
Large-Scale Metagenome Assembly Reveals Novel Animal-
Associated Microbial Genomes, Biosynthetic Gene Clusters,
and Other Genetic Diversity

Nicholas D. Youngblut,a Jacobo de la Cuesta-Zuluaga,a Georg H. Reischer,b,c Silke Dauser,a Nathalie Schuster,b

Chris Walzer,d,e Gabrielle Stalder,d Andreas H. Farnleitner,b,c,f Ruth E. Leya

aDepartment of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
bTU Wien, Institute of Chemical, Environmental, and Bioscience Engineering, Research Group for Environmental Microbiology and Molecular Diagnostics, Vienna, Austria
cICC Interuniversity Cooperation Centre Water and Health, Vienna, Austria
dResearch Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
eWildlife Conservation Society, Bronx, New York, USA
fResearch Division Water Quality and Health, Karl Landsteiner University for Health Sciences, Krems an der Donau, Austria

ABSTRACT Large-scale metagenome assemblies of human microbiomes have pro-
duced a vast catalogue of previously unseen microbial genomes; however, compara-
tively few microbial genomes derive from other vertebrates. Here, we generated
5,596 metagenome-assembled genomes (MAGs) from the gut metagenomes of 180
predominantly wild animal species representing 5 classes, in addition to 14 existing
animal gut metagenome data sets. The MAGs comprised 1,522 species-level genome
bins (SGBs), most of which were novel at the species, genus, or family level, and the
majority were enriched in host versus environment metagenomes. Many traits distin-
guished SGBs enriched in host or environmental biomes, including the number of
antimicrobial resistance genes. We identified 1,986 diverse biosynthetic gene clus-
ters; only 23 clustered with any MIBiG database references. Gene-based assembly re-
vealed tremendous gene diversity, much of it host or environment specific. Our
MAG and gene data sets greatly expand the microbial genome repertoire and pro-
vide a broad view of microbial adaptations to the vertebrate gut.

IMPORTANCE Microbiome studies on a select few mammalian species (e.g., humans,
mice, and cattle) have revealed a great deal of novel genomic diversity in the gut
microbiome. However, little is known of the microbial diversity in the gut of other
vertebrates. We studied the gut microbiomes of a large set of mostly wild animal
species consisting of mammals, birds, reptiles, amphibians, and fish. Unfortu-
nately, we found that existing reference databases commonly used for metag-
enomic analyses failed to capture the microbiome diversity among vertebrates.
To increase database representation, we applied advanced metagenome assembly
methods to our animal gut data and to many public gut metagenome data sets that
had not been used to obtain microbial genomes. Our resulting genome and gene
cluster collections comprised a great deal of novel taxonomic and genomic diversity,
which we extensively characterized. Our findings substantially expand what is known
of microbial genomic diversity in the vertebrate gut.

KEYWORDS animal microbiome, gut, metagenome assembly, novel diversity,
antimicrobial resistance, biosynthetic gene cluster, vertebrate-microbe

The vertebrate gut microbiome comprises a vast amount of genetic diversity, yet
even for the most well-studied species, such as humans, the number of microbial

species lacking a reference genome was recently estimated to be 40 to 50% (1).
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Uncovering this “microbial dark matter” is essential for understanding the roles of
individual microbes, their intra- and interspecies diversity within and across host
populations, and how each microbe interacts with each other and the host to mediate
host physiology in a myriad number of ways (2). On a more applied level, characterizing
novel gut microbial diversity aids in the bioprospecting of novel bioactive natural
products, catalytic and carbohydrate-binding enzymes, and probiotics, etc., along with
aiding in the discovery and tracking of novel pathogens and antimicrobial resistance
(AMR) (3).

Recent advances in culturomic approaches have generated thousands of novel
microbial genomes (4–6), but the throughput is currently far outpaced by metagenome
assembly approaches (7). However, such large-scale metagenome assembly-based
approaches have not been as extensively applied to most nonhuman vertebrates. The
small amount of metagenome reads classified in some recent studies of the rhinoceros,
chicken, cod, and cow gut/rumen microbiomes suggests that databases lack much of
the genomic diversity in less studied vertebrates (8–11). Indeed, the limited number of
studies incorporating metagenome assembly hint at the extensive amounts of as-yet-
novel microbial diversity across the �66,000 vertebrate species on our planet.

Here, we developed an extensive metagenome assembly pipeline and applied it to
a multispecies data set of microbiome diversity across vertebrate species comprising 5
classes, Mammalia, Aves, Reptilia, Amphibia, and Actinopterygii, with �80% of samples
obtained from wild individuals (12), combined with data from 14 published animal gut
metagenomes. Moreover, we also applied a recently developed gene-based metag-
enome assembly pipeline to the entire data set in order to obtain gene-level diversity
for rarer taxa that would otherwise be missed by genome-based assembly (13, 14). Our
assembly approaches yielded a great deal of novel genetic diversity, which we found
to be largely enriched in animals versus the environment and, to some degree,
enriched in particular animal clades.

RESULTS
Animal gut metagenomes from a highly diverse collection of animals. We

generated animal gut metagenomes from a breadth of vertebrate diversity spanning
five classes: Mammalia, Aves, Reptilia, Amphibia, and Actinopterygii (the “multispecies”
data set) (Fig. 1). In total, 289 samples passed our read quality control (QC), with
3.4e6 � 5e6 (standard deviation [SD]) paired-end reads per sample, resulting in a mean
estimated coverage � SD of 0.54 � 0.14 (see Fig. S1 in reference 15). One hundred
eighty animal species were represented, with up to 6 individuals per species (mean of
1.6). Most individuals were wild (81%).

Our read quality control pipeline included stringent filtering of host reads; some
samples contained large amounts of reads mapping to vertebrate genomes (up to 74%;
6% � 17% SD) (Fig. 1). Gut content samples contained a significantly large amount of
host reads (13.5% � 21.6% SD) versus feces metagenomes (4.7% � 12.7% SD; Wilcox P
value of �1.8e�7) (see Table S1A in the supplemental material). We mapped all
remaining reads to a custom comprehensive Kraken2 database built from the Genome
Taxonomy Database, release 89 (GTDB-r89). Still, many samples had a low percentage
of mapped reads (43% � 22% SD) (Fig. 1), with 29% of the samples having �20%
mapped reads.

Discovery of novel diversity by large-scale metagenome assembly. Our com-
prehensive metagenome assembly pipeline generated 4,374 nonredundant metagenome-
assembled genomes (MAGs). After quality control and dereplication (see Materials and
Methods), 296 MAGs remained, with mean percent completeness and contamination �

SD of 84% � 14% and 1.5% � 1.2%, respectively (see Fig. S2 and supplemental results
in reference 15).

We expanded our MAG data set by applying our assembly pipeline to 14 publicly
available animal gut metagenome data sets in which no MAGs have been generated by
de novo metagenome assembly (Table S1B). Our metagenome selection included 554
samples from members of the Mammalia (dogs, cats, woodrats, pigs, whales, rhinoc-
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eroses, pangolins, and nonhuman primates), Aves (geese, kakapos, and chickens), and
Actinopterygii (cod). We applied our assembly pipeline to each individual data set and
generated a total of 5,301 nonredundant MAGs (see Fig. S3 and supplemental results
in reference 15). The substantially higher number of MAGs from these 14 data sets than
in our single multispecies data set is likely due to the larger number of samples and the
high sequencing depth for many of those samples (e.g., we used 2 billion paired-end
reads from the dog gut microbiome data set [16]).

We combined all MAGs and dereplicated at 99.9 and 95% average nucleotide
identities (ANIs) to produce 5,596 nonredundant MAGs and 1,522 species-level genome
bins (SGBs), respectively (Table S2A and B). Of the 5,596 MAGs, 2,773 (50%) had a
completeness of �90%. Of the 1,522 SGBs, 1,184 (78%) lacked a �95% ANI match to
GTDB-r89, 266 (17%) lacked a genus-level match, and 6 lacked a family-level match
(Fig. 2) (see Fig. S4 in reference 15). Mapping taxonomic novelty onto a multilocus

FIG 1 Large percentage of unmapped reads, even when using multiple comprehensive metagenome profiling databases. The dated host species phylogeny
was obtained from http://timetree.org, with branches colored by host class. From inner to outer rings, the data mapped onto the tree are host diet, host
captive/wild status, and mean number of metagenome reads mapped to various host-specific, nonmicrobial, and microbial databases. Note that captive/wild
status sometimes differs among individuals of the same species. The databases are (i) representative of each publicly available genome from the host species
(“vertebrata host genome”), (ii) all entries in the NCBI nucleotide (nt) database with taxonomy identifications matching host species (“vertebrata host nt”), (iii)
the same as the previous category but with all Vertebrata sequences included, (iv) the Kraken2 “plant” database, (v) the Kraken2 “fungi” database, (vi) the
Kraken2 “protozoa” database, and (vii) a custom bacterial and archaeal database created from the Genome Taxonomy Database, release 89 (“GTDB-r89”). Reads
were mapped iteratively to each database in the order shown in the key (top to bottom), with only unmapped reads included in the next iteration. “Unclassified”
reads did not map to any database, which were used along with reads mapping to GTDB-r89 for downstream analyses (“microbial � unclassified”).
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phylogeny of all 1,522 SGBs revealed that novel taxa were rather dispersed across the
phylogeny (Fig. 2).

We also assessed the novelty of our SGBs relative to the UHGG, a comprehensive
human gut genome database, and found that only 31% of our SGBs had �95% ANI to
any of the 4,644 UHGG representatives, and this overlap increased to only 34% at a 90%
ANI cutoff.

Our SGB collection mostly consisted of MAGs assembled from a few species in the
multistudy data set, suggesting that the SGBs may not be representative of taxa found
in other, more distantly related vertebrates. To assess the level of representation, we
determined the prevalence of all SGBs across all multispecies metagenomes (see Fig. S5
in reference 15). The host species with the highest number of observed SGBs tended to
be those comprising the multistudy data set (e.g., pigs and primates); however, SGBs
were frequently observed across the host phylogeny (41 � 61 [SD] SGBs per host),
indicating that the SGB collection was generally representative of the vertebrate gut
microbiome.

Integrating the 1,522 SGBs into our custom GTDB Kraken2 database significantly
increased the percentage of reads mapped (P � 0.005 by a paired t test) (see Fig. S6

FIG 2 A phylogeny of all 1,522 SGBs. From innermost to outermost rings, the data mapped onto the phylogeny are GTDB phylum-level taxonomic
classifications, class-level taxonomies for Actinobacteriota, class-level taxonomies for Firmicutes, class-level taxonomies for Proteobacteria, taxonomic novelty,
significant enrichment in host gut or environmental metagenomes, and significant enrichment in mammals or other animals in our multispecies gut
metagenome data set. The phylogeny was inferred from multiple conserved loci via PhyloPhlAn. Orange dots on the phylogeny denote bootstrap values in
the range of 0.7 to 1. The phylogeny is rooted on the last common ancestor of Archaea and Bacteria.
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in reference 15). The percent increase varied from �1 to 62.8% (mean � SD of
5.3% � 6.7%) among animal species but did not appear biased to just pigs, dogs, or
other vertebrate species in the multistudy data sets that we incorporated (see Fig. S7
in reference 15), which corresponds with our analysis of SGB prevalence across verte-
brate hosts (see Fig. S5 in reference 15).

Enrichment of SGBs among animal clades. While the MAGs generated here derive
from animal gut metagenomes, many of these taxa might be transient in the host and
actually more prevalent in the environment. We tested this by generating a “host-
environment” metagenome data set comprising 283 samples from 30 BioProjects (17
environmental and 13 host associated) (Fig. 3A). We found 932 of the 1,522 SGBs (61%)
to be significantly enriched in the host metagenomes (DESeq2 adjusted P value of
�0.01) (Fig. 3B). The host-enriched SGBs (host-SGBs) were taxonomically diverse,
comprising 22 phyla. In contrast, only 15 SGBs (1%) were environment enriched
(env-SGBs), all of which belonged to either the Actinobacteriota or Proteobacteria
(Fig. 3B). The only SGBs that were not significantly enriched in either group belonged
to the Actinobacteriota or Proteobacteria, along with two SGBs from the Firmicutes A
phylum. Mapping these data onto the SGB phylogeny revealed phylogenetic clustering
of the environment-enriched SGBs (Fig. 2).

We investigated the traits of the host- and environment-enriched SGBs and found
many predicted phenotypes to be more prevalent in one group or the other (Fig. 3C;
Table S2C). A total of 67 traits were predicted based on the genomic content of certain
Pfam domains (17). Almost all env-SGBs were aerobes (93%), which may aid in trans-

FIG 3 (A) Summary of the number of samples per biome for our multienvironment metagenome data set selected from the MGnify database. (B) Number of
SGBs found to be significantly enriched in relative abundances in host (positive log2-fold change [“l2fc”]) versus environmental (negative l2fc) metagenomes.
Values shown are the number of MAGs significantly enriched (blue) in either biome or not found to be significant (red). (C) Host- and environment-enriched
SGBs have distinct traits. Phenotypes predicted based on MAG gene content (via Traitar [26]) are summarized for the SGBs significantly enriched in host or
environmental metagenomes (DESeq2 adjusted P value of �0.01) or neither biome (“Neither” in the x axis facet). Note the difference in the x axis scale. Asterisks
denote phenotypes significantly more prevalent in SGBs of the particular biome than in a null model of 1,000 permutations in which biome labels were shuffled
among SGBs. See Table S3A in the supplemental material for all DESeq2 results. ONPG, o-nitrophenyl-�-D-galactopyranoside.
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mission between the environment and host biomes. In contrast, 87% of host-SGBs were
anaerobes. Furthermore, all env-SGBs could generate catalase and were bile suscepti-
ble, while both phenotypes were sparse in host-SGBs (Fig. 3C). Carbohydrate metab-
olism also differed, with most host-SGBs predicted to consume various tri-, di-, and
monosaccharides. In contrast, env-SGBs were enriched in phenotypes associated with
motility, nitrogen metabolism, and the breakdown of heterogeneous substrates (e.g.,
cellobiose metabolism).

We also compared SGB enrichment in mammals versus nonmammals in our “mul-
tispecies” metagenome data set and found 361 SGBs (24%) to be significantly enriched
in mammals, while 22 (1%) were enriched in nonmammals (DESeq2 adjusted P value of
�0.01) (see Fig. S2C in reference 15). Interestingly, 100% of SGBs in the two archaeal
phyla (Halobacteria and Euryarchaeota) were enriched in mammals. Also of note, most
of the Verrucomicrobiota SGBs (87%) were enriched in mammals. The only 2 phyla with
�10% of SGBs enriched in nonmammals were Proteobacteria (29%) and Campylobac-
teria (25%).

In contrast to our assessment of phenotypes distinct to host- or env-SGBs, we did
not observe such a distinction of phenotypes among SGBs enriched in Mammalia or
nonmammal gut metagenomes (see Fig. S8 in reference 15). Certain phenotypes such
as anaerobic growth and lactose consumption were more prevalent among mammal
species, but they were not found to be significantly enriched relative to the null model.

Little is known about the distribution of antimicrobial resistance genes in the gut
microbiomes of most vertebrate species (18); therefore, we investigated the distribu-
tion of AMR genes among MAGs enriched in the environment versus host biomes. We
found a mean � SD of 35 � 26 AMR markers per genome (see Fig. S9A in reference 15).
The high average was largely driven by Proteobacteria and Campylobacter genomes,
which had means of 387 and 161 AMR markers per genome, respectively. The 5 most
abundant markers were ruvB, galE, tupC, fabL (ygaA), and arsT (see Fig. S9A in reference
15). The more abundant markers predominantly belonged to Firmicutes A, while
Proteobacteria comprised larger fractions of the less abundant markers. Environment-
enriched taxa contained substantially more AMR genes than host-enriched taxa, and
the same was true for non-Mammalia versus Mammalia-enriched taxa (see Fig. S9B and
C in reference 15).

MAGs reveal novel secondary metabolite diversity. We identified 1,986 biosyn-
thetic gene clusters (BGCs) among all 1,522 SGBs. A total of 28 different products were
predicted, with the most abundant being nonribosomal peptide synthetases (NRPSs)
(n � 473), sactipeptides (n � 307), and arylpolyenes (n � 291) (see Fig. S10 in reference
15). BGCs were identified in 2 archaeal and 18 bacterial phyla. MAGs in the Firmicutes
A phylum contained the most BGCs (n � 764; 38%), while the Bacteroidota and Acti-
nobacteriota phyla possessed 381 (19%) and 272 (14%) BGCs, respectively (see Fig. S10
in reference 15). Still, Actinobacteriota SGBs possessed the highest average number of
BGCs per genome (16.3 BGCs), followed by Eremiobacterota (9), Proteobacteria (7.7), and
Halobacterota (5.1).

Clustering all 1,986 BGCs by BiGSCAPE generated 1,764 families and 1,305 clans,
with clans being a second, coarser level of clustering (19). Only 8 clans (comprising 23
BGCs) included any MIBiG database reference, suggesting a high degree of novelty (see
Fig. S11 in reference 15). Mapping the BGCs on a genome phylogeny of all species
containing �3 BGCs (233 SGBs) revealed that the number of BGCs per genome was
somewhat phylogenetically clustered: the five genomes with the most BGCs belonged
to either the Actinobacteria or Gammaproteobacteria (Fig. 4). Notably, these clades
contained a high number of host-SGBs. Of these 233 SGBs, the majority were taxo-
nomically novel, with 62% lacking a species-level match to GTDB-r89 and 18% lacking
a genus-level match (Fig. 4). To determine which of the BGCs are most prevalent across
animal hosts, we quantified the prevalence of each BGC family across our multispecies
metagenome data set and mapped it to the genome phylogeny (Fig. 4) (see Fig. S12 in
reference 15). Of the 1,543 BGC families found in the 233 SGBs, 83 were present in
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�25% of the animal metagenomes, with ribosomally synthesized and posttranslation-
ally modified peptides (RiPPs) being by far the most prevalent (up to a 98% prevalence
of individual BGC families) and also found in species from a number of phyla.

Large-scale gene-based metagenome assembly reveals novel diversity. We
applied gene-based assembly methods to our combined metagenome data set (14),
which generated a total of 150,718,125 nonredundant coding sequences (average
length of 179 amino acids). Clustering at 90 and 50% sequence identities resulted in
140,225,322 and 6,391,861 clusters, respectively. Only 16.9 and 11.3% of each respec-
tive cluster set mapped to the UniRef50 database, indicating that most coding se-
quences were novel. The clusters comprised 88 bacterial and 11 archaeal phyla, 80 of
which were represented by �100 clusters, with 60 lacking a cultured representative.
Proteobacteria (mostly Gammaproteobacteria), Firmicutes, and Bacteroidetes made up

FIG 4 Phylogeny of all SGBs (n � 233) with �3 BGCs identified by AntiSMASH. From innermost to outermost rings, the data mapped onto the phylogeny are
(i) GTDB phylum-level taxonomic classifications, (ii) taxonomic novelty, (iii) significant enrichment in host or environmental metagenomes, (iv) the prevalence
of BGC families across the multispecies metagenome data set, and (v) the number of BGCs identified in the MAG. Prevalence is the maximum of any BGC family
for that BGC type, and only BGC families with a prevalence of �25% are shown. The phylogeny is a pruned version of that shown in Fig. 2. Orange dots on
the phylogeny denote bootstrap values in the range of 0.7 to 1. “NPRS”, “PKS,” and “RiPPs” stand for nonribosomal peptide synthetase, polyketide synthase,
and ribosomally synthesized and posttranslationally modified peptides, respectively.
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92.2% of all clusters (Fig. 5A). The proportion of clusters belonging to each Clusters of
Orthologous Groups (COG) functional category was largely the same for the more
abundant bacterial phyla (Fig. 5B), while more variation was seen among Euryarchaeota
(Fig. 5C). The dominant 7 phyla showed substantial variation in the number of clusters
associated with various KEGG pathway categories (see Fig. S14 in reference 15). For
instance, high proportions of Fusobacteria and Tenericutes clusters were associated with
the “nucleotide metabolism,” “replication and repair,” and “translation” categories. A
total of 87,573 clusters were annotated as CAZy families, with GT51, GH13, GH18, GT02,
and GT04 representing 48% of all CAZy-annotated clusters (Fig. 5E). Of the 12 phyla
with the most CAZy family clusters, there were substantial differences in the propor-
tions of clusters falling into each family (Fig. 5F).

Biome enrichment of gene clusters from specific phyla. We mapped reads from
our host-environment metagenome data set to each cluster and used DESeq2 to
identify those significantly enriched (adjusted P value of �1e�5) in each biome. Most

FIG 5 Summary of the 50% sequence identity clusters generated from the gene-based metagenome assembly of the combined data set. (A) Total number of
gene clusters per phylum. For clarity, only phyla with �100 clusters are shown. Labels on each bar list the number of clusters (and percentage of the total).
(B) Number of bacterial gene clusters per phylum and COG category. The “P” facet label refers to “poorly characterized.” (C) Number of archaeal gene clusters
per class (all belonging to the Euryarchaeota) and COG category. (D) Number of viral gene clusters per COG category. (E) Number of clusters annotated as each
CAZy family. For clarity, only phyla with �100 clusters are shown. Labels next to each bar denote the number of clusters. (F) Number of clusters per CAZy family,
broken down by phylum. CAZy families and phyla are ordered by most to least clusters. For clarity, only CAZy families and phyla with �100 total clusters are
shown.
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strikingly, the same functional groups were enriched in both biomes, regardless of the
grouping (i.e., COG functional category, KEGG pathway, or CAZy family); however, the
gene clusters belonged to different microbial phyla (Fig. 6) (see the supplemental
results in reference 15). For instance, nearly all COG categories for gene clusters
belonging to Proteobacteria were environment enriched, while the same COG catego-
ries for clusters belonging to the Firmicutes and Bacteroidetes were host enriched. In
contrast, functional groups of certain phyla were enriched in one biome, while different
groups were enriched in the other, indicating within-phylum differences in functional
contents and habitat distributions. For instance, Fusobacteria KEGG pathways were
predominantly host enriched, but protein export, the bacterial secretion system, and
aminoacyl-tRNA biosynthesis were environment enriched, indicating that these 3 path-
ways were more predominant in environment-enriched members of the Fusobacteria
(Fig. 6B). Overall, these results suggest that both biomes select for these same microbial
functions, but the microbes involved often differ at coarse taxonomic scales.

We also assessed gene cluster enrichment in Mammalia versus non-Mammalia and
found fewer significantly enriched features, which may be due to the smaller metag-
enome sample size or less pronounced partitioning of functional groups among biomes
(see Fig. S15 and the supplemental results in reference 15). Still, we again observed that
both biomes were enriched for the same microbial functions, but these belonged to
different coarse taxonomic groups. To assess whether abundance estimations were
substantially erroneous due to mismapping of metagenome reads to the gene clusters,
we reran the analysis with stricter DIAMOND mapping parameters but observed similar
findings, even though 48% fewer gene clusters were detected in any metagenome (see
Fig. S16 in reference 15).

Functional metagenome profiling benefits from our gene catalogue. Finally, we
integrated our gene catalogue into a custom HUMAnN2 database built from GTDB-r89
and found that this combined database substantially increased the mappability of

FIG 6 Enrichment of gene clusters grouped by phylum and COG category (A), KEGG pathway (B), or CAZy family (C). Only groupings significantly enriched in
abundance (DESeq2 adjusted P value of �1e�5) in either biome are shown. Only gene clusters observed in at least 25% of the metagenomes were included.
For clarity, only KEGG pathways enriched in �7 phyla are shown, and only CAZy families enriched in �1 phylum are shown. Note that the axes are flipped in
panel B relative to panels A and C. See Tables S5A to C in the supplemental material for all DESeq2 results. TCA, tricarboxylic acid.
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reads from our multispecies metagenome data set (see Fig. S17 and the supplemental
results in reference 15).

DISCUSSION

Our MAG and gene cluster data sets, derived from 289 newly generated metag-
enomes from 180 vertebrate species, along with 544 metagenomes from 14 publicly
available animal gut metagenome data sets, substantially helps to expand the breadth
of cross-species gut metagenome comparisons (Fig. 1 and 5). While metagenomics is
rapidly expanding in popularity (7), most analyses of metagenomic data suffer from a
reliance on incomplete reference databases (20), which we show to be acutely prob-
lematic for the gut microbiomes of most vertebrates in our data set (Fig. 1). Grossly
incomplete surveys of microbial diversity can lead to incorrect findings on community
assembly in the vertebrate gut (21). Although our data set has only partially revealed
this unknown diversity, it substantially improves reference database coverage at both
the genome and gene levels and also provides an estimate of the incompleteness of
existing reference databases.

A major contribution of this study is the extensive MAG collection that we generated
by assembling the metagenomes of our multispecies data set together with 14 other
animal gut metagenome data sets from understudied host species. This collection
includes 1,184, 266, and 6 genomes from novel species, genera, and families, respec-
tively (Fig. 2) (see Fig. S4 in reference 15). Moreover, we found little overlap (31%)
between our MAG collection and the extensive human microbiome genome catalogue
comprising the UHGG, which underscores its taxonomic novelty. We also showed
substantial SGB prevalence across all 5 vertebrate taxonomic classes (see Fig. S5 in
reference 15), indicating that our MAG collection is representative of microbes found
across the vertebrate taxonomy. Our MAG collection, once combined with the GTDB
(22), improved our ability to classify reads in our multispecies metagenome data set
(see Fig. S6 in reference 15), which is critical for accurately assessing gut microbiome
diversity across vertebrates. Although MAGs have been criticized for their incomplete-
ness and potentially high prevalence of misassemblies (23), we note that (i) the overall
completeness of our MAGs was rather high (90% median completeness), (ii) complete
genomes are not required for accurate taxonomic profiling (24), and (iii) the
prevalence of misassemblies among MAGs is likely quite low when using state-of-
the-art assembly and binning approaches (25). Still, researchers who may utilize this
set of MAGs should use caution when analyzing individual single nucleotide
polymorphisms (SNPs), plasmids, genomic islands, or other potentially missing or
misassembled genomic features (26).

We investigated the distribution of our MAGs across environment and host biomes
to elucidate the diversity of host-microbe symbiosis in the vertebrate gut. Microbe-host
symbiosis spans the continuum from free-living microbes that can simply survive
passage through the host gut to obligate symbioses (27). Therefore, MAGs enriched in
the environment versus the host would indicate a weak association, while the opposite
enrichment would suggest a more obligate symbiosis. We provide evidence of host
specificity for the majority of SGBs, while a few Proteobacteria and Actinobacteria SGBs
were environment enriched. When considering just host-associated metagenomes,
these env-SGBs were generally enriched in nonmammals (Fig. 2 and 3) (see Fig. S8 in
reference 15). This is consistent with the hypothesis that mixed-mode transmission,
especially between environmental sources and hosts, is more commonplace in non-
mammalian gut microbiome community assembly than in mammals (28).

Our trait-based analysis of SGBs supports the notion that host-enriched taxa are
adapted for a symbiotic lifestyle, while environment-enriched taxa are adapted for a
free-living or facultative symbiosis lifestyle (Fig. 3). For instance, anaerobes comprised
almost all host-enriched SGBs, while environment-enriched SGBs were aerobes or
facultative anaerobes and generally motile, which could be highly beneficial for trans-
mission between the environment and gut biomes. Indeed, a recent directed evolution
experiment showed that selecting for interhost migration can generate bacterial strains
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with increased motility (29), and a trait-based study of the human infant gut micro-
biome showed that later stages of succession are dominated by taxa adapted to the
anoxic gut (30).

By assessing SGB enrichment in Mammalia versus non-Mammalia metagenomes, we
elucidated the specificity of host-microbe symbioses in the gut across large evolution-
ary distances. More SGBs were enriched in mammals than in nonmammals (Fig. 2) (see
Fig. S8 in reference 15), as we observed in our previous 16S rRNA assessment of these
vertebrate clades (12). Few traits differed among SGBs enriched in either biome (see Fig.
S8 in reference 15), which may indicate that the traits assessed are similarly required for
adaptation to each host clade, even at this coarse evolutionary scale.

Vertebrates both play a critical role in the spread of antimicrobial resistance and also
have been sources of novel antibiotics and other natural products (18, 31). We inves-
tigated BGC and AMR diversity in our MAG collection and observed a high diversity of
BGC products, but very few of the BGCs clustered into families with experimentally
characterized BGCs from the MIBiG database (see Fig. S9 and S10 in reference 15). This
contrasts with findings that only �10% of BGCs in the human microbiome are unchar-
acterized (32), which is likely due to the limited study of natural products in the gut
microbiome of nonhuman vertebrates (33, 34). We found NRPS-producing BGCs to be
prevalent among the Firmicutes SGBs, which is similar to a recent assessment of 501
genomes from rumen isolates in which thousands of BGCs were identified (35). Still,
RiPPs were most prevalent across all vertebrate clades, which expands upon observa-
tions of the high prevalence of this BGC class in the gut microbiome of humans (Fig. 2
and 4) (32).

By combining our AMR marker screen with our SGB biome enrichment analysis, we
were able to characterize how AMR is associated with various degrees of symbiosis (see
Fig. S9 in reference 15), which is important for understanding AMR reservoirs (18, 36).
Our findings indicate that the AMR reservoir may be greater for free-living and
facultatively symbiotic taxa than for microbes with stronger host associations (see Fig.
S9 in reference 15). Indeed, some of the most abundant AMR markers were associated
with metal resistance (e.g., ruvB, tupC, and arsT), which may reflect a lifestyle in which
the microbe is exposed to environmental sources of metals (37, 38).

While MAGs provide a powerful means of investigating species- and strain-level
diversity within the vertebrate gut microbiome, the approach is limited to only rela-
tively abundant taxa with enough coverage to reach adequate assembly contiguity
(39). Our gene-based assembly approach allowed us to greatly expand the known gene
catalogue of the vertebrate gut microbiome beyond just the abundant taxa, with a total
of �150 million nonredundant coding sequences generated, comprising 88 bacterial
and 11 archaeal phyla (Fig. 5). In comparison, recent large-scale metagenome assem-
blies of the gut microbiome from chickens, pigs, rats, and dogs have generated 7.7
million, 9.04 million, 7.7 million, 5.1 million, and 1.25 million nonredundant coding
sequences, respectively (8, 16, 40, 41). It is also illustrative to consider that a recent
large-scale metagenome assembly of cattle rumen metagenomes generated 69,678
nonredundant genes involved in carbohydrate metabolism (9), while our gene collec-
tion comprised substantially more CAZy-annotated gene clusters (n � 87,573), even
after collapsing at 50% sequence identity. The increased mappability that we achieved
across all 5 vertebrate clades when incorporating our gene catalogue into our func-
tional metagenome profiling pipeline demonstrates how our gene collection will likely
aid future vertebrate gut metagenome studies (see Fig. S17 in reference 15).

Our assessment of gene cluster abundances in metagenomes from environment-
and host-associated biomes illuminates how microbiome functioning and taxonomy
are distributed across the free-living to obligate symbiont spectrum. Most notably,
nearly all prominent functional groups were enriched in both the environment- and
host-associated biomes, but the specific gene clusters belonged to different taxonomic
groups in each biome (Fig. 6). For instance, almost all abundant CAZy families were
enriched in both the environment and host biomes, but the environment was domi-
nated by Proteobacteria, while Firmicutes, Bacteroidetes, and Actinobacteria gene clus-
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ters comprised most host-enriched CAZy families. This suggests that the same coarse-
level functional groups are present across the free-living to obligate microbe-vertebrate
symbiosis lifestyles, but coarse-level taxonomy strongly differs across this spectrum.
This pattern largely remained true when we compared enrichment between the
Mammalia and nonmammals, suggesting that taxonomic differences prevail over func-
tional differences in regard to host specificity, at least over broad-scale vertebrate
evolutionary distances. While comparing function to taxonomy is challenging due to
differing levels of resolution, we do not believe that our findings are simply due to
using functional groupings that are coarser than taxonomy, given that (i) we assessed
multiple functional groupings (COG, KEGG, and CAZy), which all showed similar pat-
terns, even though they differ in functional resolution, and (ii) we assessed taxonomy
at the very coarse phylum level but still found stark taxonomic differences across
biomes.

In conclusion, our large-scale metagenome assembly of both MAGs and coding
sequences from a diverse collection of vertebrates substantially expands the known
taxonomic and functional diversity of the vertebrate gut microbiome. We have dem-
onstrated that both taxonomic and functional metagenome profiling of the vertebrate
gut is improved by our MAG and gene catalogues, which will aid future investigations
of the vertebrate gut microbiome. Moreover, our collection can help guide natural
product discovery and bioprospecting of novel carbohydrate-active enzymes, along
with modeling AMR transmission among reservoirs. By characterizing the distribution
of MAGs and microbial genes across environment and host biomes, we gained insight
into how taxonomy and function differ along the free-living to obligate symbiosis
lifestyle spectrum. We must note that our metagenome assembly data set is biased
toward certain animal clades, which likely impacts these findings. As metagenome
assembly becomes more commonplace for studying the vertebrate gut microbiome,
bias toward certain vertebrates (e.g., humans) will decrease and thus allow for a more
comprehensive reassessment of our findings.

MATERIALS AND METHODS
Sample collection. Sample collection was performed as described previously by Youngblut and

colleagues (12). Table S1A in the supplemental material shows the dates, locations, and additional
metadata for all samples collected. All fecal samples were collected in sterile sampling vials, transported
to a laboratory, and frozen within 8 h. DNA extraction was performed with the PowerSoil DNA isolation
kit (MoBio Laboratories, Carlsbad, CA, USA).

“Multispecies” vertebrate gut metagenomes. Metagenome libraries were prepared as described
previously by Karasov and colleagues (42). Briefly, 1 ng of input gDNA was used for Nextera Tn5
tagmentation. BluePippin was used to restrict fragment sizes to 400 to 700 bp. Barcoded samples were
pooled and sequenced on an Illumina HiSeq3000 instrument with 2-by-150 paired-end sequencing. Read
quality control (QC) was described previously (see the supplemental methods in reference 15).

Post-QC reads were taxonomically profiled with Kraken2 and Bracken v.2.2 (43) against the Struo-
generated GTDB-r89 Kraken2 and Bracken databases (20). HUMAnN2 v.0.11.2 (44) was used to profile
genes and pathways against the Struo-generated HUMAnN2 database created from GTDB-r89.

Publicly available animal gut metagenomes. Published animal gut metagenome reads were
downloaded from the Sequence Read Archive (SRA) between May and August 2019. Table S1B lists all
included studies. We selected studies with Illumina paired-end metagenomes from gut contents or feces.
MGnify samples were downloaded from the SRA in October 2019 (Table S1C). Read quality control was
described previously (see the supplemental methods in reference 15).

Pipeline for metagenome assembly of genomes. Assemblies were performed on a per-sample
basis, with reads subsampled via seqtk v.1.3 to �20 million read pairs. The details of the assembly
pipeline were described previously (see the supplemental methods in reference 15).

A multilocus phylogeny of all SGB representatives was inferred with PhyloPhlAn v.0.41 (45). Second-
ary metabolites were identified with AntiSMASH v.5.1.1 (46) and DeepBGC v.0.1.18 (47) and then
characterized with BiGSCAPE (19). Abricate was used to identify antimicrobial resistance genes. We used
Krakenuniq v.0.5.8 (48) for estimating the abundance of MAGs in metagenome samples. (Details can bee
found in the supplemental methods in reference 15.)

Pipeline for metagenome assembly of genes. Assemblies were performed on a per-sample basis,
with reads subsampled via seqtk v.1.3 to �20 million pairs. We used PLASS v.2.c7e35 (14) and Linclust
(mmseqs v.10.6d92c) (13) to assemble and cluster contigs. A full description was reported previously (see
the supplemental methods in reference 15). DESeq2 (49) was used to estimate the enrichment of MAGs
and gene clusters in metagenomes from host and environment biomes.

Data availability. The raw sequence data are available from the European Nucleotide Archive under
study accession number PRJEB38078. Fasta files for the 5,596 nonredundant MAGs, 1,522 SGBs, and gene
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clusters (50, 90, and 100% sequence identity clustering) can be found at http://ftp.tue.mpg.de/ebio/
projects/animal_gut_metagenome_assembly/, along with GenBank files for all BGCs. The code used for
processing the data can be found at https://github.com/leylabmpi/animal_gut_metagenome_assembly.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
TABLE S1, XLSX file, 0.05 MB.
TABLE S2, XLSX file, 0.6 MB.
TABLE S3, XLSX file, 0.1 MB.
TABLE S4, XLSX file, 1 MB.
TABLE S5, XLSX file, 0.3 MB.
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