passenger densities already prior to the transit event is more effective than any measures that are taken during the event itself.

Naturally this results in loss of revenue and a balance between profitability of the transit operations and safety of passengers needs

to be established. 

8. Discussion 

In this survey we have examined scientific literature pertaining to the COVID-19 pandemic and public transport through a disaster

management lens, identifying techniques for modeling and understanding risks, and for mitigating and preventing them. We next 

summarize the key findings and guidelines stemming from the survey and reflect critically on the current scientific understanding to

establish a research roadmap for the path forward. 

8.1. Key insights 

The scientific understanding of the COVID-19 disease and its implications continue to evolve and the appearance of different virus

variants further keeps changing and challenging our understanding of the best practices surrounding COVID-19. Nevertheless, there 

are some general findings that have consistently stood out from the existing studies. Below we summarize the key insights resulting

from the works surveyed in this paper 

1. There is evidence that traveling in general contributes to the spreading of COVID-19. For example, studies from Wuhan in China

showed that infected people carried the virus to other cities ( Zheng et al., 2020 ). 

2. While traveling itself has shown strong association with the spread of COVID-19, current scientific evidence suggests that the 

infection risk during public transit is not elevated – provided that safety measures are followed. 

3. Many factors – such as seating configuration, duration of the trip, ventilation, filtration, humidity, social distancing, and mask 

wearing – affect the transmission risk in public transport. For instance, the transmission risk increases with the co-travel time or

while sitting in adjacent seats or in the same row as an infected passenger ( Hu et al., 2020 ). Accordingly, safety recommendations

should be strictly followed to minimize risks of infection. Ventilation systems that displace the air vertically (from floor to ceiling,

for instance) are more effective at mitigating the infection risks than those that displace the air horizontally (see Section 5.1 ). 

4. Contact tracing apps should be used during travel as they significantly facilitate contacting people at risk of infection. While disease

clusters are not frequently linked with public transportation (see Section 5.2 ), public transportation usage is often interleaved with

the activities that result in infections. Hence, the transit events can potentially result in further infections and those at risk are

difficult to reach unless automated contact tracing is used. 

5. Based on the current scientific understanding, air pollution and dry and cool environmental conditions contribute to the transmis-

sion of COVID-19 ( Lolli et al., 2020 ). For instance, a higher number of COVID-19 infections correlates with higher concentrations

of air pollutants, such as PM 2 . 5 ,PM 10 , CO 2 , NO 2 , and RH. In contrast, temperature, pressure, and the concentration of SO 2 , and O 3 
have shown a reversed relationship (see Section 3.2 ). 

6. Digital technologies alone cannot combat COVID-19 but can be harnessed to support mitigation and prevention measures, e.g., 

by monitoring social distancing or automating contact tracing. 

7. Complete closure and social distancing control the infection rate in terms of size and subsequent transmission waves. However, a

similar effect is produced with strict social distancing measures alone, while restoring people’s mobility ( Reiner et al., 2020 ). 

8. Social distancing, the use of face masks, and good personal hygiene have shown to provide superior results to mobility restrictions
or other non-pharmaceutical interventions ( Gakidou and COVID, 2020; Liang et al., 2020 ). 

14 
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8.2. COVID-19 safety on transportation systems 

The transmission risks in different vehicles are dependent on several factors, with passenger density, typical duration of the trip,

and characteristics of ventilation being important considerations. Below we summarize the key recommended mitigation measures 

for public transport in line with the current scientific understanding. 

Recommended social distancing The recommended social distance in many countries remains 2 m (6 feet) apart between 

individuals. The optimal physical distance depends on the total duration of proximity. For example, a distance of one meter can be

sufficient for a trip lasting at most one hour, but even a distance of 2.5 m can be insufficient for a trip taking longer than 2 h. It has

been suggested to keep a distance of at least 2 seats within the same row, and to keep the travel time below three hours to minimize

the spreading of COVID-19 during the outbreak. It is important to reduce the density of passengers and the number of people sharing

the same cabin while traveling. The passengers are recommended to be seated in different rows. If there is a need to arrange the

passengers in the same row, they should keep the adjacent seat empty. 

Air ventilation and purification Public transport operators are recommended to use ventilation systems that prevent or at 

least limit the air flow between passengers as this helps to reduce risks of disease transmission. Transit operators are suggested to

increase indoor air ventilation and filtration. Inside vehicles, air circulation of 18-times an hour is recommended and air re-circulation

should be avoided. During the pandemic, the maintenance of ventilation systems should be intensified. Opening windows for natural

ventilation can also be beneficial. 

Cleaning surfaces and passengers’ personal notes While fomites pose the lowest risk, it is recommended that transport operators

clean the seats and surfaces touched by passengers at least once a day with high temperature, especially in overnight sleeping cabins.

Passengers must use face masks, and should refrain from shouting or singing and use hand hygiene and sanitiser inside the vehicles

and while at the stations. 

Mobile applications Passengers are recommended to use smart applications for monitoring their mobility patterns and crowds 

on different routes. Passengers are advised to use smart reservation systems where possible to reserve a seat in the vehicle in advance.

During transit, the use of automated contact tracing apps is highly recommended to allow tracking possible infection chains in case

infected patients use the transport at the same time. 

8.3. Research roadmap and future outlook 

While research literature on the COVID-19 pandemic is continually expanding, there still remain many gaps in the collective 

scientific understanding that need to be addressed to further improve response against COVID-19. This is particularly critical for the

safe operations of different societal functions, including public transportation, as many countries are starting to alleviate restrictions 

in an attempt to return to normality. Below we critically reflect on the surveyed papers to draw research directions and a roadmap

for the path forward. 

Model selection Epidemiologic models are important tools that assist policy-makers and health-care practitioners during wide- 

and fast-spread infectious diseases. Statistical forecasting models ( Section 4.2 ) are usually helpful for near-future predictions. How- 

ever, they are susceptible not only to the specification of the different compartments (e.g., the S, E, I, and R sub-populations, see

Section 4.1 ), but also to the spreading factor, peak(s) of the infection, and preventive measures put in place by local authorities.

Mechanistic models ( Section 4.3 ), can accommodate more complex trajectories and trends of an infectious disease, and potentially

provide better predictions over a longer time horizon. For instance, these models can forecast infection cases, hospitalizations, and

death given certain intervention assumptions. Despite both models being able to provide insights into the (near-) future course of the

disease, their results should always be interpreted within context, especially with regard to the amount and quality of the data upon

which the model is built. Determining the best fitting model for a given context remains an open issue. This is particularly challenging

in the context of public transit where different regions may have different countermeasures and parameterizations, calling for flexible

models that can account for spatial and temporal variations. 

Micro-climates inside transportation systems Current scientific understanding suggests that pollutants and meteorological 

factors play a role in mediating transmission risks. Transportation vehicles with their confined spaces form micro-climates which 

have different temperature, humidity and pollutant distributions than areas outside them. The concentrations inside vehicles are also 

affected by the number of passengers inside vehicles, the activities of the passengers, the number of stops, opening and closing of

doors at stops and stations and so forth ( Motlagh et al., 2021a ). The effects of air pollutants on transmission of COVID-19 are mostly

studied using governmental databases that contain measurements produced by air quality monitoring stations located outdoors and 

covering large geographic areas. Fully understanding the transmission risks and mechanisms inside public transport thus needs more 

studies that compare the distributions of pollutants and meteorological to those found inside vehicles and their carriages. 

Ventilation inside the transportation system Ventilation contributes to mitigating the COVID-19 transmission risk, especially 

for aerosol transmission ( SAGE-EMG, 2020 ). The volume of new air supplied in depends both on the outdoor temperature and

the requested indoor temperature as the air conditioning system regulates the indoor air by adapting and mixing the ratio of the

recirculated air. A CO 2 sensor can be used to measure air circulation to see whether there is enough fresh air outside getting in and

whether the indoor space is filled with potential infectious exhalations. It has been suggested to maintain CO 2 levels below 800 ppm

for a duration of below 1 h for indoor environment. Many subways and buses have increased the air circulation rate to be 18 time

per hour during the COVID-19 pandemic. Generally it is important to improve the ventilation particularly in densely occupied spaces

where the air can quickly become stale and using a fixed circulation rate may not be sufficient. The main effect from ventilation is

on aerosol transmissions and thus it alone cannot protect passengers. Indeed, ventilation should work together with other measures 
15 



X. Liu, P. Kortoçi, N.H. Motlagh et al. Multimodal Transportation 1 (2022) 100030 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(cleaning, air filtration, hand washing, and mask wearing) to minimize the transmission and infection risk. Additional research is

needed for the use of CO 2 and other sensors to serve as indicators of the need for ventilation. Indeed, while CO 2 can effectively

recognize insufficient ventilation in densely occupied space, the accumulation of CO 2 is much slower in sparsely occupied spaces and

other means of monitoring the circulation may be needed. 

COVID-19 variants The appearance of new virus variants, such as Alpha ( Tang et al., 2020 ) and Beta ( Tegally et al., 2020 ),

is posing new challenges for mitigating risks as these variants may have differing transmission mechanisms or rates, and different

severity. For example, both of the aforementioned variants have a mutation (N501Y), which causes increased transmission rate ranging

from 40 to 70% ( Fontanet et al., 2021 ). Recently a newer strain of COVID-19, called Delta variant, has spread rapidly and is reported

in more than 130 countries globally ( World Health Organization, 2021b ). The Delta variant is as contagious as chickenpox and may

cause severe illness than previous strains in unvaccinated persons and the breakthrough cases for vaccinated people do happen even

if it is rare ( CDC, 0000 ). The higher the infection rate, the higher the immunity and vaccination rate are needed to stop the spread

and evolution of the virus. While the variants differ from the original virus strain, there are also similarities and thus the same

countermeasures can be largely applied to the new variants. Further medical research is needed to fully understand how the different

parameters of the variants affect the behavior of the virus and what limitations or advantages different countermeasures have toward

different strains of the virus. For example, some variants could potentially survive longer as fomites and thus require better cleaning

of surfaces, whereas other variants might call for better ventilation to prevent aerosol transmission. Once these mechanisms are better

understood, the guidelines and recommendations for countermeasures in public transportation should be revised and adapted to meet 

the changes in the behaviors of the different virus strains. 

Sensing and AI Sensing technologies have already been useful for tracking and reporting people’s mobility and for warning them

about crowded places or places that were recently visited by infected people. Fast screening of people at crowded places such as

airports has proved crucial at increasing the daily number of screened people while providing fast and reliable results at much lower

cost than what laboratory-based testing offers. Nevertheless, there remains significant room for innovative AI and sensor technologies, 

e.g., to further improve screening and to facilitate higher density traffic. 

Mobility Data on human mobility can be utilized to mitigate COVID-19 transmission. Statistics about human mobility have been

shown to correlate well with the initial spread of confirmed cases among the cities of China ( Ash, 2020 ), which means that human

mobility data can well explain the spatial distribution of COVID-19 cases, at least during the initial starting point ( Kraemer et al.,

2020 ). Reductions in human mobility patterns have strong correlation with decreases in confirmed COVID-19 cases and can be used

to guide the social distancing to mitigate the COVID-19 transmission. Therefore, it would be useful to examine changes in mobility

trajectory patterns resulting from COVID-19. The Levy-walk pattern governing human mobility ( Gonzalez et al., 2008 ) – or at least

the parameters governing it – have likely changed due to COVID-19. If the changes can be well understood and modeled accurately,

analyzing the effects that mobility has on disease transmission risks can be done more accurately, improving the understanding of

mobility control measures in preventing the spread of the pandemic. 

CO 2 and other sensors as proxy of COVID-19 transmission risk CO 2 sensors can be used to monitor the COVID-19 transmission

risk at indoor and outdoor environments ( Kortoçi et al., 2022; Motlagh et al., 2021a ). As CO 2 is produced by exhalation at the same

time as aerosols containing the SARS-CoV-2 virus, CO 2 can serve as a proxy for the SARS-CoV-2 virus concentrations ( Riffi, 2020 ).

However, comprehensive research is needed to have a deeper understanding and to establish the relationship between CO 2 and 

COVID-19 infection risk. For example, Peng and Jimenez (2020) derive an analytical expression for the probability of COVID-19 

aerosol transmission risk in indoor room-level under the situation of eliminating close proximity aerosol and droplet pathways by

keeping distance, and excluding transmission caused by fomite and assume a mixed indoor environment. The research shows that the

CO 2 level varies in different environments and activities given a fixed infection rate. However, the link between CO 2 and COVID-19

transmission risk is weak due to many factors that can affect each independently. Indeed, factors affecting CO 2 levels do not affect

the SARS-CoV-2 virus concentration and vice versa ( Eykelbosh, 2021 ). 

9. Summary and conclusion 

The COVID-19 pandemic has greatly changed our lives and livelihoods, and this is also the case for public transportation oper-

ators. Indeed, the pandemic has resulted in plummeting passenger numbers while at the same requiring transit operators to adopt

countermeasures that help ensure the safety of passengers. Having a detailed scientific understanding of the pandemic is critical

for decision makers, citizens, and other stakeholders to minimize the impacts on health, economy and society at large. While the

collective scientific understanding is rapidly increasing, prior to our work, there has been a limited understanding about the specific

risks and mitigation measures related to public transportation. As most transport vehicles comprise confined indoor areas with higher 

than average density of people, they are generally considered a high risk environment for viral transmission. 

We presented a comprehensive and thorough survey that examined the COVID-19 pandemic through the lens of disaster man-

agement, offering a survey of the main transmission mechanisms of COVID-19, exploring factors mediating transmission risks, and 

covering prevention and mitigation strategies that public transport operators can adopt. We also survey and compare different epi-

demiological models that can be used to predict infection rates, and thus assist decision makers into implementing rules to prevent

the spread of the disease. Finally, we also explored mitigation and prevention methodologies for enclosed spaces, including digital,

engineering and other non-pharmaceutical countermeasures. The key findings of the survey include: (i) there is evidence to associate

public transport with transmission of COVID-19 from a mixture of epidemiological studies and modeling studies; (ii) some of the

current research show no association between public transport and risk, especially for trains, where the transmission risk is low; (iii)

many factors affect the transmission risk on public transportation, especially sitting locations (distance to the index patient) and dura-
16 
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tion of the trip; (iv) the air pollution, dry and cool environmental conditions contributes to the transmission of COVID-19; (v) wearing

mask, improved ventilation, cleaning, personal hygiene measure, and keep physical distance greatly reduces the transmission risk; 

(vi) venue closures and restricted mobility benefit only for the limited period of time during which they are in-place; such strategies

provide no long-term benefits if not accompanied by social distancing; and (vii) social distancing and good personal hygiene provide

superior results to restricted mobility. 
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