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Abstract: The circadian system regulates the cyclical occurrence of wakefulness and sleep 

through a series of oscillatory networks that comprise two different theoretical processes. The 

suprachiasmatic nucleus (SCN) of the hypothalamus contains the master oscillatory network 

necessary for coordinating these daily rhythms, and in addition to its ability to robustly generate 

rhythms, it can also synchronize to environmental light cues. During jet lag, abrupt shifts in the 

environmental light–dark cycle temporarily desynchronize the SCN and downstream oscillatory 

networks from each other, resulting in increased sleepiness and impaired daytime functioning. 

Polysomnographic data show that not only does jet lag result in changes of sleep–wake timing, 

but also in different aspects of sleep architecture. This type of circadian misalignment can 

further lead to a cluster of symptoms including major metabolic, cardiovascular, psychiatric, 

and neurological impairments. There are a number of treatment options for jet lag involving 

bright light exposure, melatonin, and use of hypnotics, but their efficacy greatly depends on 

their time of use, the length of time in the new time zone, and the specific circadian disturbance 

involved. The aim of this review is to provide mechanistic links between the fields of sleep and 

circadian rhythms to understand the biological basis of jet lag and to apply this information to 

clinical management strategies.

Keywords: circadian rhythms, sleep, sleep disturbances, jet lag

Introduction
Anyone who has ever suffered jet lag knows firsthand that our bodies are persistent 

in how they keep track of time. This timekeeping system structures the different 

physiological processes to work together over the course of the day in synchrony 

with the physical world. The master network coordinating this timing system is based 

in the suprachiasmatic nucleus (SCN) of the hypothalamus, where neurons exhibit 

circadian (lit. “about a day”) rhythms in their electrical activity and are driven by 

cell-autonomous molecular feedback loops.1 These neural activity rhythms are critical 

for circadian output and are reciprocally required for the sustained generation of their 

own internal molecular oscillations. Output from this SCN clock regulates  oscillatory 

sleep and arousal control centers, leading downstream to the organization of our 

daily sleep–wake behavior (Figure 1). During jet lag, a rapid shift in the sleep–wake 

cycle  transiently disrupts this coordinated regulation, and (1) the clock network loses 

 synchrony with the external environment and (2) the many oscillators within our  bodies 

become desynchronized with each other. Temporary circadian desynchronization has 

many effects, but the most obvious are impaired sleep at night and excessive daytime 

sleepiness during the day, which bring patients to the attention of the sleep clinician. 
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This article provides a framework for  understanding the 

biological basis of jet lag and for recommending manage-

ment  strategies. Understanding jet lag can help us address 

the broader problem of circadian misalignment, which has 

increasingly been associated with increased risk for  cancer, 

metabolic disease, cardiovascular dysfunction, mood 

 disorders, and cognitive decline.2–4

Control of sleep–wake cycles:  
a two-process model
Although there have been a number of attempts to 

model the processes that regulate the sleep–wake cycle, 

the two-process model of sleep regulation has had the 

most  widespread acceptance across the chronobio-

logical  community (Figure 2). In the simplest terms, this 

model  proposes that sleep propensity is governed by 

two predominant,  sometimes competing processes: one 

being a homeostatic load accumulated of sleep need based 

on time since last sleep episode, termed “Process S”, and 

another being a circadian-controlled rhythm in wakefulness 

or sleep, termed “Process C”.5–7

The two major processes governing basal sleep organiza-

tion keep track of time but can be thought of very differently: 

the circadian component, Process C, is an oscillator that runs 

indefinitely and consistently to dictate the time at which 

events occur, whereas the process regulating homeostatic 

sleep (Process S) operates like an hourglass which tells 

intervals of time. Sleep and wake behaviors are the sum 

result of several oscillatory and hourglass processes acting 

together in concert with external signals that regulate their 

precise initiation, termination, and duration, but for the sake 

of modeling, their regulatory components have been simpli-

fied and reduced to Process S and Process C.8,9

Temporal control of sleep 
architecture
Although sleep itself is a behavior, in humans and some 

animal models, we can quantify different properties of sleep 
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Figure 1 The master clock in the suprachiasmatic nucleus (SCN) controls the timing of the sleep–wake cycle as well as promotes arousal, ReM sleep, and sleep consolidation. 
Light resets the oscillations in the SCN through a mechanism involving melanopsin-containing retinal ganglion cells that project directly to the SCN via the retino-hypothalamic 
tract. Through an indirect pathway, circadian information reaches the pineal gland where the hormone melatonin is produced, which also can shift the phase of oscillations 
in the SCN. Both melatonin and neural information from retinal ganglion cells can also directly act on the sleep–wake system itself. Thus, light input and the circadian system 
work together to modulate properties of the sleep–wake cycle. The thin, dotted arrows represent the input pathways directly connected to the oscillatory central pacemaker 
in the SCN (denoted by rotating arrows). Bold-dashed arrows represent the different output pathways affecting the sleep–wake cycle. Both light and melatonin comprise 
aspects of the central circadian input pathway as well as the output signal controlling sleep–wake behavior.
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by measuring cortical activity with the electroencephalogram 

(EEG). EEG recordings have been useful in parsing levels 

of arousal and sleep, such as rapid eye movement (REM) 

and nonrapid eye movement (NREM), and also in relating 

certain electrophysiological correlates with other parameters 

related to sleep and wake states. Evidence suggests that delta 

power or slow-wave activity (SWA) during NREM sleep 

can be used to estimate Process S, as delta power increases 

logarithmically as waking is prolonged.5,6 Conversely, core 

body temperature is often used as a measure of Process C, as 

it is relatively free from masking by movement artifacts and 

itself is a robust rhythm. Sleep propensity is greatest during 

the falling limb of the circadian body temperature rhythm 

and decreases on the rising limb.10

There have been different hypotheses presented as to how 

specifically the circadian pacemaker dictates sleep–wake 

behavior at a physiological level.11–13 Although there is no 

definitive consensus, data support a model by which Process C 

actively promotes different aspects of each behavioral state 

rather than passively gating state transitions.14 At an addi-

tional level of temporal regulation, Kleitman15 proposed 

that humans followed a basic rest activity cycle (BRAC) that 

exhibits an ultradian rhythm. This was based on observations 

of an ultradian rhythm in NREM–REM sleep cycles through 

the course of the night, and ultradian rhythms in alertness 

during the course of the day with a similar period. One pos-

sible structure of the sleep–wake rhythm could be a series 

of thresholds set by ultradian variations coupled to circadian 

variations. Thus during certain times of the day, the circadian 

system promotes cycling levels of arousal, whereas during 

other times, it promotes cycling through different stages of 

sleep. Interestingly, there are certain aspects of sleep that 

appear to be strongly regulated by the circadian system that 

incorporate this organization. Both human and animal stud-

ies have shown that there are circadian rhythms regulating 

arousal and REM sleep, but NREM sleep appears to be more 

strongly under the control of a sleep homeostatic drive.9,14

In understanding how the circadian system influences 

sleep and wake, it is important to remember that Process C 

is one of many oscillatory processes, distinguishable from 

other oscillatory processes in the circadian system, but shar-

ing a common point of origin. Jet lag and other disruptions in 

Process C may be the result of perturbations in the circadian 

input pathway, the master oscillatory network in the SCN of 

Process S

Process C

Sleep homeostatic 
drive (Sleep load)

Circadian alerting 
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Alertness level

Wake

Sleep

9 am Day-active 9 pm 9 amNight-asleep

Figure 2 Two processes govern the daily expression of the sleep–wake cycle in humans. Process S represents a homeostatic sleep pressure that accumulates in a nonlinear 
progression from the time of last sleep episode. with a subsequent sleep episode, the signal strength representing Process S decays at an exponential rate. Juxtaposed against 
Process S is Process C, which in this case is represented by a circadian alerting signal. Process C follows a nearly sinusoidal pattern, repeating independently of sleep episodes. 
Sleep and wakefulness are only maintained in a consolidated fashion when the signals from Process S and Process C are appropriately aligned.
Copyright © 2005. Adapted with permission from Kryger MH, Roth T, Dement wC, eds. Principles and Practices of Sleep Medicine. Philadelphia, PA: wB Saunders; 2005.
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the hypothalamus that organizes the body’s clocks, or in the 

specific outputs along the sleep–wake control axis.

Circadian organization
In mammals, the part of the nervous system responsible for 

the organization of circadian behavior lies in a paired  structure 

in the hypothalamus known as the SCN. Although other cells 

in the body show oscillatory properties, the clock within the 

SCN is considered the master oscillator that  coordinates daily 

rhythms.1 The SCN is a bilaterally paired nucleus made up 

of tightly compacted,  small-diameter  neurons just lateral 

to the third ventricle atop the optic  chiasm. Subcortical 

light information is transmitted directly to the SCN via the 

 retinohypothalamic tract (Figure 1), whereas thalamic and 

midbrain inputs modulate light  information and transmit 

 nonphotic signals.16 The SCN integrates this  environmental 

information and modifies the oscillatory activity of its  neurons 

to create coherent, robust, neural, and humoral  signals to the 

rest of the brain and periphery.17 The neural  outputs of the 

SCN largely travel to other  hypothalamic regions including 

the subparaventricular zone and the dorsomedial nucleus.18–20 

These hypothalamic relay nuclei send projections throughout 

the central nervous system and endocrine system, providing 

multiple pathways by which the SCN can convey temporal 

information to a diffuse network of sleep and arousal-

 promoting centers.21,22 Interestingly, this communication 

appears to be bidirectional, as sleep state information is 

communicated back to the SCN as well.23

The expression of behavioral rhythms involves a far 

more complex route than a linear pathway from a single 

SCN neuron to sleep–wake activity. For instance, the SCN 

is heterogeneous, both structurally and functionally. Animal 

studies have indicated that part of the SCN is primarily 

involved in spontaneous rhythm generation, whereas the 

other part is primarily involved in conveying environmental 

resetting signals back to the rhythm generating neurons.24 

Downstream of the SCN, structures receiving temporal cues 

from the SCN have to incorporate this temporal information 

among a vast network of other inputs. To make matters more 

complex, other neurons and cells throughout the body show 

endogenous oscillations themselves in transcriptional activity 

of clock genes.4 Thus, the SCN exerts its actions on other 

clock-like systems throughout the body rather than just by 

amplifying its own timekeeping signal as the body’s only 

rhythm. In sleep, the SCN signal is integrated across sleep 

and wake-control centers, and activity specific to this pathway 

generates the rhythms observed in Process C. Under certain 

experimental conditions, Process C can be uncoupled from 

other oscillations that utilize separate neural pathways.18,25

SCN lesion studies in animals have primarily been used 

to model sleep–wake regulation in the absence of Process C. 

In addition to exhibiting arrhythmicity in the timing of the 

sleep–wake cycle, some studies show that SCN-lesioned 

animals will sleep the same amount over a 24-hour period, 

but this will be expressed in a fragmented ultradian rhythm 

over the course of the day.26,27 There are studies to suggest 

that total sleep time also increases after lesioning, but this 

might be a species-specific phenomenon.12,13 Although 

rebound in response to sleep deprivation is relatively similar 

in the absence of the SCN,26 the appropriate timing of this 

rebound is disrupted. Animal studies have also shown that 

REM sleep appears to be highly regulated by the circadian 

system.25 Studies of lesioned rats showed that transitions into 

REM sleep are facilitated by the SCN during the rest phase, 

but the amount of REM sleep, once initiated, is determined 

primarily by homeostatic mechanisms.28

There are distinctly robust contributions of Process C to 

arousal, REM sleep, and sleep consolidation.14 The role of 

Process C in both arousal and REM sleep may be explained 

by the previously described BRAC model in which there is 

a strong circadian regulation of the similar cortical activity 

accompanying wakefulness and REM sleep. How Process C 

acts in sleep consolidation might be more complex. There 

is a very short and specific window, related in phase to the 

endogenous body temperature rhythm (as it approaches its 

daily minimum), in which one may fall asleep and maintain 

this state throughout the night.14 One explanation for this is 

that the circadian sleep–wake signal might be suppressing 

a drive toward arousal during the second half of a sleep 

period.10,14 In insomnia, this drive might be insufficient, 

ultimately leading to inappropriately timed wakefulness.29 

The misalignment of the core body temperature minimum 

with the light-dark cycle is a major target for the treatment 

of jet lag-like desynchrony.

Light effects on circadian rhythms, 
Process C and sleep
Environmental light affects sleep–wake activity at multiple 

levels. Circadian rhythms of both nocturnal and diurnal 

 mammals are most sensitive to light resetting during the 

night. Although there are other, nonphotic means to reset-

ting the clock, light has been shown to be the most robust.30 

A low intensity pulse of 180 lux light (typical office lighting) 

that is appropriately timed is sufficient to significantly reset 
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circadian rhythms in humans.31 The direction and magnitude 

of light resetting depend on the endogenous phase of the 

clock, and this relationship is summarized in the form of a 

phase response curve (PRC). Although light-based PRCs 

have been extensively researched and documented,32,33 they 

all suggest the same basic pattern: in the first part of the night, 

light delays circadian rhythms. This functionally amounts to 

waking up and going to bed at a later time. In contrast, light 

exposure during the later part of the night or early morning 

advances rhythms to an earlier phase, resulting in earlier 

 bedtime and waking up earlier in the morning. The point at 

which a light cue switches its effects on the clock from delay-

ing to advancing is around the core body temperature mini-

mum, a time during which feelings of subjective  sleepiness 

are strongest.32 In the middle of the subjective day, when one 

is normally exposed to high levels of ambient light, there is 

little to no shifting effect of light on circadian rhythms.

It is difficult to examine light effects on sleep  independently 

of circadian rhythms as light has arousing effects that can 

“mask” rhythms in activity without resetting the circadian 

clock.34 Light affects sleep both through Process C and 

concurrently through other mechanisms, namely midbrain 

arousal circuits and hormonal signaling, which, like circadian 

rhythms, are directly connected to the non-image-forming 

visual system.35,36

Light reaches the SCN directly via a projection of 

 intrinsically photosensitive retinal ganglion cell axons that 

contain the recently discovered photopigment melanopsin 

(Figure 1).36,37 This pigment is most sensitive to light in 

the blue wavelength range38 and is necessary for normal 

 resetting of behavioral rhythms in animals following 

alterations in their light-dark cycle.39–41 Human circadian 

rhythms are most  sensitive to resetting at light wavelengths 

around 460 nm, which coincides with the photoresponsive 

range of  melanopsin.42 Interestingly, melanopsin- containing 

neurons not only project to the SCN, but also to the 

pretectum,36 where light acts independently of the  circadian 

system to acutely induce sleep in nocturnal mammals 

 during their active phase.43 Melanopsin knockout mice fail 

to sleep during a nighttime light pulse and show less total 

sleep time and SWA following sleep deprivation.44 Thus this 

 photoreceptive pathway affects sleep both dependent and 

independent of Process C through multiple targets.

Many SCN efferents are routed through the paraven-

tricular hypothalamus, which signals to the autonomic 

 intermediolateral cell column of the spinal cord, and  eventually 

to the pineal gland to produce the nocturnal hormone 

 melatonin.45 Melatonin is carried throughout the body with 

targets in both the brain and periphery, it exhibits a robust 

circadian rhythm, and it is synthesized in the pineal gland in the 

absence of light.46 Melatonin receptors are strongly expressed 

in the SCN, and melatonin is thought to feedback to the SCN 

to modulate its rhythmic profile.46 Interestingly, the SCN has 

been shown to be important for both the circadian rhythm in 

melatonin synthesis as well as the light-induced suppression of 

melatonin.47 Although the SCN is implicated in both pathways, 

different subregions have been mapped out for each effect on 

melatonin (circadian vs acute).48 This would suggest that at 

least some environmental information that resets the clock 

does so downstream of the master oscillator in the SCN.

Although in mammals melatonin is not necessary for 

the expression of behavioral rhythmicity, it is necessary in 

birds and reptiles.49 In humans, increases in melatonin at the 

appropriate circadian phase are associated with inducing 

sleepiness.50 Exogenous melatonin at higher doses also has 

this hypnotic effect, and the mechanism by which melatonin 

induces sleepiness may be explained by vasodilatory effects. 

In warm-blooded animals, melatonin is thought to adjust the 

setpoint at which core body temperature is regulated, thereby 

allowing higher blood flow to distal areas of the body and heat 

loss from the body’s core.51 Thermosensitive neurons in the 

distal body communicate temperature information back to the 

preoptic anterior hypothalamus, which contains sleep-active 

neurons that send inhibitory projections to arousal-promoting 

circuits in the brain.52 Although this pathway does not by 

itself account for all sleep–wake regulation, it does offer one 

viable explanation as to the association between sleepiness 

and the daily core body temperature minimum.

Transient disruption of the  
circadian system: jet lag
When circadian rhythm disruptions occur, desynchrony 

between clock systems within an individual as well as 

desynchrony with the environment follows. Even at the level 

of the SCN, different subregions shift at different rates.53 In 

general, a phase shift within the SCN is relatively rapid, but 

in other parts of the brain and also in the periphery, it can take 

many days to reset rhythms. Outputs from the circadian clock 

regulate key components in physiological pathways to drive 

rhythms in these systems, but the molecular components of 

the clock in each cell can also comprise cellular pathways 

with additional functions, including regulating metabolism 

and the cycle of cell division.4 It is, therefore, important to 

understand the mechanisms behind desynchrony, as these 
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disruptions not only affect temporal organization of networks, 

but also of the basic functions for cell survival.

Although symptoms of jet lag are generally temporary, 

they can be disruptive and include difficulty sleeping, 

 excessive daytime sleepiness, general malaise, impaired 

performance, and gastrointestinal (GI) upset.54 The  severity 

of jet lag symptoms and the ability to adapt to the new time 

zone are typically influenced by the direction of travel (slower 

adaptation when traveling east) and the number of time zones 

crossed.32,33 Not all travelers crossing time zones suffer from 

jet lag to the same degree, and these differences probably 

result from individual variation, similar to those reported for 

adaptation to shift work.32

Although experimentally it has been shown that circadian 

rhythms can be shifted by light independent of shifts in the 

sleep–wake cycle,55 jet lag itself involves some degree of 

sleep disruption. It has been demonstrated, for instance, that 

sleep deprivation can damp the effects of a light-based phase 

shift,56 and that bright light, conversely, can  counteract some 

of the EEG changes that normally accompany sleep depriva-

tion.57 Studies following transatlantic airline  passengers show 

that there are specific, sleep quality changes altered as a result 

of jet lag. After an eastward journey, when the sleep–wake 

cycle is shifted ahead, travelers show increased difficulty in 

initiating sleep by the second night that continues for the 

next few days in the new time zone.58 This difference is not 

observed on the first night, suggesting that immediately fol-

lowing eastward travel, Process S can induce sleep despite 

a misaligned Process C, possibly due to sleep deprivation or 

fatigue associated with travel. When simulating eastbound 

travel in the lab through advancing the time of sleep onset, 

there is an increase in time spent awake in the earlier part of 

the evening during the night of the shift.59 The results from 

these 2 paradigms suggest that the act of traveling itself helps 

promote sleep on the first night in the new environment. 

This travel-induced increase in sleep pressure independent 

of Process C is supported by marked increases in stage 2 

sleep on only the first night in the new time zone.58 There is 

interestingly a compensatory increase in REM sleep several 

nights later.58

Changes in sleep quality after a phase delaying westward 

flight, in contrast, last fewer days when crossing the same 

number of time zones.32,58 Westward bound travelers show 

increased SWA on the first night in the new time zone, 

 suggesting an increase in sleep pressure following travel 

(much like in eastward travelers). Simulating westbound 

flight in the lab, modeled by delayed sleep onset, results in 

an increased (albeit nonsignificant) trend in transitions to 

terminal wakefulness during the first night of the new sleep 

schedule as well. In both experimental paradigms, Process C 

is delaying to synchronize to the new environment. However, 

there is also an increase in sleep pressure that is due to an 

extended time since last sleep episode (ie, an increase in 

 Process S). In this way, westward travel is going to consis-

tently involve an additional factor that increases sleep pres-

sure for at least the first night following travel, as compared 

with eastbound travel.59

In summary, there are patterns in the changes of sleep 

quality following transmeridian travel that may present in the 

clinic. For the first day following travel, travelers are likely 

to fall asleep with less difficulty due to an increased sleep 

pressure that arises because of sleep deprivation and fatigue 

from traveling. If eastbound, after the first night, individu-

als will likely have more difficulty in initiating sleep from 

a few days to around a week following travel. In westward 

travel, there may be more difficulty in maintaining sleep 

later into the night, but this (mis)alignment is often restored 

and sleep symptoms are greatly reduced within only a few 

days post travel.58

In the laboratory, timed bright light exposure in the early 

evening, which mimics the light resetting effects on the clock 

of traveling westward, results in increased time to fall asleep 

for 2 nights following light exposure when the timing of the 

sleep–wake cycle is kept constant.60 The above experimental 

paradigm models what might occur upon returning home 

after traveling westward for a short-term trip. The changes 

in sleep could be explained by the evening light delaying the 

rhythm in core body temperature, wherein the descent toward 

the temperature minimum is delayed and the associated 

sleep-related effects of this fall are also delayed. If  traveling 

from the opposite direction, there is a significant rise in 

late-night wakefulness observed following a morning light 

pulse (ie, traveling eastward), which has phase  advancing 

effects on the sleep–wake cycle,61,62 but these effects are 

not significant in all studies.60 Together, these data suggest 

that there are specific jet lag effects also experienced from 

short-term travel, and these can best be treated by keeping 

to one’s home schedule and avoiding light during the times 

when their circadian clocks could be reset (ie, during the 

subjective night, based on schedules before travel).

Light can alter sleep–wake behavior in different ways, 

dependent on its properties. Bright light alters subjective 

alertness during the day.63 These effects are likely indepen-

dent of shifting the circadian clock, as they occur during 
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the day’s “dead zone” in which light has minimal effects 

on the circadian clock. During the night, when light would 

also affect Process C, blue light reduces SWA earlier in the 

NREM-REM ultradian cycle and increases SWA later, at the 

expense of less REM sleep.63 There are more power density 

changes following blue rather than green light pulses, sug-

gesting that the melanopsin pathway might be mediating 

these effects, which are specific but small. Similar specific 

effects are seen with polychromatic light.64

REM sleep shows some particular alterations to jet lag. In 

rats, there is an immediate increase in REM the night follow-

ing an 8-hour advancement in the light-dark cycle (simulating 

travel from Los Angeles to Paris).65 This could be due to a 

rebound from REM loss during the initial schedule shift, or 

it could result from a shift of REM timing to earlier in the 

evening. In humans, melatonin taken in the early evening, 

which has clock-shifting effects similar to light exposure in 

the early morning (eastward travel), REM duration increases 

independently of changes in NREM sleep.66 When  traveling in 

the opposite direction and the clock is delayed, there is an 

increase in REM sleep latency.67 This effect could be due to 

an increase in SWA and other components of NREM sleep 

that are associated with rebound to sleep deprivation, and 

REM might later show a compensatory rebound on subse-

quent nights. An alternative explanation is that REM sleep 

has also been delayed to appear later in the evening because 

of a delay in the clock itself.58

There are also examples of other neurological effects 

of jet lag. For instance, jet lag has been associated with 

more frequent sleep paralysis (lack of muscle control 

after arousal from sleep) episodes.68 The physiological 

prerequisite for sleep paralysis is sleep onset REM, and 

sleep onset REM results from elevated REM sleep pres-

sure (a homeostatic process involved in REM regulation).69 

These trends support a model where jet lag induces an 

initial increase in NREM sleep immediately following 

travel independently of shifting Process C. This increase 

in NREM sleep suppresses REM sleep initially, but even-

tually it triggers a compensatory REM sleep rebound.58 

During this rebound, REM pressure is increased, as is the 

associated frequency of sleep paralysis. In contrast to 

sleep paralysis, seizures are known to be more prevalent 

during the night, predominantly during NREM sleep.70 

The incidence of seizures has also been shown to increase 

following transmeridian travel.71 This again could be 

accounted for by an increase in NREM sleep from the 

sleep deprivation accompanying jet lag.

Clinical implications and treatment 
strategies
There are a number of pathophysiological conditions 

 associated with arousal state and sleep quality, and there 

is evidence to support the effective clinical application of 

 circadian and sleep-based therapies in such cases. For exam-

ple, in Alzheimer Disease, patients in a hospital  setting where 

light levels are often out phase or continuously  inconsistent 

with normal ambient lighting experience a  phenomenon 

called “sundowning”, in which they exhibit periods of 

 confusion and mania during the subjective rest phase.72 

There is also evidence linking different forms of depression 

to phase misalignments of the sleep–wake cycle, and sleep 

deprivation has been shown to be effective in short-term 

amelioration of some depressive symptoms.73 Furthermore, 

restoring disrupted behavioral circadian rhythms by hypnotic 

drugs reduces some of the symptoms of cognitive decline 

found in an animal model of Huntington Disease.74 These 

studies and trends suggest that circadian synchrony of the 

sleep–wake cycle has wide-reaching effects across different 

disease states. A growing body of evidence suggests that the 

circadian system is an important therapeutic target, and this 

idea is starting to gain acceptance outside of the academic 

chronobiological community.75

Treatment for jet lag focuses on aligning the  circadian 

system to the appropriate environment. When three or less 

time zones have been crossed, the symptoms of jet lag will 

persist only a short time, and the treatment strategy is bet-

ter suited for fatigue associated with travel, which does not 

involve any major shifts in the clock itself.33 Also, treating 

an individual to resynchronize to a new environment for only 

1–2 days requires a number of phase shifts that will only be 

undone when traveling again, and so in cases of the short 

term, it is best to assume a temporal schedule in the new 

environment as close as possible to one’s home schedule. 

Since light is the major signal that shifts the sleep–wake 

cycles, one should avoid early or late exposure as much as 

possible. If sleep is needed for a short-term trip, mild doses 

of  prescription  hypnotics can be helpful. Zolpidem (10 mg) 

given for 3 consecutive nights starting with the first night 

sleep after travel has been shown to improve sleep in some 

seasoned travelers.76 The wake-promoting agent armodafinil 

(the  longer acting R-isomer of modafinil) is also being con-

sidered for use in the treatment of jet lag sleep disorder.
Strictly treating the symptoms of jet lag (ie, treating only 

insomnia and/or sleepiness) does not necessarily treat jet 

lag itself. In fact, one must take care not to further shift the 
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clock in the wrong direction when treating the symptoms 

of jet lag. For instance, while a traveler may have caffeine 

for its arousal-promoting effects, the use of caffeine close 

to the time of sleep onset will result in difficulty falling or 

maintaining sleep.77 This often leads to exposure to light 

during the subjective night, which will further shift the 

clock out of phase with the new ambient light-dark cycle, 

resulting in further desynchrony. In order to avoid such a 

scenario, it is important to establish an understanding of 

appropriately timed cues. This involves utilizing the PRC 

to time one’s exposure and avoidance of light and other 

resetting cues.

In treating jet lag, re-entraining the sleep–wake cycle 

involves shifting the core body temperature minimum back 

to nighttime in the new environment through appropriately 

timed cues.32 The most effective time to begin treatment is 

prior to travel. Shifting without major insomnia or  sleepiness 

is best achieved gradually, and so timed exposure to bright 

light a couple of hours later than normal along with a 

 progressively later bedtime will help phase delay the clock 

beginning a couple of days before taking a large westbound 

journey.32 The opposite is true for an eastbound journey, 

with an emphasis placed on exposure to light earlier in the 

morning when waking up to shift the clock forward.32 In 

general, it takes more time to adjust to a phase advance than 

delay (or traveling eastward compared with westward). When 

phase advances are sufficiently large (.8 hours), it might be 

easier and faster to delay the clock until synchronized with 

the new environment.

Mammalian photoreception and phase shifting to light 

are optimized for environmental lighting conditions, which 

are generally much stronger than that of room lighting. 

Light boxes have been effective in providing strong enough 

light directly to the eye to induce phase shifts, but this is 

not the case for all room lighting, especially when they 

are dimly lit. Therefore, the best source of phase shifting 

light is sunlight, followed by light from a light box. Light 

should contain wavelengths in the blue range, as this is 

where the photosensitive circadian system is responsive.78 

During times when light should be avoided (morning 

for a delay, evening for an advance), minimizing light 

exposure by drawing curtains, wearing sunglasses, using 

low-intensity room lighting, etc. can all be helpful in pre-

venting shifts in the wrong direction. If a number of time 

zones are crossed during travel, light exposure schedules 

on the flight should be timed to maintain that the core 

body temperature minimum coincides with nighttime in 

the new environment.33

In presentation to the patient, one usually describes 

such strategies of light exposure in terms of going to bed 

earlier or later, rather than shifting rhythms. However, it is 

important to understand that the act of going to sleep itself 

 contributes to a phase shift mostly by altering activity levels 

and  avoiding light rather than by resetting the clock. There 

is data to suggest that sleep does have small phase shifting 

effects independent of light,79 but these are minor in com-

parison to those achieved by light alone. This is not to imply 

that treating sleep disturbance is ineffective, but in the case 

of jet lag, sleep disturbance is a secondary target. One can 

recover sleep loss in just 1–2 nights, whereas the effects of jet 

lag can last much longer.32 The use of hypnotic agents, which 

are widely used for any sleep-related disturbance, including 

jet lag, may only mask the symptoms of jet lag. The phase 

shifting effects of most currently prescribed hypnotics are 

unknown, and even if hypnotics are used, light exposure times 

should be concurrently regulated.

Melatonin is the primary pharmacological agent used 

in the treatment of jet lag, and it is widely available in 

 nonperscription form in the United States. There are also 

newly developed receptor specific subtype agonists that 

are available for prescription use, and these are thought 

to directly act on the SCN with higher specificity. Like 

in the case of light, there is a PRC for melatonin that is 

 necessary to utilize for its effective use in treating jet lag. 

Only  appropriately timed melatonin has phase shifting 

effects, even though larger doses of melatonin can have 

 sleep-inducing effects independently of changes in the 

clock.80 In a simplified view, the PRC for melatonin appears 

to be almost 180° out of phase with that of light: melatonin 

during the early evening phase advances the clock, whereas 

melatonin during the morning delays it. The dead zone for 

exogenous melatonin efficacy in phase shifts is during the 

period just prior to bedtime, when melatonin levels normally 

increase under low lighting conditions.33 This endogenous 

rise is thought to contribute to feelings of sleepiness via a 

mechanism that involves increased vasodilation and low-

ering core body temperature.51 Under normally entrained 

 conditions, endogenous melatonin synthesis is inhibited by 

light, and so its phase shifting effects during the early evening 

and morning hours are diminished.

Different doses of melatonin have slightly different PRCs, 

and only higher doses (3 mg vs 0.5 mg) have been reported 

to have direct hypnotic effects.32 There are also higher mag-

nitude shifts reported for the higher dose of melatonin.32 If 

taking melatonin during the day when sleepiness is ideally 

avoided and cognitive function needs to be optimal, it is 
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best to take a lower dose. Melatonin by itself can be a potent 

chronobiotic, but the strongest phase shifting effects will be 

achieved when taken in concert with appropriately timed 

light exposure. For instance, in a phase delaying example, the 

traveler can take a low dose of melatonin and avoid light in 

the morning of the new time zone, and for phase advancing, 

melatonin should be taken in the early evening again with 

the avoidance of subsequent light.

Different observable rhythms, while originating from the 

SCN, have different regulatory components. For instance, as 

discussed earlier, sleep is regulated by a circadian process 

along with a homeostatic process and can be modulated by 

different environmental conditions. Feeding behavior, as 

another example, is also regulated by a circadian process, 

but feeding is also regulated by food availability, social 

cues, appetite, etc. Although all of these rhythms become 

desynchronized to differing extents during jet lag, most 

treatment strategies focus only on resetting of the central 

pacemaker in the SCN. This is because inherent in most 

study designs, the phase of the clock is determined by core 

body temperature and melatonin onset, two events tightly 

regulated by the master clock itself. There is only a limited 

understanding of how other cues locally affect the resetting 

of tissues and organ systems. This is an important area of 

future research, as rhythms are now understood to be the 

result of multidirectional communicating networks. Two 

other areas in which phase shifting might be important for 

synchronization of events downstream of the master clock 

are exercise and timed feeding.

Animal studies suggest that appropriately timed exercise 

contributes to recovery from jet lag. In humans, the data are 

much less consistent, but this could be due to the fact that 

the effects of exercise on phase shifting might exist primarily 

outside of the SCN. Furthermore, the appropriate intensity 

and timing of this exercise has yet to be determined in some-

thing like a consensus PRC. From what is known, however, 

the appropriate timing of moderate exercise appears similar 

to that of exogenous melatonin: exercise in the morning phase 

delays, and exercise in the evening phase advances.81 There is 

one major exception, though, involving a study showing that 

exercise at night in humans induces phase delays.82 It could be 

that in all cases, exercise promotes fatigue, napping, or some 

other altered form of time in bed. The phase shifting effects of 

exercise on the master clock are relatively low in magnitude, 

but in concert with other phase shifting paradigms, the effects 

can be additive. It is still unknown whether or not exercise 

accelerates phase shifts in other brain areas or other clock 

networks in the body. For treatment purposes, drastically 

changing an exercise routine for treatment of jet lag is best 

avoided while the literature sorts itself out.

Another area where individuals can behaviorally acceler-

ate realignment to the environment is through appropriately 

timed feeding. There has been a recent explosion of research 

in the field of food-entrainable oscillations, which are impor-

tant for proper metabolism and also in synchronizing rest and 

activity rhythms.83 Clock genes cycle robustly throughout the 

liver and the entire GI tract, and there is a normal circadian 

variation in gut motility that needs to be tightly regulated 

to maintain the sequential contraction of smooth muscle to 

push food and nutrients through the gut.84,85 Peripheral clocks 

also show a hierarchical control in the circadian system, 

 suggesting that there is some plasticity in control of synchro-

nization at different levels of the body.86 Data from animals 

also suggest that the SCN and peripheral organs adjust to 

new environmental cycles at different rates, as peripheral 

organs appear to take longer to reset than the SCN.87 This 

further contributes to the desynchrony within the body that 

accounts for the symptoms of jet lag.

There is a noticeable lack of data on how feeding 

 schedules can be used to re-entrain following a phase shift 

in humans. Ironically, one of the major complaints  following 

jet lag is bowel movement irregularity.88 One study on jet lag 

had suggested that a diet of high protein early in the day and 

high in carbohydrates later in the day accelerated a phase shift 

with military personnel, but this data has not been confirmed 

on a large scale, nor is the treatment  necessarily feasible 

for everyone.89 Regardless, a common sense approach to 

 appropriately timed feeding is to gradually adjust meals 

to the new time schedule and avoid things like coffee and 

alcohol as they will interfere with quality of sleep and thus 

complicate the re-entrainment process.

Conclusion
Jet lag is a relatively common form of circadian disruption 

occurring when the core circadian system is out of synchrony 

with the environment due to the rapid shift of the light-dark 

cycle. During jet lag, the various oscillatory components of 

the circadian system are likely out of phase with the central 

clock in the SCN and consequently with each other. This 

disorganization of the circadian system leads to a cluster 

of symptoms including sleep disturbances and suboptimal 

cognitive performance. For short trips, we would recommend 

accommodating to this biological challenge by appropriate 

scheduling, ie, avoid early light exposure after newly  arriving 

after an eastward flight or avoid nighttime light exposure 

after westward travel. In addition, proper sleep hygiene, 
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including appropriate use of hypnotics, can be useful. For 

longer trips, synchronization to the new time zone can be 

aided by a variety of manipulations including timed light-

exposure, melatonin, exercise, and timed meals. Importantly, 

the goal of shifting one’s clock should not be complicated 

by treating only sleep disturbances. PRCs should be used 

when available, but generally travelers can appropriately 

time light and melatonin if they expose themselves to light 

in the early morning and take melatonin in the late afternoon 

when traveling eastward, and by exposing themselves to light 

in the early evening and taking melatonin in the morning 

when traveling westward. As we have come to understand 

that an observable rhythm results from the interactions of 

many endogenously generated rhythms and environmental 

factors, treatment for jet lag-like sleep disorders should 

be multifaceted. These widely accepted clinical treatment 

strategies involving light, melatonin, and other nonphotic 

cues have been shown effective when appropriately timed, 

and future research with an improved understanding of 

circadian misalignment will undoubtedly be beneficial in 

continuing to link the appropriate timing of sleep and wake 

cycles to improved health and well being.
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