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Abstract 
Two deep-learning algorithms designed to classify images according to the Gleason grading system that used transfer learning from two 
well-known general-purpose image classification networks (AlexNet and GoogleNet) were trained on Hematoxylin–Eosin histopathology 
stained microscopy images with prostate cancer. The dataset consisted of 439 images asymmetrically distributed in four Gleason grading 
groups. Mean and standard deviation accuracy for AlexNet derivate network was of 61.17±7 and for GoogleNet derivate network was of 60.9±7.4. 
The similar results obtained by the two networks with very different architecture, together with the normal distribution of classification error 
for both algorithms show that we have reached a maximum classification rate on this dataset. Taking into consideration all the constraints, 
we conclude that the resulted networks could assist pathologists in this field, providing first or second opinions on Gleason grading, thus 
presenting an objective opinion in a grading system which has showed in time a great deal of interobserver variability. 
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 Introduction 

Prostate cancer is the second most common cancer 
diagnosed in men, with over 10% of the male population 
being diagnosed during their lifetime [1]. 

Despite the advances in all imaging medical fields 
[ultrasound, computed tomography (CT), magnetic resonance 
imaging (MRI)], the “gold standard” for diagnosis remains 
the microscopic tissue examination performed by a 
pathologist. 

Developed in 1966, the Gleason grading system (GGS), 
together with more recent revisions [2, 3], stratifies prostate 
cancers based on architectural patterns as a reflection of 
their biology. GGS remains the most powerful predictor 
of prognosis in almost all prostate cancer studies, being 
widely used in standardized patient management [4]. The 
GGS classifies prostate cancer growth patterns in five 
grades (some having sub-grades), and summing up the 
two most common grades results the final Gleason score, 
which ranges between two and 10, and which is supposed 
to stratify patient’s outcome. 

Without any intention to alter the role of GGS in 
prognostic and patient management, different studies have 

shown that the system suffers from two major drawbacks: 
the first being related to the grading itself, while the second 
is related to the quantity of the biological product that is 
being analyzed. The first drawback refers to the suboptimal 
interobserver and intraobserver variability, with reported 
discordance ranging from 30% to 53% [5–10], and with 
imprecise differences between classes on standard feature 
extraction algorithms, such as fractal analysis [11–13]. 
The second drawback refers to the fact that the score is 
computed using the dominant and subdominant patterns 
of the cancer. In healthy subjects, the size of the prostate 
is approximately 3×4×5 cm, whereas in pathological 
conditions the size increases three times. The size of the 
prostate, combined with the possible transurethral resection 
of the prostate, produce a considerable sample size thus 
requiring a careful assessment of first and second most 
frequent patterns. 

Taking into consideration the mentioned drawbacks, 
the GGS proves that these tasks are time-consuming if 
they are performed by the pathologist, and also that they 
imply material cost with high interobserver and intra-
observer variability. Hence, this task is suitable for computer-
aided medical diagnosis systems. 
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Multiple computer-aided diagnosis (CAD) systems have 
been proposed for GGS automatization with different 
approaches, from standard artificial intelligence (AI) 
algorithms [14–16] to the newer deep-learning (DL) 
approaches [17–19]. 

Aim 

The aim of current research was to develop a DL 
algorithm that uses transfer learning from well-known 
pre-trained networks capable of classifying histological 
images according to the GGS with high accuracy (ACC). 

 Patients, Materials and Methods 

Patient inclusion, ethical data and image 
retrieval 

We prospectively included 439 images from 83 patients 
who underwent total prostate resection, following a 
diagnosis of prostate cancer, between January 2013 and 
December 2015 at the Municipal Clinical Hospital of 
Cluj-Napoca, Romania. All presumptive diagnoses were 
made by combining clinical and imaging data and confirmed 
through pathology. All patients signed informed consent 
forms and agreed to tissue harvesting for research purposes, 
as per usual Hospital Guidelines. We ascertained that 
our study did not interfere with therapeutic or diagnostic 
procedures. We harvested tissue from whole-organ resection 
specimens for usual diagnosis and staging by two expert 
pathologists; afterwards, images were obtained as per 
the below protocol. 

In the original GGS, revised several times by the author 
himself [20–23], the architectural patterns of tumor 
proliferation were labeled based on the five main classes 
and subtypes. Thus, the Gleason pattern 1 (very rare) is 
characterized by a very well-differentiated proliferation, 
consisting of medium-sized, round or oval, uniform glands, 
arranged very compactly but separated from each other. 
Compared to pattern 1, the glands from pattern 2 have a 
greater variability in size and shape and are separated by 
stromal bays, with an average distance of interglandular 
separation smaller than the diameter of a gland. Pattern 3 
is considered the form with moderate differentiation. 
Gleason described this pattern as having three distinct 
architectural morphological aspects, designated as patterns 
3A, 3B, and 3C. The 3A subtype is characterized by the 
presence of isolated glands of medium size, with a variable 

shape, consisting of elongations, twists and angles that can 
also have sharp angles. Subtype 3B has, in principle, the 
same architectural appearance as pattern 3A, with the only 
difference that the tumor glands are smaller. Subtype 3C 
is composed of ducts or ducts expanded with sieve or 
intraluminal papillary tumor masses which, in accordance 
with the hypothesis that this pattern would really represent 
an intraductal proliferation, have smooth, rounded contours, 
as of relaxed ductal profiles. Pattern 4 is considered a poorly 
differentiated high-grade proliferation. Gleason described 
this pattern as having two distinct morphological aspects 
– patterns 4A and 4B. Subtype 4A – tumor proliferation 
is composed of cells that may have either a fused micro-
acinar arrangement or a cribriform or a papillary one. 
Tumor cells form either infiltrative masses with a totally 
irregular appearance or strings or cords of epithelial 
malignant cells. Subtype 4B – carcinomatous proliferation 
of this type is identical in terms of architectural appearance 
to the other subtype of pattern 4, with the only difference 
that the cells that form it have a clear cytoplasm. Pattern 5 
is the weakest differentiated form of prostate cancer and 
was also divided by Gleason into two subtypes: 5A and 
5B. Subtype 5A resembles the “comedo” type of intra-
ductal breast carcinoma, presenting as tumor masses in 
which the cells have a chordal or cylindrical arrangement, 
with a cribriform, papillary appearance (as in subtype 3C) 
or solid, with smooth, rounded edges, whose central area 
is typically occupied by necrotic detritus. Subtype 5B 
consists of tumor areas with irregular edges formed by 
anaplastic tumor cells. 

The recent revisions simplified somehow the original 
system. Thus, pattern 3 remained with only two subtypes 
mainly (original 3A and 3B). Pattern 4 included cribriform 
glands larger than benign glands and with an irregular 
border, finally consisting of poorly formed glands of either 
cribriform or fused architecture [2, 3, 24]. 

We included in our study 439 Hematoxylin and Eosin 
(HE) images with monotonous patterns that were classified 
according to GGS by two pathologists in four groups: 
Gleason pattern 2 (n=57), Gleason pattern 3 (n=166), 
Gleason pattern 4 (n=182), and Gleason pattern 5 (n=34). 
The dataset had no image with pattern 1. The images, 
32-bit red, green, blue (RGB) color space, were cropped 
at 512-by-512 pixels from whole slide images scanned with 
Leica Aperio AT2, using a 20× apochromatic objective. 
A sample of each pattern is presented in Figure 1. 

 
Figure 1 – Samples from the dataset (HE staining, ×200): (A) Gleason pattern 2; (B) Gleason pattern 3; (C) Gleason 
pattern 4; (D) Gleason pattern 5. 
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Deep neural network algorithms and methods 

Two DL algorithms were developed using transfer 
learning from AlexNet [25] and GoogleNet [26] networks. 

AlexNet is a convolutional neural network that has 
been trained on more than a million images from the 
ImageNet database available free of charge on http://www. 
image-net.org. The network is eight layers deep and 
classifies images into 1000 categories of objects from 
the real world. The network has an input image size of 
227-by-227 pixels, with a 32-bit RGB color space. In 
order to fit the input layer of the network, we resized the 
images at 227-by-227 pixels keeping the 32-bit RGB color 
space. The last layers of the network were replaced in 
order to classify the input images in four classes according 
to the GGS patterns. 

GoogleNet is a convolutional neural network that is 
22 layers deep, also trained on ImageNet. The network 
classifies images in the same 1000 object categories as 
AlexNet. The network has an input image size of 224-
by-224 pixels, with a 32-bit RGB color space. In order to 
fit the input layer of the network, the images processed 
for AlexNet were resized at 224-by-224 pixels keeping 
the 32-bit RGB color space. The last layers of the network 
were replaced in order to classify the input images in four 
classes according to the GGS patterns. 

We used 85% of the images for training and the 
remaining 15% for testing. 

We performed the algorithm implementation and the 
statistical assessment in MATLAB (MathWorks, USA). 

 Results 

DL being a stochastic algorithm, a certain number of 
runs is needed to be performed in order to obtain robust 
and trustworthy results. A suitable statistical power (two-
tailed type of null hypothesis with default statistical power 
goal p≥95% and type I error α=0.05 – level of significance) 
can be achieved through 100 independent computer runs. 
When designing an experiment, one needs to perform 
statistical power analysis together with sample size. 
Precision and ACC may lack due to a low sample size, 
whereas a high sample size may lead to an increase of 
computational and time costs, without a gain in perfor-
mance. The standard 10-fold cross-validation has been used 
in our study. The DL algorithms have been independently 
run 100 times in a complete 10-fold cross-validation cycle. 

When running multiple times a stochastic algorithm, 
we encounter differences between ACCs, hence we need 
to compute also the standard deviation (SD) of the ACCs 
obtained. If we obtain low value SD, then our model is 
more stable. 

In order to perform different statistical tests, we first 
need to verify whether the sample data has a normal 
distribution or not. If the data does not have a normal 
distribution, the results might be affected, due to the 
existence of outliers. In our study, we applied the 
Kolmogorov–Smirnov and the Shapiro–Wilk W tests. 

Mean and SD on 100 algorithm runs for the ACC was 
of 61.17±7 and of 60.9±7.4 for AlexNet and GoogleNet, 
respectively. 

Samples of the training sequences are presented in 

Figure 2 and the confusion matrix from the same runs, 
applied to the whole dataset in Figure 3. 

Due to its simpler architecture, we packed the resulted 
algorithm from AlexNet in a standalone application 
(Microsoft Windows) capable of learning on new image 
datasets, transferring knowledge form pre-trained networks, 
and classifying new images. A preview of the application 
is presented in Figure 4. 

The results of the Kolmogorov–Smirnov and Shapiro–
Wilk W tests are displayed in Table 1. 

Table 1 – Normal distribution assessment 

Kolmogorov–Smirnov 
(K–S) 

Shapiro–Wilk  
(S–W) W Algorithm

K–S max D Lilliefors p S–W W p-level 

AlexNet 0.107 0.2 0.976 0.41 

GoogleNet 0.122 0.1 0.977 0.46 

From Table 1, we can see that regardless the algorithm, 
the sample data is normally distributed. Hence, we can 
proceed to compare how the two algorithms perform using 
the t-test for independent samples. The results could be 
objectively compared because both algorithms have been 
run in the same conditions (100 computer-runs/10-fold 
cross validation). 

The results from the t-test are displayed in Table 2. 
Table 2 – Statistical assessment the means of the two 
algorithms 

Variable t-test / p-level 

AlexNet vs. GoogleNet 0.62 / 0.53 

As shown in Table 2, there is no significant difference 
in means (p-level >0.05) between the two networks con-
cerning the testing performances. Thus, both algorithms 
perform the same on this dataset. 

 Discussions 

When using the GGS to stratify the aggressiveness of 
prostate cancer, pathologists are often confronted with a 
classification problem pertaining to the varying nature of 
tissue loss and resulting morphology. Thus, it is impera-
tive that common morphological descriptors should be 
identified and applied in medical practice, in order to 
unify the opinions of different clinician pathologists and 
provide a closer-to-accurate prognosis. Survival as well 
as different approaches for treatment depend on this step. 
Diagnosis between malignant and benign histological 
tissue is possible by using semi-automated computer-
assisted methods [27, 28]. Previous approaches relied on 
identifying distinctive features [29–31] and training neural 
networks to identify and quantify such pre-determined 
and operator-dependent markers. Recently, DL greatly 
reduced this effort, at the expense of transparency – 
basically, the technique can be labeled as a “black box” 
approach, since the operator is “blinded” to the way, the 
computer identifies the significant features. As previous 
authors stated, this may be a serious impediment towards 
widespread acceptance and regulatory approval [32]. 

In our study, we used digitized images of prostate 
cancer microscopy, classified as Gleason patterns 2 to 5. 
We have proven here that it is feasible to use a DL 
approach to tackle this medical classification problem, 
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irrespective of the network architecture – either using 
AlexNet or GoogleNet, which produced comparable results. 
This computerized approach may lead to successful 
implementation of medical-grade tools aimed to both 
second the opinion of a medical expert, or to provide 
intermediate diagnosis in tertiary medical centers that 

lack immediate access to a pathologist expert or which 
can rely on telemedicine for faster decision making. In 
our opinion, it is not, however, advisable to not involve 
a human specialist in the process, since the algorithms 
also have specific limitations that are inherent due to the 
imperfect nature of the Gleason scoring system. 

 
Figure 2 – Training process: (A) AlexNet; (B) GoogleNet. 

 
Figure 3 – Confusion matrix heatmap: (A) AlexNet; (B) GoogleNet. 
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Figure 4 – Standalone prostate cancer image classifier 
application interface. 

A common observed problem of the GGS scoring is 
that score 7 (grades 4+3) cancers were associated with a 
three-fold increase in prostate cancer outcome compared 
with grades 3+4 cancers [95% confidence interval (CI), 
1.1 to 8.6) [33]. The same conclusion was reported  
by Chan et al. (2000) [34]; the authors have concluded 
that Gleason score 4+3 tumors had an increased risk  
of progression independent of stage and margin status 
(p<0.0001). They also reported that the 5-year actuarial 
risk of progression was 15% for Gleason score 3+4 and 
40% for 4+3 tumors. A close look to the data in Figure 4 
shows a higher error rate of the classification exactly 
between pattern 3 and pattern 4. Thus, AlexNet incorrectly 
labeled five images with pattern 4 as pattern 3 and eight 
images with pattern 3 as pattern 4. GoogleNet incorrectly 
labeled nine images with pattern 4 as pattern 3, and 10 
images with pattern 3 as pattern 4. This represents 25% 
of all the errors of the AlexNet classifier and 40% of 
GoogleNet. This can be explained on one hand by the fact 
the classifier was trained on images labeled by pathologists 
and is thus subjected to their subjectivity and, on the other 
hand, it could show a problem related to the GGS itself 
as reports show higher interobserver variability between 
these classes. In a similar report [35], the 24 cases that 
had score changes, five cases were upgraded from grade 
3 to 4 and 15 were downgraded from grade 4 to 3, this 
representing 80% of the reported changes. 

This study has limitations that would need to be 
addressed to prior to clinical usage, and these will need 
future work and improvements. However, based on its 
performance, the resulted application could be used for 
research purposes. 

First, the specimens that were used to develop the 
DL algorithms originated from a single medical center, 

the slides were stained in one laboratory, using only the 
HE staining, the digital data were acquired using a single 
slide scanner, and, the classes are unbalanced. Only after 
the results would be confirmed on multi-center studies, 
with different staining protocols, the images would be 
digitalized using slide scanners from different vendors 
and the dataset would be large enough and balanced, then 
the proposed method could be considered for clinical 
deployment. 

Second, the study focuses on classifying images of 
acinar prostatic adenocarcinoma excluding other types 
of prostate cancer or invading nearby tumors, and there 
were no normal glands available as reference. Used 
incorrectly, it could generate miss classification and miss 
understanding. 

Last, a more serious limitation is the subjective nature 
of the GGS. Inter-pathologist variability is a non-negligible 
aspect, as also shown in other studies [18], and it can  
be overcome considering two different approaches. One 
possible approach would be to replace the “gold standard” 
classification – GGS – with a simpler and more objective 
one. This is unlikely due to the large usage of the GGS 
in practice. From our experience [36, 37], a possible 
alternative could be the Srigley grading system, which, 
at least, has more clearly defined classes. Another possible 
approach could be the use of a large trading set, thus 
reducing the error probability. 

We conducted our study on resection specimens; 
however, CAD on needle core biopsies would have a 
higher clinical impact. Since there is no difference on 
the GGS training and functionality for core biopsies [19], 
we expect a constant behavior for the classifiers, but the 
theory remains to be proved in further work. 

Different from other approaches, this study describes 
the transfer learning from general-purpose DL networks to 
a diagnostic system of prostate cancer grading through 
GGS using routine histopathology images. The technique 
has been successfully used on ultrasound and MRI images 
[38–41]. 

 Conclusions 

In this paper, we present two DL algorithms design to 
classify images according to GGS. The algorithms use 
transfer learning from two well-known general-purpose 
image classification DL networks – AlexNet and GoogleNet 
–, and are further trained on histopathology images of 
prostate cancer. With a reported ACC of 61.17±7 for 
AlexNet and of 60.9±7.4 for GoogleNet, with a small 
dataset of only 439 asymmetrically distributed cases in 
four GGS classes, we find the result to be promising. The 
similar results obtained by the two networks with very 
different architecture, together with the normal distribution 
of classification error for both algorithms show that we 
have reached a maximum classification rate on this dataset. 
With further evaluation, the resulted networks could assist 
pathologists by presenting an objective first or second 
opinion in a grading system with high interobserver and 
intraobserver variability. 
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