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Diabetic nephropathy (DN) is one of the most common complications of diabetes mellitus. Owing to its complicated patho-
genesis, no satisfactory treatment strategies for DN are available. Milkvetch Root is a common traditional Chinese medicine
(TCM) and has been extensively used to treat DN in clinical practice in China for many years. However, due to the complexity of
botanical ingredients, the exact pharmacological mechanism of Milkvetch Root in treating DN has not been completely elu-
cidated. 0e aim of this study was to explore the active components and potential mechanism of Milkvetch Root by using a
systems pharmacology approach. First, the components and targets of Milkvetch Root were analyzed by using the Traditional
Chinese Medicine Systems Pharmacology database. We found the common targets of Milkvetch Root and DN constructed a
protein-protein interaction (PPI) network using STRING and screened the key targets via topological analysis. Enrichment of
Gene Ontology (GO) pathways and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed. Subsequently,
major hubs were identified and imported to the Database for Annotation, Visualization and Integrated Discovery for pathway
enrichment analysis. 0e binding activity and targets of the active components of Milkvetch Root were verified by using the
molecular docking software SYBYL. Finally, we found 20 active components in Milkvetch Root. Moreover, the enrichment
analysis of GO and KEGG pathways suggested that AGE-RAGE signaling pathway, HIF-1 signaling pathway, PI3K-Akt signaling
pathway, and TNF signaling pathway might be the key pathways for the treatment of DN; more importantly, 10 putative targets of
Milkvetch Root (AKT1, VEGFA, IL-6, PPARG, CCL2, NOS3, SERPINE1, CRP, ICAM1, and SLC2A) were identified to be of great
significance in regulating these biological processes and pathways. 0is study provides an important scientific basis for further
elucidating the mechanism of Milkvetch Root in treating DN.

1. Introduction

According to an epidemiological survey, the number of
Chinese adults of ages over 18 who suffered from diabetes
mellitus (DM) was 10.4% in 2013, ranking the first in the
world [1]. Diabetic nephropathy (DN) is one of the most
common complications of DM [2]. 0e incidence rate of
DN is increasing rapidly along with that of DM. DN is the
most common cause of end-stage renal disease (ESRD) in
many parts of the world, including Europe, Japan, and the
United States, wherein diabetic patients accounted for

25% to 45% of all patients enrolled in end-stage renal
disease programs [3]. Glomerular damage and protein-
uria that are associated with DM cause tubulointerstitial
damage, which eventually lead to ESRD [4, 5]. 0e early
onset of DN is insidious and difficult to detect early.
Moreover, once DN has reached the end of its clinical
development, it is difficult to reverse. At present, the
treatment of diabetic nephropathy mainly includes strict
control of blood glucose, blood pressure, and antidiabetic
drugs, which all can only delay the progress of renal
damage, as there are no new therapies that can directly
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treat DN [6]. Moreover, studies have shown that inhib-
itors of the Renin–Angiotensin–Aldosterone System
(RAAS) have significant side effects, including hyper-
kalemia; these effects limit the use of inhibitors in a
significant proportion of patients with DN [7]. Studies
have also shown that ACEIs (angiotensin-converting
enzyme inhibitor) and ARBs (angiotensin receptor
blocker) have many side effects such as acute renal injury
and angioedema [8]. 0erefore, more effective and safer
therapeutic strategies for treating DN are required.

Traditional Chinese medicine (TCM) has been used to
treat various diseases for thousands of years. TCM also has
unique advantages in diabetes and is widely used in clinical
practice in China [9, 10]. Milkvetch Root (Huang Qi in
Chinese), also known as Radix Astragali, is a TCM from
MongolianMilkvetch orMembranousMilkvetch. Milkvetch
Root has been reported to replenish qi, consolidate super-
ficial resistance, induce diuresis, toxin elimination, discharge
pus, relieve soreness, and increase muscle mass [11]. In
TCM, it is often used as antiperspirant, diuretic, and sup-
plement in treating various diseases such as abscess, ne-
phritis, diabetes, hypertension, cirrhosis, leukemia, and
uterine cancer [12]. In recent years, the therapeutic effect of
Milkvetch Root on DN has attracted attention. A clinical
study indicated that the adjunctive use of Milkvetch Root
might be effective and tolerated for the short-term reduction
of albuminuria, proteinuria, and serum creatinine in DN
patients [13]. A basic study suggested that Astragaloside IV
ameliorates high glucose-mediated renal tubular epithelial-
mesenchymal transition by blocking the mTORC1/p70S6K
signaling pathway in HK-2 cells [14]. Other studies showed
that Astragaloside IV ameliorated albuminuria, mesangial
cell proliferation, basement membrane thickening, and
podocyte foot process effacement in iatrogenic hyper-
insulinemia rats [15]. 0ese studies provide a scientific basis
for the clinical application of Milkvetch Root in treating DN;
however, the molecular mechanism of Milkvetch remains
unclear. 0erefore, the active ingredients and molecular
mechanisms of Milkvetch Root for the treatment of DN
must be elucidated.

Network pharmacology, which is based on the inter-
action network of diseases, genes, target proteins, and drugs,
is a systematic analytical method [16]. In recent years,
network pharmacology has been used widely in TCM re-
search [17]. For example, the network pharmacology ap-
proach was used to define the active components and
potential targets in Mulberry leaf for the treatment of dia-
betes [18]. It can reveal the action mechanism of a drug
through the combination of computational biology, systems
biology, and “omics” technologies [19]. It also has trans-
formed the concept of drug discovery from “one target, one
drug” to “network target, multicomponent therapy.”

In summary, we used network pharmacology to analyze
the active ingredients, drug targets, and key pathways of
Milkvetch Root to treat DN. 0is study aimed to further
elucidate the mechanism of Milkvetch Root in treating DN
and present new ideas and theoretical basis. 0e workflow of
the network pharmacology approach used in the present
study is illustrated in Figure 1.

2. Materials and Methods

2.1. Data Preparation. All components related to Milkvetch
Root were screened by using Traditional Chinese Medicine
Systems Pharmacology Database and Analysis Platform
(TCMSP, http://lsp.nwu.edu.cn/tcmsp.php) [20]. Five im-
portant pharmacology-related properties, including oral
bioavailability (OB), intestinal epithelial permeability (Caco-
2 cells), drug-likeness (DL), blood-brain barrier (BBB), drug
half-life (HL), and Lipinski’s rule (LR), were considered for
the screening and evaluation of compounds in using
TCSMP. 0e TCMSP database contains 500 kinds of Chi-
nese herbal medicines, and 30069 ingredients are registered
in Chinese Pharmacopoeia (2010 edition). Moreover, 87
herbal ingredients of Milkvetch Root were identified in this
process.

2.2. Screening of Active Ingredients. 0e key parameters used
for screening in the database were oral bioavailability (OB)
and drug-likeness (DL), and the active components of
Milkvetch Root were screened. OB is an important property
for the objective evaluation of the internal quality of drugs.
When an ingredient has a high OB, the likelihood that it can
be used clinically is also high [21]. Molecules with OB≥ 30%
were considered to have goodOB in the present study. Drug-
likeness (DL) is a qualitative concept used in drug design and
helps optimize pharmacokinetics and drug properties such
as solubility and chemical stability. A database-dependent
DL evaluation approach based on Tanimoto coefficient was
applied and shown as T(a, b) � (a, b)/(|a|2 + |b|2 − a × b).
In this equation, a represents the molecular descriptors of
herbal compounds and b represents the average molecular
properties of all compounds in DrugBank. Components
with DL≥ 0.18 were selected. In this study, the compounds
of Milkvetch Root that had OB≥ 30% and DL≥ 0.18 were
considered as active components.

2.3. Targets of Active Ingredients of Milkvetch Root. 0e
targets of the active components of Milkvetch Root were
queried against the TCMSP database. We removed redun-
dant information, and the targets were transformed using
the UniProt knowledge database [22] (UniProt, https://
www.uniprot.org/) with Homo sapiens as the selected spe-
cies. At the end, we can get the right genetic symbols.

2.4. Identification of Gene Targets for DN. We collected the
gene targets of DN from four sources. 0e first source was
the GeneCards v4.14 [23] (http://www.genecards.org/,
2020.03.20). A correlation score of ≥30 was used as the
screening parameters, and the returned items from the
screening were used as the candidate target genes of the
disease. 0e rest of the sources were DrugBank v4.3 [24]
(http://www.drugbank.ca/, 2020.03.20), Online Mendelian
Inheritance in Man (OMIM) [25] (http://www.omim.org/,
2020.03.20), and PharmGkb (https://www.pharmgkb.org/,
2020.03.20) [26]. 0e keyword “diabetic nephropathy” or
“DN” was input to obtain the gene names related to diabetic
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nephropathy. We removed the duplicates of search elements
in these four databases.

2.5. Network Construction. We intersected the returned
drug targets with the genes that were associated with DN and
illustrated the intersection using a Venn diagram. Subse-
quently, we built a compound-target network by linking
candidate compounds to their corresponding targets.

Moreover, we built a target-disease network by linking
diseases to candidate targets that are associated with them.
Furthermore, we built a drug-ingredient-gene-disease
(DIGD) network based on the interactions among drugs
(Milkvetch Root), ingredients, gene symbols, and disease
(DN).

We selected three parameters to evaluate the topological
features of every node in the interaction network: degree
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Figure 1: Flowchart of a network pharmacology-based strategy to investigate the pharmacologic mechanism of Milkvetch Root for
treatment of diabetic nephropathy.
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reflects the number of connections between network nodes
and other nodes; betweenness is the ratio of the number of
shortest paths through a point to the total number of
shortest paths in the network; and closeness is the distance
between a node and another node. Degree, betweenness, and
closeness are the main topological parameters used to
measure the importance of a node in a network and de-
termine whether a target protein is an important basis for
key targets [27]. 0erefore, key targets of C-T network and
T-D network were analyzed topology parameter charac-
terization with Network Analyzer. 0e degree, betweenness,
and closeness value were set to the median degree. Finally,
the networks were constructed using Cytoscape v3.7.2
(http://www.cytoscape.org/) [28].

2.6. Construction of a Protein-Protein Interaction (PPI)
Network. To determine the interactions between target
proteins, the target genes of the relevant components in the
Milkvetch Root were queried against the STRING database
(http://string-db.org, v11) [29] to obtain information on
PPI. Gene symbols were returned from the query using the
“multiple proteins” option and Homo sapiens as the or-
ganism option. We selected medium-confidence data of
>0.4. 0e returned protein interaction data were analyzed in
Cytoscape 3.7.2 to build a PPI network.

2.7. Enrichment of Gene Ontology (GO) Pathway and the
Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway.
To further identify the related effects of Milkvetch Root in
treating diabetic nephropathy, we used GO biological
process enrichment analysis to evaluate the targets of
Milkvetch Roots and KEGG metabolic pathway enrichment
analysis to determine the main metabolic pathway of
Astragalus in treating DN. We performed further analyses
using R software v3.6.2 (http://bioconductor.org/) [30] and
its cluster profiler package.

2.8. Molecular Docking. Molecular docking is a process
through which small molecules are docked into the mac-
romolecular structures for scoring its complementary values
at the binding sites [31]. High-resolution crystal structures of
the active components and their corresponding bioactive
ligands were downloaded from the Protein Data Bank (PDB)
[32]. SYBYL software is simulation software for themolecule
docking analysis of small molecules and biological macro-
molecules [33]. We used SYBYL software to evaluate the
potential binding between DN targets and Milkvetch Root
compounds. We used SYBYL software and optimized the
mechanisms of small molecule compounds, hydrogenation,
charging, extraction of ligand small molecules, repair of side
chain, and hydrogenation. 0en, we used the Surflex-Dock
module molecular docking [34]. During the docking, the
threshold parameter was set at 0.5 and other parameters
were set at default values. 0e results of molecular docking
were evaluated according to a total score; the total score was
expressed in −log10 (Kd) units, and the value of total score
equal to 5 was taken as the threshold value.

3. Results

3.1. Screening of Active Ingredients. 0e active components
of Milkvetch Root were retrieved from the TCMSP database,
and 87 related components were obtained. 20 related
components were identified to have OB≥ 30% and
DL≥ 0.18. Altogether, 20 components were considered as
the active ingredients of Milkvetch Root (Table 1).

3.2. Target Prediction and Analysis. Twenty active compo-
nents were obtained fromMilkvetch Root, and 393 potential
targets of these components were identified. All the targets
related to DN were queried against four databases: Gene-
Cards, DrugBank, OMIM, and PharmGkb. We used
Cytoscape 3.7.2 software to build a compound-target (C-T)
network using the active ingredients of Milkvetch Root and
their targets. Concurrently, we also used Cytoscape 3.7.2
software to analyze the relationship between the targets of
Milkvetch Root and DN and constructed a target-disease (T-
D) network (Figures 2 and 3). In the C-T network, the
median values of “degree,” “betweenness,” and “closeness”
were 1,0, 0.39, and in the T-D network, the median values of
“degree,” “betweenness,” and “closeness” were 1,0, 0.667,
respectively. 0e final results are shown in Tables 2 and 3. To
further study the mechanism of Milkvetch Root in treating
diabetic nephropathy, we also constructed a DIGD network
using Cytoscape 3.7.2 software (Figure 4). 0e green node
represents Milkvetch Root, and the red node represents DN.
Moreover, the 6 violet nodes represent the active ingredients
of Milkvetch Root; the 16 blue nodes represent the over-
lapping gene symbols between the disease and drug. 0e
edges denote that the nodes can interact with each other.0e
network shows that the drug may indirectly regulate disease-
related proteins while Milkvetch Root can directly affect
these proteins. 0ere were 16 overlaps among 393 disease
gene symbols and 180 drug gene symbols (Figure 5). In other
words, these 16 genetic symbols may be the key targets of
Milkvetch Roots in treating DN.

3.3. Analyses of a PPI Network. We constructed a PPI net-
work consisting of 16 nodes and 71 edges (Figure 6(a)). In
this network, nodes represent target proteins, and each edge
represents a protein-protein interaction. 0e average node
degree in this PPI network is 8.88; the degree of each node
represents the number of targets that are connected to the
target. Shown in Figure 6(b) is a PPI network constructed
using Cytoscape 3.7.2. In this network, node sizes and colors
reflect the number of combined targets (degree).

We took the first 10 proteins in the PPI network, which
includes RAC-alpha serine/threonine-protein kinase
(AKT1), vascular endothelial growth factor A (VEGFA),
interleukin-6 (IL-6), peroxisome proliferator-activated re-
ceptor gamma (PPARG), C-C motif chemokine 2 (CCL2),
nitric oxide synthase, endothelial (NOS3), plasminogen
activator inhibitor 1 (SERPINE1), C-reactive protein (CRP),
intercellular adhesion molecule 1 (ICAM1) and solute
carrier family 2, and facilitated glucose transporter member
4 (SLC2A4) (Figure 7). As shown in Figure 7, AKT1 may be
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related to 14 other proteins, VEGFA may be related to 13
other proteins, and IL-6 and PPARGmay be related to the 12
other proteins. CCL2, NOS3, and SERPINE1 may be related
to the 11 other proteins. CRP, ICAM1, and SLC2A4 may be
related to 10 other proteins. 0ese ten proteins are the focus
of our research on PPIs.

3.4.Analyses of Enrichment ofGOPathways. GO analysis is a
useful bioinformatics tool for characterizing molecular
function (MF), cellular components (CC), and biological
process (BP) of genes. Analyses of the enrichment of the GO
pathway were carried out using R software (Figures 8(a)–
8(c)) (p< 0.05). In the graph, the vertical axis represents the
GO term.0e horizontal axis represents the number of genes
in the term. 0e increasing intensity of the red color indi-
cates a decreasing p. Adjust value indicates a higher sig-
nificance. 0e 16 overlapping gene symbols were mapped to
977 pathways after the enrichment of the GOBP pathway.
We identified the first 20 terms from small to large according
to p values. 0e results indicate that numerous biologic
processes were involved in DN treatment, including cellular
response to the peptide (GO:1901653), reproductive struc-
ture development (GO:0048608), reproductive system de-
velopment (GO:0061458), response to insulin (GO:
0032868), regulation of leukocyte migration (GO:0002685),
cellular response to lipopolysaccharide (GO:0071222), fe-
male gonad development (GO:0008585), cellular response to
molecule of bacterial origin (GO:0071219), cellular response
to insulin stimulus (GO:0032869), and development of

primary female sexual characteristics (GO:0046545).
Moreover, 14 pathways were enriched in the GOCC path-
way, including extracellular space, cytosol, and extracellular
area. 11 pathways were enriched in the GOMF pathway,
including enzyme binding, protein binding, and similar
protein binding.

3.5. Analyses of Enrichment of the KEGG Pathway.
Analyses of the enrichment of the KEGG pathway were
performed using R software (Figure 9) (p< 0.05). In the
graph, the vertical axis represents the KEGG pathway. 0e
horizontal axis represents the number of genes in the term.
We identified the first 20 terms from small to large according
to p values. 0e first 10 items are as follows: AGE-RAGE
signaling pathway in diabetic complications (hsa04933),
HIF-1 signaling pathway (hsa04066), fluid shear stress and
atherosclerosis (hsa05418), insulin resistance (hsa04931),
PI3K-Akt signaling pathway (hsa04151), influenza A
(hsa05164), EGFR tyrosine kinase inhibitor resistance
(hsa01521), Kaposi sarcoma-associated herpesvirus infec-
tion (hsa05167), rheumatoid arthritis (hsa05323), and
Epstein–Barr virus infection (hsa05169).

3.6. Molecular Docking Verification. In this docking assay,
ten human receptors were retrieved from PDB: AKT1 (PDB
ID: 1UNQ: 0.98 Å), VEGFA (PDB ID: 3V2A: 3.20 Å), IL-6
(PDB ID: 4CNI: 2.20 Å), PPARG (PDB ID: 3E00 : 3.10 Å),
CCL2 (PDB ID: 1DOM), NOS3 (PDB ID: 1NIW: 2.05 Å),
SERPINE1 (PDB ID: 4AQH: 2.40 Å), CRP (PDB ID: 1GNH:

Table 1: A total of 20 ingredients were selected as the details of the active ingredients of Milkvetch Root in this study.

Number Mol ID CAS
number Components OB(%) DL

1 MOL000211 472-15-1 Mairin 55.38 0.78
2 MOL000239 3301-49-3 Jaranol 50.83 0.29

3 MOL000296 465-99-6
474-58-8 Hederagenin 36.91 0.75

4 MOL000033 64997-52-0 (3S,8S,9S,10R,13R,14S,17R)-10,13-Dimethyl-17-[(2R,5S)-5-propan-2-yloctan-2-yl]-
2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthren-3-ol 36.23 0.78

5 MOL000354 480-19-3 Isorhamnetin 49.6 0.31
6 MOL000371 15689655 3,9-di-O-Methylnissolin 53.74 0.48
7 MOL000374 N/A 5′-Hydroxyiso-muronulatol-2′,5′-di-O-glucoside 41.72 0.69
8 MOL000378 N/A 7-O-Methylisomucronulatol 74.69 0.3
9 MOL000379 94367-42-7 9,10-Dimethoxypterocarpan-3-O-β-D-glucoside 36.74 0.92

10 MOL000380 73340-41-7
94367-42-7 (6aR,11aR)-9,10-Dimethoxy-6a,11a-dihydro-6h-benzofurano[3,2-c]chromen-3-ol 64.26 0.42

11 MOL000387 73536-69-3 Bifendate 31.1 0.67
12 MOL000392 485-72-3 Formononetin 69.67 0.21
13 MOL000398 N/A Isoflavanone 109.99 0.3
14 MOL000417 20575-57-9 Calycosin 47.75 0.24
15 MOL000422 520-18-3 Kaempferol 41.88 0.24

16 MOL000433 33609-88-0
59-30-3 FA 68.96 0.71

17 MOL000438 64474-51-7 (3R)-3-(2-Hydroxy-3,4-dimethoxyphenyl)chroman-7-ol 67.67 0.26
18 MOL000439 N/A Isomucronulatol-7,2′-di-O-glucosiole 49.28 0.62
19 MOL000442 N/A 1,7-Dihydroxy-3,9-dimethoxy pterocarpene 39.05 0.48

20 MOL000098
73123-10-1
74893-81-5
117-39-5

Quercetin 46.43 0.28
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3.00 Å), ICAM1 (PDB ID: 5MZA: 2.78 Å), and SLC2A4
(PDB ID: 5EQG: 2.90 Å). 10 hub genes were inputted into
SYBYL 2.1 for molecular docking verification. 0e results of
the molecular docking are shown in Table 4. 0e docking
scores were larger than 5, which showed that they possessed
good binding activity. Furthermore, the results are presented
in the form of a cluster heat map (Figure 10).

4. Discussion

Network pharmacology is a rapidly emerging discipline. It has
also transformed the concept of drug discovery from “one
target, one drug” to “network target, multicomponent therapy”
[35]. Because of the advantages of network pharmacology re-
search strategy, new and innovativeways for the development of
traditional Chinese medicine opened.0e aim of this study was
to analyze the active components, targets, and related signaling

pathways of Milkvetch Root in improving glycolipid meta-
bolism of diabetic nephropathy by using systems pharmacology
and to explore the possible mechanism of action of the com-
ponents of Milkvetch Roots.

Using network pharmacological analysis, we identified
20 active components in Milkvetch Root and predicted 180
potential targets. 0e results of the T-D network analysis
showed 360 edges in the network, which represent the in-
teraction between the active components and targets.
Among the components, quercetin had the greatest number
of potential targets with 136, followed by kaempferol with 51
potential targets. Other components such as 7-O-methyl-
isomucronulatol, formononetin, isorhamnetin, and (6aR,
11aR)-9, 10-dimethoxy-6a, 11a-dihydro-6H-benzofurano
[3, 2-c] chromen-3-ol had 33, 28, 25, and 19 corresponding
targets, respectively. 0e corresponding targets of the active
ingredients include AKT1, VEGFA, IL-6, PPARG, and
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NOS3. Moreover, molecular docking showed that the
binding strength of 16 active components of Milkvetch Root
to their target proteins was as follows:
PPARG>VEGFA> IL-6>AKT1> NOS3. We infer that
quercetin has good interactions with NOS3, VEGFA, and
SERPINE1. Kaempferol has good interactions with PPARG
and VEGFA. 7-O-Methylisomucronulatol has good inter-
actions with IL-6, NOS3, and SERPINE1.

Quercetin, a flavonoid, is a potent antioxidant found
in common medicinal herbs and possesses a wide spec-
trum of biologic activities [36]. It also has antioxidant,
hypoglycemic, hypolipidemic, tumor suppression, and
anti-inflammatory effects [37, 38]. One study showed that
quercetin liposome or free quercetin could prevent
weight loss, decrease kidney hypertrophy index, decrease
blood glucose level, and decrease 24-hour urine protein
levels in diabetic nephropathy model rats [39]. Kaemp-
ferol is a natural peroxisome proliferator-activated re-
ceptor-c (PPARc) agonist, and PPARc agonists have
become common drugs in the treatment of diabetes and
its complications [40]. Kaempferol has a similar

hypoglycemic effect to rosiglitazone; however, its adverse
reactions are significantly lower than those of the latter. It
can improve the glucose uptake of 3T3-L1 cells, control
blood glucose, and ameliorate the damage from oxidative
stress in the kidney caused by glucose metabolism dis-
order [41]. Studies have also suggested that kaempferol
can work as a RhoA/Rho kinase inhibitor and may at-
tenuate the progression of diabetic complications with
emphasis on DN [42]. Formononetin, a polyphenolic
compound, is a molecule that increases the expression of
SIRT1 in kidney tissues of diabetic patients and an ef-
fective molecule for controlling nephropathy in type 2
diabetes mellitus [43]. 7-O-Methylisomucronulatol has a
similar pharmacological effect to formononetin; it can
prevent and treat DN by inhibiting the proliferation of
mesangial cells and the production of nitric oxide [44].

Isorhamnetin can inhibit the NF-κB signaling activity,
decrease the production of inflammatory mediators, and
attenuate oxidative stress in diabetic rats and glomerular
mesangial cells (GMCs), thus reducing urinary albumin
filtration and renal damage and improving renal
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Figure 3: 0e T-D network that consists of 393 nodes and 360 targets. Red and blue nodes denote the diseases and targets, respectively.
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pathological changes among other effects [45]. 0is shows
the complex network relationship between drugs and targets
and verifies that Milkvetch Root plays a role in improving
DN in a multicomponent and multitarget way.

In addition, quercetin, kaempferol, formononetin, and
isorhamnetin are all flavonoids. Studies on the mechanism
of action have suggested that flavonoids can improve the
metabolism of sugar and lipid, enhance insulin resistance,
inhibit the activity of relevant glucose metabolic enzymes,
and escape oxidative damage of DM [46, 47]. We emphasize

that these components may be the main components of
Milkvetch Root. 0e flavonoids of TCM may be novel
components for the treatment of diabetic nephropathy and
has broad prospects for development.

0e analysis of protein interaction showed that there was
a correlation between AKT1, VEGFA, IL-6, PPARG, and
NOS3. First of all, there are three isoforms of AKT: AKT1
(PKBα), AKT2 (PKBβ), and AKT3 (PKBc), which each have
their own physiologic functions [48]. 0e protein kinase
AkT, also known as protein kinase B (PKB), has been shown

Table 2: Key genes and compounds in the C-T network obtained by topological attribute analysis.

Name Betweenness centrality Closeness centrality Degree
MOL000098 0.77966423 0.6372549 136
MOL000442 0.00006485 0.34210526 3
MOL000422 0.1540125 0.41313559 51
GSTM2 0.00145981 0.41313559 2
GSTM1 0.00145981 0.41313559 2
DIO1 0.00145981 0.41313559 2
INSR 0.00145981 0.41313559 2
NR1I3 0.00145981 0.41313559 2
SLC2A4 0.00145981 0.41313559 2
PSMD3 0.00145981 0.41313559 2
AHR 0.00145981 0.41313559 2
GSTP1 0.00145981 0.41313559 2
HAS2 0.00145981 0.41313559 2
ALOX5 0.00145981 0.41313559 2
CYP1B1 0.00145981 0.41313559 2
NR1I2 0.00145981 0.41313559 2
VCAM1 0.00145981 0.41313559 2
SELE 0.00145981 0.41313559 2
ICAM1 0.00145981 0.41313559 2
CYP1A1 0.00145981 0.41313559 2
CYP1A2 0.00145981 0.41313559 2
CYP3A4 0.00145981 0.41313559 2
HMOX1 0.00145981 0.41313559 2
STAT1 0.00145981 0.41313559 2
MMP1 0.00145981 0.41313559 2
CASP3 0.00145981 0.41313559 2
AHSA1 0.00145981 0.41313559 2
TNFSF15 0.00145981 0.41313559 2
BAX 0.00145981 0.41313559 2
BCL2 0.00145981 0.41313559 2
AKT1 0.00145981 0.41313559 2
JUN 0.00851752 0.44520548 3
KCNH2 0.00513961 0.42951542 2
ADRB2 0.0182466 0.45560748 6
NCF1 0.00273953 0.41139241 2
RELA 0.00486558 0.43526786 3
MAOB 0.00867608 0.43141593 3
ACHE 0.01869555 0.47560976 6
F7 0.00486558 0.43526786 3
AKR1B1 0.00273953 0.41139241 2
PPARG 0.02091558 0.47794118 9
RXRA 0.02752522 0.47794118 8
GABRA1 0.0242005 0.47794118 7
NCOA2 0.0331118 0.48507463 10
PRSS1 0.03297969 0.49242424 10
PTGS2 0.06147036 0.51315789 13
SCN5A 0.01714627 0.45990566 6
AR 0.02264676 0.48029557 7
PTGS1 0.05214304 0.5078125 11
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Table 3: Key genes in the T-D network obtained by topological attribute analysis.

Name Betweenness centrality Closeness centrality Degree
SERPINE1 1 1 2
NOS3 1 1 2
GSTM2 1 1 2
GSTM1 1 1 2
DIO1 1 1 2
NR1I3 1 1 2
SLC2A4 1 1 3
PSMD3 1 1 2
AHR 1 1 2
GSTP1 1 1 2
INSR 0.83333333 0.8 3
ALOX5 1 1 2
CYP1B1 1 1 2
NR1I2 1 1 2
VCAM1 1 1 2
IL-6 0.66666667 0.75 2
CYP1A1 1 1 2
CYP1A2 1 1 2
CYP3A4 1 1 2
HMOX1 0.66666667 0.75 2
IGF2 0.66666667 0.75 2
STAT1 0.83333333 0.8 3
MMP1 1 1 2
AHSA1 1 1 2
TNFSF15 1 1 2
BAX 1 1 2
JUN 1 1 3
SLC6A4 1 1 2
SLC6A3 1 1 2
ADRA1A 1 1 2
CHRM4 1 1 2
CRP 0.66666667 0.75 2
KCNH2 1 1 2
ADRA1D 1 1 3
ADRB2 1 1 6
ADRA2C 0.66666667 0.75 2
HTR3A 1 1 2
ADRB1 1 1 2
NCF1 1 1 2
RELA 1 1 3
MAOB 1 1 3
ACHE 1 1 6
F7 1 1 3
NCOA1 1 1 2
CCNA2 1 1 4
GSK3B 0.85714286 0.77777778 5
MAPK14 1 1 4
PPARG 1 1 10
ESR1 1 1 6
SLC6A2 1 1 2
RXRA 1 1 8
GRIA2 1 1 2
GABRA1 1 1 7
ADRA1B 0.85714286 0.77777778 5
CHRM2 0.7 0.71428571 3
AKR1B1 0.7 0.71428571 3
CHRM1 1 1 6
CHRM3 1 1 4
NCOA2 1 1 10
PRSS1 0.95454545 0.85714286 10
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to regulate a variety of cell functions and is particularly
important for glucose metabolism, cell growth, and cell
survival. 0erefore, changes in its expression or activity are
thought to be involved in the pathogenesis of diabetes and
DN [49].

In humans, there are five secreted glycoproteins that make
up the VEGF family member: VEGFA, VEGF-B, VEGF-C,
VEGF-D, and placental growth factor (PlGF) [50]. Previous
studies have demonstrated that angiotensin type 1 receptor
blocker (ARB) can inhibit the synthesis of VEGF mediated by
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Figure 4: 0e DIGD network. 0e green node represents Milkvetch Root and the red node represents DN.0e 6 violet nodes represent the
active ingredients in Milkvetch Root. 0e 16 blue nodes represent the overlapping gene symbols between the disease and drug. 0e edges
denote that nodes can interact with each other.

Table 3: Continued.

Name Betweenness centrality Closeness centrality Degree
CHEK1 1 1 5
ESR2 1 1 5
PTGS2 1 1 13
SCN5A 1 1 6
AR 1 1 7
PTGS1 1 1 11
NOS2 0.97222222 0.9 8
PGR 1 1 4
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Ang-II and can effectively treat diabetic nephropathy [51].
VEGFA is an important regulator of angiogenesis and vas-
cular permeability with a possible pathogenic role in diabetic
nephropathy [52]. VEGFA is essential for the normal growth
of podocytes. When the expression of VEGFAwas lower than
the normal level, the podocytes were damaged [53]. In

conclusion, the blockade of VEGFA can effectively restore
renal function in diabetic nephropathy.

IL-6, in the pathogenesis of DN, is associated with insulin
resistance. A study has suggested that IL-6 affects the dynamics
of the extracellular matrix and may increase the glomerular
basement membrane and endothelial permeability [54].

377 164
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Disease

16

Figure 5: 0e 16 matching targets of the related targets in Milkvetch Root on DN.

AKR1B1
BCL 2

INSR

IGF2

AKT1

VEGFA

SLC2A4

SERPINE1

PPARG

IL6

CRP

NOS3STAT1

PON1

CCL2

ICAM1

(a)

AKT1

VEGFA

PPARG

IL6

NOS3

CCL2

SERPINE1

SLC2A4

ICAM1

CRP

PON1

STAT1

IGF2

INSR

AKR1B1

BCL2

(b)
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Figure 8: Continued.
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Current evidence suggests that IL-6 responses are mediated via
gp130-STAT3 dependent mechanisms, which, on one hand,
trigger the transition from innate to adaptive immune response
and on the other hand act locally for tissue remodeling and

immune cell infiltration [55]. 0erefore, the regulation of IL-6
target is of great significance in the treatment of DN.

PPARG is a transcription factor that is activated by ligands.
Currently, it has three subtypes: PPARα, PPARβ, and PPARc
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Figure 9: KEGG pathway enrichment analyses.0e x-axis represents the counts of the target symbols in each pathway.0e y-axis represents
the main pathway (p< 0.05).
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Figure 8: (a) Main 20 GO biological process. (b) Main 14 GO cellular component. (c) Main 11 GO molecular function. p< 0.05.
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[56]. Some studies have found that PPARG is a risk of pro-
gression of diabetic nephropathy in China [57]. Nitric oxide
(NO) has been closely linked to the kidney according to renal
hemodynamics regulation, renin secretion, inhibition of renal
tubular sodium reabsorption, renal tubular glomerular feedback
(TGF), and renal sympathetic nerve activity [58, 59]. 0e
synthesis of NO in vivo has been reported to be closely linked to
nitric oxide synthetase (NOS2/3) [60]. 0e active components
act on NOS related targets, enhance the biological activity of
NOS, and restore the pathways that downregulate the ex-
pression of inflammatory factors, thereby reducing creatinine
level, protein filtration rate, and protect the kidney [61].

In this study, molecular docking and network analyses
showed that all protein-pathway pairs were distributed among
oxidative stress, inflammation, metabolism, immune system,
apoptosis, andmultiple pathways. For instance, oxidative stress

and inflammation prompted by hyperglycemia are key initi-
ators that lead to renal damage and nephropathy [62, 63]. AGE-
RAGE (diabetes), HIF-1, PI3K-Akt, and TNF signaling
pathways are responsible for the therapeutic effects on DN.
Some studies have confirmed that AGE-RAGE signaling
pathway is a signaling mechanism in the pathogenesis of di-
abetes and its complications [64]. It can aggravate the vascular
damage implicated by diabetes through oxidative stress [65]
and increase the risk of renal function deterioration and
cardiovascular events, thereby leading to an increase in mor-
tality [66]. HIFmay activate during the early stage of DNunder
hypoxia and stimulate the proliferation and aggregation of
inflammatory factors in the damaged kidney; this paves way for
renal fibroblast scarring [67, 68]. Moreover, HIF can be
combined with fibrosis-promoting genes such as collagen 1,
connective tissue growth factor, and plasminogen activator

Table 4: 0e docking information of 10 targets with the corresponding compounds (AC: active component; HG: hub gene; and TG: total
score).

TS AC HG Quercetin Kaempferol Formononetin Isorhamnetin Calycosin 7-O-
Methylisomucronulatol

AKT1 4.384 4.880 4.527 4.94 4.831 5.579
VEGFA 5.491 5.637 4.655 5.958 5.844 4.948
IL-6 4.872 3.905 3.930 5.079 4.510 6.356
PPARG 4.156 5.435 5.499 5.368 5.201 6.072
CCL2 4.534 4.078 3.547 3.678 3.240 4.068
NOS3 6.667 5.571 4.824 5.804 6.195 6.632
SERPINE1 5.663 7.337 5.178 5.376 7.084 6.344
CRP 4.976 4.401 2.694 4.193 3.107 2.873
ICAM1 5.564 5.402 6.022 5.678 6.972 5.181
SLC2A4 5.233 6.075 5.318 5.196 6.399 5.761

(3S,8S,9S,10R,13R,14S,17R)-
10,13-Dimethyl-17-[(2R,5S)-5-

propan-2-yloctan-2-yl]-
2,3,4,7,8,9,11,12,14,15,16,17-
dodecahydro-1h-cyclopenta[a]

phenanthren-3-ol

Mairin Jaranol Hederagenin 3,9-di-O-
Methylnissolin

9,10-
Dimethoxypterocarpan-

3-O-β-D-glucoside

AKT1 4.054 2.436 4.086 3.927 4.048 5.957
VEGFA 5.664 3.981 4.960 5.764 4.126 6.494
IL-6 7.126 4.740 5.825 6.287 3.916 6.114
PPARG 6.152 3.791 5.732 6.064 6.389 7.351
CCL2 3.36 3.132 3.921 4.741 4.247 6.563
NOS3 7.225 -0.347 5.974 8.568 7.354 6.169
SERPINE1 1.407 -14.035 6.437 2.694 5.141 7.152
CRP 4.919 1.003 3.218 4.336 3.006 4.061
ICAM1 8.581 2.007 5.178 5.339 5.538 6.059
SLC2A4 8.644 5.528 5.686 9.449 6.242 7.901

(6aR,11aR)-9,10-Dimethoxy-
6a,11a-dihydro-6h-benzofurano

[3,2-c]chromen-3-ol
Bifendate FA

1,7-
Dihydroxy-

3,9-dimethoxy
pterocarpene

AKT1 4.012 7.164 5.873 4.508
VEGFA 3.602 5.177 8.093 7.426
IL-6 3.976 4.045 6.541 5.065
PPARG 5.152 6.364 7.445 4.521
CCL2 4.278 5.238 5.059 4.052
NOS3 6.520 3.976 9.906 5.907
SERPINE1 5.027 2.737 8.245 5.963
CRP 3.567 2.891 5.173 2.986
ICAM1 5.227 6.795 9.754 5.231
SLC2A4 4.837 7.733 8.877 5.041
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inhibitor 1 to generate interstitial collagen, reduce the degra-
dation of the extracellular matrix (ECM), and eventually lead to
renal fibrosis [69]. PI3K-Akt signaling pathway has been in-
dicated as the source of glomerular hypertrophy and ECM
accumulation [70]. PI3K can activate its downstream molecule
Akt, which further phosphorylates foxOS, GSK-3, Bad,mTOR,
and other proteins to cause a cascade reaction that plays a key
role in the accumulation of extracellular matrix, mesangial cell
proliferation, epithelial-mesenchymal transformation, and
other aspects of diabetic nephropathy [71, 72]. TNF-α can
stimulate the aggregation and adhesion of inflammatory cells,
increase the permeability of small blood vessels, and damage
the glomeruli through inflammatory reactions [73].

5. Conclusions

In this study, the mechanism of astragalus in treating DN
was analyzed by using systems pharmacology approaches.
We found six active ingredients that can directly affect di-
abetic nephropathy targets; we also found ten potential
targets for the treatment of DN. We infer that the AGE-
RAGE signaling pathway in diabetic complications, HIF-1
signaling pathway, PI3K-Akt signaling pathway, and TNF
signaling pathway in diabetic complications serve as the key
points and principal pathways for DN treatment. Altogether,
we systematically explored how Milkvetch Root may affect
DN treatment. We found that Milkvetch Root has multiple
targets and approaches for treating DN. Such data provide
the basis for multi-ingredient synergies in future research.
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