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Abstract: Functional peptides are now widely used in a myriad of biomedical and clinical contexts,
from cancer therapy and tumor targeting to the treatment of bacterial and viral infections. Underlying
this diverse range of applications are the non-specific interactions that can occur between peptides
and cell membranes, which, in many contexts, result in spontaneous internalization of the peptide
within cells by avoiding energy-driven endocytosis. For this to occur, the amphipathicity and surface
structural flexibility of the peptides play a crucial role and can be regulated by the presence of
specific molecular residues that give rise to precise molecular events. Nevertheless, most of the
mechanistic details regulating the encounter between peptides and the membranes of bacterial or
animal cells are still poorly understood, thus greatly limiting the biomimetic potential of these
therapeutic molecules. In this arena, finely engineered nanomaterials—such as small amphiphilic
gold nanoparticles (AuNPs) protected by a mixed thiol monolayer—can provide a powerful tool for
mimicking and investigating the physicochemical processes underlying peptide-lipid interactions.
Within this perspective, we present here a critical review of membrane effects induced by both
amphiphilic AuNPs and well-known amphiphilic peptide families, such as cell-penetrating peptides
and antimicrobial peptides. Our discussion is focused particularly on the effects provoked on widely
studied model cell membranes, such as supported lipid bilayers and lipid vesicles. Remarkable
similarities in the peptide or nanoparticle membrane behavior are critically analyzed. Overall, our
work provides an overview of the use of amphiphilic AuNPs as a highly promising tailor-made
model to decipher the molecular events behind non-specific peptide-lipid interactions and highlights
the main affinities observed both theoretically and experimentally. The knowledge resulting from
this biomimetic approach could pave the way for the design of synthetic peptides with tailored
functionalities for next-generation biomedical applications, such as highly efficient intracellular
delivery systems.

Keywords: thiol-protected gold nanoparticles; cell-penetrating peptides; antimicrobial peptides;
cell membranes; lipid bilayers; non-specific interactions; spontaneous membrane translocation;
molecular dynamics

1. Introduction

Peptide molecules have gained enormous potential in the field of nanomedicine due
to their biochemical diversity, biocompatibility, biodegradability, low immunogenicity and
varied biological activity in vivo [1]. Peptides of natural and synthetic origin have been
used, inter alia, for cancer therapy, tumor targeting, as well as the treatment of bacterial
infections and viral diseases [2–6]. They include bioactive peptides that are isolated from
vegetables sources, plant food, marine species, venom components and other animal
constituents [7,8]. More importantly, functional peptides possess innate physicochemical
properties linked to intrinsic molecular and structural features that enhance their bioactivity
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and biomedical potential in a wide range of applications [6,9]. This is the case, for example,
of therapeutic peptides that are able to passively enter cells by avoiding energy-driven
endocytosis. Within endocytic vesicles, extracellular biomolecules are often degraded into
their building blocks by hydrolytic enzymes—a fate that is extremely detrimental to their
therapeutic value and on-target specificity [10,11].

Endocytosis-independent cell-penetrating activity relies on rapid and direct transloca-
tion across the cell membrane and is tightly regulated by non-specific hydrophobic and
electrostatic interactions occurring between the major components of membrane bilayer
and peptide structure. Amphipathicity and structural flexibility are two key factors in giv-
ing peptide molecules the propensity to enter cells spontaneously using this internalization
pathway. Specifically, the presence of long and flexible amphiphilic side chains, such as
lysine (Lys) or arginine (Arg), allows functional peptides to stably interact with the lipid
bilayer by a mechanism known as ’snorkeling’ [12–17]. In this process, the amphiphilic side
residues of the peptide progressively enter biological membranes, burying the hydrocarbon
part of their structure in the apolar core of the lipid bilayer, while their charged amino
groups snorkel towards the polar membrane-water interface. In addition to balanced
hydrophobic and electrostatic effects at the bilayer interface [18–22], this mechanism is
promoted by significant local membrane deformation [23,24] and conformational flexibility
of amphiphilic peptide residues [25].

Despite the great biological potential of peptide-lipid interactions, the precise molecu-
lar events that mediate and regulate the encounter between membrane-interacting peptides
and prokaryotic or mammalian cells are still poorly understood [26,27]. Most importantly,
understanding the link between peptide structure (e.g., flexibility) and amphipathic prop-
erties at molecular resolution and the exact mechanism of interaction with cell membranes
is a research priority in the arena. Still, this task is tremendously hampered by the het-
erogeneous chemical structure that characterizes both functional peptides and the cell
membrane and further work needs to be performed. Synthetic nanomaterials with con-
trolled and tailored flexibility and amphipaticity mimicking those of peptide molecules
can be an extremely powerful resource to overcome this limitation. The interfacing of
finely tuned nanomaterials with cell membranes can in fact provide an incredibly useful
and reliable system for tackling the study of the physicochemical processes underlying
peptide-lipid interactions.

Small (sub-10 nm) gold nanoparticles (AuNPs) protected by a mixed self-assembled
monolayer of hydrophobic and hydrophilic thiols immediately stand out among synthetic
nanomaterials for their ability to passively enter cells in vivo [28] and in vitro [29–35]. Gold
is widely used as a scaffold to create ligand-protected NPs for biological applications, due
to its remarkable stability, biocompatibility and electrical properties [36]. The gold core
also enables finely controlled amphiphilic surface properties to be achieved by grafting a
combination of apolar alkylthiols with a variable number of carbon atoms (usually greater
than 8) and polar alkylthiols with a similar chain length and negatively or positively charged
terminal groups (e.g., sulphonate or trimethylammonium ions) [37]. This mixture of
amphiphilic ligands exhibits a peculiar snorkeling behavior very similar to that previously
described for amphiphilic peptide side chains [38–40]. In addition to amphipathicity,
another key feature of these ultrasmall AuNPs is the large portion of free volume available
for each thiol ligand, which provides considerable surface conformational flexibility [40,41].
This allows the ligands to deform when entering the bilayer, favorably shielding their
apolar alkyl chains within the hydrocarbon lipid tail region, while positioning the charged
terminal moieties at the aqueous interface. As with amphiphilic peptides, non-specific
electrostatic and hydrophobic effects are the main factors responsible for the stable binding
of these NPs to membrane surfaces [38–40].
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Inspired by this remarkable analogy, in this review we introduce a critical comparison
of the membrane interaction effects induced by amphiphilic peptides and amphiphilic
thiol-protected AuNPs. To analyze the topic from a molecular perspective, we will look
separately at the impact of these interactions on key features of the cell membrane, such as
the lateral phase separation and cholesterol-mediated fluidity. The membrane effects on
the particles’ or peptides’ behavior, in particular the tendency to aggregate, will be also
addressed. On the peptide side, we will discuss concrete examples of small molecules that
share with amphiphilic thiol-protected AuNPs a high affinity for cell membranes, such as
the well-known antimicrobial peptides (AMPs) and cell-penetrating peptides (CPPs) [26,42].
Both families possess an amphipathic structure comprising short-chain amino acid residues
and a net charge due to a large amount of basic moieties such as Lys and Arg [26].

In order to focus on non-specific interactions mediated by electrostatic and hydropho-
bic contributions, our discussion will consider membrane environments devoid of energy-
driven cellular processes. These membrane systems include biomimetic lipid membranes—
such as lipid vesicles and supported lipid bilayers—which are widely exploited in parallel
with in vitro cell research to gain mechanistic insights into peptide interactions at the
cell interface [26]. Interestingly, the passive permeation of amphiphilic thiol-protected
AuNPs has also been systematically observed in biomimetic lipid bilayers—both planar
and curved—that exhibit fluid properties [40,43–48].

Overall, this review will present a thoughtful and novel perspective on the use of am-
phiphilic thiol-protected AuNPs as a suitable model to unravel and elucidate the molecular
details of non-specific peptide-lipid interactions. In addition to understanding a wide range
of peptide-mediated cellular processes, this advance in knowledge could be instrumental
in designing peptides with tailored functionality for specific applications, e.g., for highly
efficient intracellular delivery systems.

2. Amphiphilic Gold Nanoparticles and Amphiphilic Peptides: A Direct Route of
Penetration into Lipid Membranes

Amphiphilic, thiol-protected, gold nanoparticles are known to be able to passively per-
meate the lipid bilayer of cellular or biomimetic membranes. Since their core is usually in the
2–5 nanometers range, it is extremely challenging to analyze their membrane penetration
process by experimental means. In the last decade, several computational groups dedicated
a massive effort toward elucidating the precise molecular mechanisms of the penetration
into lipid membranes of AuNPs functionalized with 11-mercapto-1-undecanesulfonate
(MUS) and 1-octanethiol (OT) (hereafter called MUS:OT AuNPs, Figure 1a). MUS:OT
functionalization is one of the most popular and promising for the biomedical prospects of
amphiphilic thiol-protected AuNPs, as it allows for spontaneous NP penetration into cells
in a non-destructive way and the possibility of conjugating drug cargos for intracellular
delivery [31,37,49]. MUS ligands terminate with a negatively charged group, which confers
long-term colloidal stability to NPs in water and saline buffered solutions at pH 7.4 [50]. On
the other hand, the hydrophobic OT ligands enhance the interaction between NPs and the
membrane bilayer. Indeed, the combination of MUS and OT ligands allows for a passive
penetration of the lipid bilayer while retaining a high solubility degree [50].
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Figure 1. Amphiphilic AuNPs and amphiphilic peptides: similarities between their spontaneous 
penetration mechanism into lipid membranes. (a) Structure of an amphiphilic MUS:OT AuNP with 
its coarse-grained (CG) representation (2:1 MUS:OT ligand ratio). Red beads represent hydrophobic 
carbon groups, while green beads represent the charged MUS terminals. (b) Different stages of pen-
etration of a MUS:OT AuNP into a 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) lipid bi-
layer obtained from CG molecular dynamics simulations. From left to right: adsorbed state, hydro-
phobic contact state, and snorkeling of the first MUS ligand which binds to the opposite leaflet. 
Eventually – through a sequential anchoring process – more and more MUS ligands are dropped 
leading to the fully snorkeled configuration of the NP-membrane complex. Lipid heads are blue 
(choline) and tan (phosphate), lipid tails and water are not shown. (c) Translocation process of an 
amphiphilic ‘Spontaneous Membrane-Translocating Peptide’ (SMTP) into a POPC lipid bilayer ob-
tained from united atom bias-exchange metadynamics simulations. Specifically, the SMTP contains 
a LRLLR sequence composed of two Arg (R) and three leucines (L) residues. From left to right: 
SMTP located in the lipid head region, SMTP on its way towards the opposite leaflet, and final 
snorkeled configuration. The first Arg is shown in cyan, the second Arg is shown in red, and leucine 
hydrophobic residues are shown in green. Nitrogen and phosphorus atoms in the lipid head region 
are shown in blue and yellow, respectively. The lipid tails are shown as thin gray lines, while water 
is shown as red (oxygen) and gray (hydrogen) cylinders. (a,b) adapted with permission from Simo-
nelli et al. [38]—Copyright © 2022 American Chemical Society. (c) reprinted with permission from 
Cao et al. [51]—Copyright © 2022 Elsevier B.V. All rights reserved. 

The picture of the penetration mechanism of amphiphilic MUS:OT AuNPs is now 
precise thanks to molecular dynamics (MD) studies employing all-atom and coarse-
grained force fields [30,39,53,54], which revealed a multi-step process going through at 
least three different metastable stages (Figure 1b) [38]. In the first stage, the so-called “ad-
sorbed state”, the NP adheres to the external surface of the bilayer. In this configuration, 
the NP charged terminal ligands interact with the zwitterionic headgroups of the mem-
brane [38,52]. Coarse-grained simulations predict a reversible adsorption state, where the 

Figure 1. Amphiphilic AuNPs and amphiphilic peptides: similarities between their spontaneous
penetration mechanism into lipid membranes. (a) Structure of an amphiphilic MUS:OT AuNP with
its coarse-grained (CG) representation (2:1 MUS:OT ligand ratio). Red beads represent hydrophobic
carbon groups, while green beads represent the charged MUS terminals. (b) Different stages of
penetration of a MUS:OT AuNP into a 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) lipid
bilayer obtained from CG molecular dynamics simulations. From left to right: adsorbed state,
hydrophobic contact state, and snorkeling of the first MUS ligand which binds to the opposite leaflet.
Eventually—through a sequential anchoring process—more and more MUS ligands are dropped
leading to the fully snorkeled configuration of the NP-membrane complex. Lipid heads are blue
(choline) and tan (phosphate), lipid tails and water are not shown. (c) Translocation process of
an amphiphilic ‘Spontaneous Membrane-Translocating Peptide’ (SMTP) into a POPC lipid bilayer
obtained from united atom bias-exchange metadynamics simulations. Specifically, the SMTP contains
a LRLLR sequence composed of two Arg (R) and three leucines (L) residues. From left to right:
SMTP located in the lipid head region, SMTP on its way towards the opposite leaflet, and final
snorkeled configuration. The first Arg is shown in cyan, the second Arg is shown in red, and leucine
hydrophobic residues are shown in green. Nitrogen and phosphorus atoms in the lipid head region
are shown in blue and yellow, respectively. The lipid tails are shown as thin gray lines, while
water is shown as red (oxygen) and gray (hydrogen) cylinders. (a,b) adapted with permission from
Simonelli et al. [38]—Copyright © 2015 American Chemical Society. (c) reprinted with permission
from Cao et al. [51]—Copyright © 2020 Elsevier B.V. All rights reserved.

The picture of the penetration mechanism of amphiphilic MUS:OT AuNPs is now
precise thanks to molecular dynamics (MD) studies employing all-atom and coarse-grained
force fields [30,39,52,53], which revealed a multi-step process going through at least three
different metastable stages (Figure 1b) [38]. In the first stage, the so-called “adsorbed state”,
the NP adheres to the external surface of the bilayer. In this configuration, the NP charged
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terminal ligands interact with the zwitterionic headgroups of the membrane [38,54]. Coarse-
grained simulations predict a reversible adsorption state, where the NP can detach and
reattach later to the membrane [38]. At some point, the NP reaches the second stage of
the penetration process, called the “hydrophobic contact state”, in which the hydropho-
bic moieties of the NP manage to contact the hydrophobic core of the membrane. The
protrusion of one of the lipid tails to the polar head region of the bilayer is the molecular
trigger of this configurational change [38,43,55]. As soon as the NP establishes the first
hydrophobic contact, the NP ligands rearrange to maximize the interaction between the
hydrophobic moieties of the ligands and the membrane core. The NP center of mass shifts
toward the center of the bilayer, and the MUS charged terminals spread to contact the
choline group of the membrane lipids [38]. From the hydrophobic contact state, one of
the MUS ligands may cross the membrane core and attach to the lipid headgroups of
the opposite leaflet: this is the “snorkeling state”, the third stage of the process [38,55].
During the translocation of a MUS ligand, simulations show a water channel formation [39]
that is transient enough not to disrupt the membrane. In the snorkeled configuration, the
NP center of mass further shifts towards the bilayer center; one after the other, the other
MUS ligands eventually follow the first until the NP reaches a symmetric transmembrane
configuration. As predicted by thermodynamic models, the latter is the most energetically
favorable state of the NP-membrane complex [56–59].

It is worth noting that this picture of the penetration process, which depends on the
presence of both hydrophobic and charged alkylthiol ligands in the NP functionalizing
shell, can be considered valid also for non-MUS:OT AuNPs [37]. Indeed, amphiphilic thiol-
protected AuNPs with different alkylthiol chain lengths, different surface charge sign and
density, as well as different charged terminal groups, can spontaneously penetrate the lipid
bilayer via ligand snorkeling [58–62]. For instance, deprotonated 11-mercaptoundecanoic
acid (MUA) ligands can play the role of MUS ligands, replacing the SO3

– group with COO–

ions without substantial changes in the penetration mechanism described in Figure 1b [63].
The penetration mechanism remains the same even if the terminal group of the hydrophilic
ligands is positively charged, like in the case of AuNPs protected by a mixture of OT
and the cationic (11-mercaptoundecyl)-N,N,N-trimethylammonium (TMA) alkylthiol [46].
However, the free energy barrier relative to the snorkeling transition shown in Figure 1b
can be reduced if the model accounts for partial protonation of negatively charged ligands
at the membrane surface [63]. Indeed, the kinetics and thermodynamics of the process can
vary significantly depending on the surface functionalization details, such as the ligand
protonation state and ligand ratio [40,53,54]. The stability of the adsorbed state of MUS:OT
AuNPs, for instance, depends on the NP surface charge density: the more MUS ligands, the
longer the time of adhesion [38]. Interestingly, NPs with the same ligand shell composition
but different patching patterns can have different penetration kinetics [30,38,40,53].

The ability of charged alkylthiol ligands to allow amphiphilic thiol-protected AuNPs
to spontaneously penetrate the lipid bilayer recalls the same property of different types
of membrane-interacting peptides, such as CPPs [64,65] and AMPs [29,66,67]. In numer-
ous contexts, nature has designed peptides of these classes to penetrate the membrane
effectively without the need for energy-activated endocytic processes. Usually, their trans-
membrane moieties are amphiphilic (i.e., Lys or Arg) and are effective when arranged in
an α-helical structure [65,66]. In general, the reported membrane penetration process is
quite similar to that depicted for MUS:OT AuNPs: an initial adhesion state, favored by
the non-zero surface charge of the peptide, followed by a translocation, which requires
local perturbation of the lipid bilayer (Figure 1c) [67]. Snorkeling effects similar to those ob-
served for amphiphilic thiol-protected AuNPs have been reported for HIV-1 ‘Trans-acting
Activator of Transcription’ (TAT) peptides, an Arg-rich CPP family that plays a direct role
in the HIV disease process [68]; however, the translocation mechanism for TAT peptides
involves transient pore formation [69]. The translocation mechanism for CPPs of the TP2
class has been studied in recent years both by experimental [70,71] and computational
means [51,72] (Figure 1c), revealing that specific alternations of charged and hydropho-
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bic amino acids may reduce the penetration barriers while causing hydrophilic pores or
membrane deformations [72]. In other cases, the translocation mechanism does not require
strong bilayer perturbation [70,73].

3. Similarities in the Lipid Membrane Interactions Effects of Amphiphilic Gold
Nanoparticles and Amphiphilic Peptides
3.1. Effects on Phase Separation

The complexity of the cell membrane—in terms of dynamic processes which locally
modify the bilayer properties—is mainly related to the heterogeneity of its constituents
(mostly lipids and proteins) and their lateral organization. In particular, the membrane
lateral phase separation represents one of the main aspects of membrane complexity as it is
involved in several relevant biological events, including trafficking, signal transduction
and entry pathways of extracellular components. When evaluating membrane interactions
with exogenous entities, be they nanoparticles, small molecules or drugs, lateral phase
separation plays a central role that is mainly addressed through the use of different model
lipid systems.

The coexistence of liquid disordered (Ld) and liquid ordered (Lo) domains at the
nanoscale—these last with their densely packed chains similar to gel phase but endowed
with much higher lateral mobility—has been demonstrated to strongly influence the in-
teraction between amphiphilic AuNPs and lipid membranes. For example, Melby et al.
have reported a preferential attachment of positively charged amphiphilic thiol-protected
AuNPs to supported lipid bilayers (SLBs) containing Lo domains with respect to those
counting single homogeneous phase [74]. Different scenarios are proposed to justify this
behavior ranging from the preferential NP interaction with a specific phase, to the different
mechanical properties of the bilayer responsible for guiding the NP partitioning, up to the
role of the boundary between the two phases. Indeed, the phase boundary is commonly
associated with factors that potentially drive the NP adsorption, such as the occurrence
of unusual water structure or the enhanced permeability and the bilayer thickness varia-
tions [75–78]. The impact of lipid phase behavior on the adsorption of positively charged
amphiphilic thiol-protected AuNPs has also been recently assessed by computational stud-
ies [79]. Interestingly, MD simulations by Sheavly et al. unraveled the physicochemical
driving forces involved in the adsorption and partitioning of these AuNPs (4 nm core size)
into phase-separated membranes, pointing to NP adsorption as a competitive mechanism
between favorable NP-lipid interactions and the unfavorable curvature deformation of
the bilayer [79]. Although theoretical approaches suggest a stronger interaction with lipid
bilayers containing Ld domains due to their lower bending modulus, the measured free
energy changes associated with the transport of a single amphiphilic AuNP through a
phase-separated lipid bilayer revealed a minimum energy in correspondence of the phase
boundary [79]. Such free energy minimum is reasonably attributed to the thickness dis-
parity between Lo and Ld domains that enables favorable NP-lipid interactions without
needing large curvature deformations. The effect of membrane phase separation on the
absorption of negatively charged MUS:OT AuNPs was also assessed by Atukorale et al.
comparing giant multilamellar vesicles (GMVs) composed of lipids having different melt-
ing temperatures (TM). In the case of high-melting lipids, no NP-membrane interaction was
reported below TM, sign that amphiphilic thiol-protected AuNPs are excluded from the
gel phase of GMVs [47]. Recently, the interplay between amphiphilic MUS:OT AuNPs and
phase-separated membranes was further investigated by studying the interaction with mul-
ticomponent lipid bilayers mimicking the composition of the neural plasma membrane [44].
The latter naturally forms phase-separated domains due to the abundance of sphingolipids
and in particular sphingomyelins, the variety of which can give rise to extremely complex
phase behaviors [80]. Experimental evidence by atomic force microscopy (AFM) not only
showed a preferential interaction between amphiphilic MUS:OT AuNPs and the disordered
phase of model neuronal membranes (Figure 2a,b) but also revealed the suppression of lipid
phase separation induced by AuNPs in a concentration-dependent manner (Figure 3a) [44].
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Such effect has been interpreted using MD simulations, which successfully predicted the
NP-induced phase separation destabilization; in addition to this in silico investigation,
a simple thermodynamic model based on simulations allowed to identify the dominant
driving force of the process under investigation. Specifically, the main NP effect is to reduce
the lipid-lipid enthalpy gain due to phase separation by perturbing lipid-lipid interactions
in the liquid disordered domains [44].
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Figure 2. Amphiphilic AuNPs and amphiphilic peptides: a common affinity for the disor-
dered domains of phase−separated lipid membranes. (a) Phase−separated SLBs containing 1,2-
dioleoyl-sn-glycero-3-phosphocholine (DOPC), sphingomyelin (SM), cholesterol and ganglioside
GM1 (63:31:1:5 molar ratio) imaged in liquid by atomic force microscopy (AFM) after addition of
~3 nm MUS:OT AuNPs (40 min and 15 h). After hours, large clusters of amphiphilic AuNPs (white
arrows) slowly formed on the darker disordered phase and at the edges of the lighter (i.e., higher)
ordered lipid domains. (b) Potential of mean force (PMF) profiles calculated for the adsorption
of a single MUS:OT AuNPs on the surface of the Ld and Lo phase. The Ld phase, with a binding
free energy of ~18 kJ/mol (~9 kBT), is favoured over the Lo phase (~11 kJ/mol, ~5 kBT). (c) Giant
plasma membrane vesicles (GPMVs) derived from rat basophilic leukemia cells incubated at low
temperature with three examples of fluorescein-labeled CPPs—i.e., MAP (model amphipathic pep-
tide), penetratin (pAntp) and transportan 10 (TP10) (green). All these CPPs are amphipatic and
contain Lys or Arg residues. Lo and Ld phases are labeled with AF594-labeled cholera toxin B subunit
(CtxB, red) and AF647-labeled annexin V (AnV, pseudocolored as white), respectively. (a,b) contain
images by Canepa et al. [44] reprinted with minor modifications under a CC BY-NC 3.0 license with
permission from the Royal Society of Chemistry. (c) is reproduced and adapted with permission from
Säälik et al. [81]—Copyright © 2011 Elsevier B.V. All rights reserved.
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Analogous impacts on phase separation were also noticed as a consequence of the
interaction between lipid membranes and the previously mentioned CPPs or AMPs. Gen-
erally, these kinds of peptide structures constitute a large family of both endogenous and
synthetic molecules mainly composed by short-chain amino acid residues with different
conformational arrangements [82,83]. Even if they typically follow disparate molecular
pathways, they all share the spontaneous tendency to directly interact with cell plasma
membrane as a first activation step [84–90]. With particular reference to phase separa-
tion, the preferential interaction of different types of CPPs with membrane domains of
high fluidity has been reported (Figure 2c) [81]. This is, for instance, the case of pene-
tratin, a positively charged Arg-based CPP able to bind negatively charged membrane
components such as glycosaminoglycans and anionic lipids, and to effectively transport
active molecules into the cell [91,92]. Similarly to amphiphilic MUS:OT AuNPs [44], it has
been proved that Ld phase promotes the peptide-membrane interaction with respect to
Lo phases [93,94], demonstrating the high relevance of membrane fluidity in regulating
the interaction between exogenous molecules and lipid membranes. Further experimental
evidence performed on both uni- and multi-lamellar vesicles with several experimental
techniques showed also the penetratin tendency to induce lamellar phase separation and
lipid rearrangements favouring the transitions to gel rippled phase along with de-packing
of membrane polar head-groups [95]. Quite recently, it has been further established that
Arg-rich CPPs can also directly enter the cells by inducing phenomena such as membrane
multilamellarity and subsequent formation of a fusion pore [96]. There are also cases of
CPPs that induce a higher lipid order, such as the specific case of the S4(13)-PV peptide:
Cardoso et al. [97] focused on phase separation effects, revealing that destabilization of the
membrane structure –without compromising membrane integrity—is at the basis of the
lipid-driven and receptor-independent mechanism of cell entry of this peptide. In particu-
lar, in addition to the strong influence on thermodynamics revealed by the shifting of phase
transition to higher temperature and the substantial structural changes which result in an
enhanced lipid order, the promotion of lipid domains segregation has been as well detected
as a consequence of the S4(13)-PV peptide-membrane interaction. Similar effects have
been observed also on live membranes as confirmed by the formation and the stabilization
of quasi-hexagonal domains in HeLa cell membranes [97]. The opposing tendencies of
functional peptides to stabilize and de-stabilize lipid membrane phases have been also
reported for some AMPs and, in some notable cases, even for the same peptide. This is
the case of Gramicidin A, which has been found to selectively interact with disordered
domains and to induce or prevent lateral phase separation depending on the membrane
lipid composition [98]. However, these discrepancies in behavior must be sought in the
high heterogeneity of the membrane compositions and experimental conditions examined,
which give rise to multiple complex microenvironments, each with their own peculiar
chemical and physical properties.
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Figure 3. Perturbation of membrane ordered–disordered phase separation upon interaction with
amphiphilic AuNPs and amphiphilic peptides. (a) Topographic AFM images showing fragmen-
tation of ordered domains induced by ~3 nm MUS:OT AuNPs on phase-separated lipid bilayers
containing DOPC:SM:chol:GM1 (63:31:1:5 molar ratio). Two height profiles of the phase-separated
membrane without NPs are also reported. On the right: comparison of height difference distribu-
tions (∆z) between ordered and disordered domains before and after NP/membrane interaction.
(b) Fluorescence images of the same region of a POPC:1,2-dimyristoyl-sn-glycero-3-PG (DMPG)
1:1 phase-separated SLB with PG-enriched ordered domains recorded before and after exposure
to the lipopetide DAP (1 µM). Two solid ordered domains (dark regions) in a liquid disordered
background (bright region) containing the fluorescence lipid probe DHPE-Texas Red (TR, 1%) are
shown. The channel of kynurenine (KYN)—an intrinsically fluorescent DAP residue—is used to
visualize the morphology of ordered domains since DAP strongly interacts with PG lipids. Overall,
the SLB/DAP interaction induces an extensive size reduction of the solid domains equal to 59%.
(c) Force spectroscopy analysis and topographic AFM images of the same POPC:DMPG 1:1 SLB
before and after exposure to increasing DAP concentrations (0–8 µM). Jump-through (J–T) force maps
(resolution 32 × 32 pixels) are reported next to each AFM image, together with the comparison of
solid and fluid domains jump-through force upon increasing concentrations of DAP. (a) contains
images by Canepa et al. [44] reprinted with minor modifications under a CC BY-NC 3.0 license with
permission from the Royal Society of Chemistry. (b,c) are reproduced and adapted with permission
from Mescola et al. [99]—Copyright © 2020 American Chemical Society. All rights reserved.

Similarities in the interaction effects on phase separation of amphiphilic AuNPs and
amphiphilic AMPs have been reported as well. For instance, recent theoretical studies by
Su et al. [100] revealed the tendency of four different AMPs—i.e., Magainin-2, BP100, MSI-
103, and MSI-78—to selectively partition the Ld phase domains with respect to the Lo ones
in a lipid system composed of both saturated and polyunsaturated phosphocholines and
cholesterol. This is in strong analogy with what was observed in the interaction between
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amphiphilic MUS:OT AuNPs and the model neuronal plasma membrane exhibiting phase
separation [44]. Furthermore, a preferential interaction with the domain interface was
found for BP100, MSI-103, and MSI-78 AMPs, a feature further reminiscent of the behavior
of amphiphilic thiol-protected AuNPs reported by Sheavly et al. [79]. Curiously, it has been
demonstrated that all these AMPs induce a strong perturbation of lipid-lipid interaction in
both phases, especially in Lo one, and the changes in lipid-lipid enthalpy have been iden-
tified as the main driving force for sorting of the peptides to the Ld phase [100]. Another
interesting case dealing with phase separation effects is represented by Daptomycin (DAP),
a lipopeptide clinically used in treatment of skin infection caused by Gram-positive bacteria,
which acts in the co-presence of negatively charged headgroups as phosphatidylglycerol
(PG) and calcium ions following specific stoichiometric ratio [101–103]. Strong modifica-
tions of lipid thermodynamics, along with lateral reorganization of phase-separated micro
domains, were observed revealing a preferential interaction of DAP with PG headgroups
regardless of their phase, be it gel or liquid disordered phase, and a deeply entering of
lipid bilayer in correspondence of such PG moieties [99]. Moreover, the nanomechanical
effects observed are strictly dependent on the thermodynamic phase as DAP seems to
simultaneously induce domains stiffening when PG is in the fluid phase and softening
when it is in the gel phase (Figure 3b,c).

3.2. Effects of Cholesterol-Tuned Membrane Fluidity

Membrane fluidity is another key feature that contributes to shaping the intrinsic
complexity of the cell membrane organization. The variable degree of membrane fluidity
plays decisive roles under normal and pathological conditions by providing the appropriate
environment for the functioning of biomolecules residing within or associated with the
membrane bilayer, such as metabolic enzymes, membrane-bound transporters and ion
channels. Even in previously introduced phase-separated membranes, the discontinuity
in membrane fluidity resulting from lateral lipid segregation is crucial for various cellular
processes including signalling and membrane trafficking [104,105]. Numerous physical
(temperature, surface charge) and chemical (lipid composition, phospholipid unsaturation,
pH) parameters modulate the fluidity properties of membrane bilayers. Cholesterol is ar-
guably the major component of eukaryotic cells that preserves and regulates the functional
fluidity of cell membranes over a wide range of temperatures [106]. Mammalian cell mem-
branes account for ~40 to 90% of total cellular cholesterol [107], which in turn constitutes
~20–50 mol % of all membrane lipids depending on cell type and species [108,109]. Choles-
terol also contributes to maintaining membrane integrity and modulating lateral phase
separation resulting from preferential lipid-lipid interactions [106]. Gaining mechanistic
insights into how cholesterol-tuned membrane properties drive encounters with exogenous
entities, be they drugs, peptides or nanoparticles, is essential to understand and control the
nano-bio interactions that occur at the cellular interface. Membrane fluidity, in particular,
is crucial in regulating the permeability of cell membranes to therapeutic molecules and
other functional substances for controlled delivery applications.

Only recently, biologically relevant concentrations of membrane cholesterol have
been shown to hinder the molecular mechanism for passive translocation of amphiphilic
MUS:OT AuNPs across fluid bilayers (Figure 4a–c) [45]. From a molecular perspective, the
stability of passive NP incorporation into the membrane bilayer is highly dependent on the
occurrence of lipid fluctuations that pave the way for ligand translocation. The ordering
effects of cholesterol on lipid chains reduce lipid dynamics [110], leading to a dramatic
decrease in spontaneous NP permeation. This is in agreement with previous observations
showing a preferential binding of amphiphilic MUS:OT AuNPs with the fluid phase of
lipid membranes and exclusion from highly ordered gel phase domains [44,47].
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Figure 4. Translocation of amphiphilic AuNPs and amphiphilic peptides is favoured into lipid
membranes with lower cholesterol content. (a) Left: coarse-grained structure of hydrophilic (MUS)
and hydrophobic (OT) ligands and an amphiphilic MUS:OT AuNP in water (2 nm core size; water
not shown). Right: simulation snapshots showing the ligand anchoring typical of these AuNPs (see
Figure 1b). The NP goes from the hydrophobic contact state (top) to the anchored state (bottom) in
which one MUS charged terminal is in contact with the lipid heads (transparent gray) of the distal
leaflet. Cholesterol molecules—intercalated between the apolar tails of membrane phospholipids
(DOPC)—are shown in tan in the membrane detail on the bottom left. (b) Anchoring free energy
barriers calculated with well-tempered metadynamics simulations at different membrane cholesterol
concentrations. (c) Average anchoring time (∆tanchor) and average number of anchored ligands after
1 µs (Nanchors) obtained from unbiased MD simulations as a function of membrane cholesterol content.
(d) Translocation of the Arg-rich CPP nona-arginine (Arg9)—labeled with fluorescein (green)—into
GPMVs derived from MDA-MB-231 (MDA GPMV) and RBL-2H3 (RBL GPMV) cells. Left images:
GPMVs labeled with filipin (pseudo-colored as white) to bind membrane cholesterol and enable
its visualization. Right images: GPMVs labeled with Alexa Fluor 555-conjugated cholera toxin B
subunit (CtxB, red) and Alexa Fluor 647-conjugated annexin V (AnV, pseudocolored as white) to
visualize, respectively, the Lo membrane domains and phosphatidylserine contained in the outer
leaflet of the limiting membrane of both vesicle types. Quantification of the filipin signal shows
that MDA GPMVs contain approximately 30% less membrane cholesterol than RBL GPMVs; in
addition, RBL GPMVs show several large cholesterol-enriched subdomains (white arrows) that are
rarer in MDA GPMVs. Overall, Arg9 translocation is significantly reduced in vesicles character-
ized by higher membrane cholesterol content and more cholesterol-rich membrane microdomains.
*** p-value < 0.0001 and 0.0005 for filipin signal and fluo-Arg9 translocation, respectively. (a–c) con-
tain images by Canepa et al. [45] reprinted with minor modifications—Copyright © 2021 The Authors,
published by American Chemical Society. (d) is reproduced and adapted with permission from
Lorents et al. [111]—Copyright © 2018 American Chemical Society.
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A similar behavior to that found for MUS:OT AuNPs is observed when analyzing
the effect of cholesterol on the membrane uptake of amphipathic peptides endowed with
surface conformational flexibility. This is particularly true when considering CPPs enriched
in Arg [112], one of the main amino acids showing snorkeling properties [111,113–116]. As
illustrated in Figure 1c, in a manner analogous to thiol ligands of AuNPs, Arg residues are
able to stably incorporate within the lipid bilayer by accommodating the uncharged moiety
of their flexible side chains into the hydrophobic core of the membrane, while localizing
the hydrophilic terminal charges at the lipid head region [14,15,117]. This interaction is
thought to enable direct cell membrane penetration of Arg-rich CPPs, a process that has
been shown to be stimulated by several physicochemical factors occurring at the membrane
interface (e.g., surface concentration of peptides, interplay of membrane counterions,
modulation in peptide hydrophobicity and number of Arg residues) [118–120]. On the
contrary, the presence of membrane cholesterol has been reported to limit the spontaneous
permeation of Arg-rich CPPs through lipid membranes (Figure 4d). This is the case, for
example, of nona-arginine (Arg9) derivatives interacting with lipid bilayers composed
of 1,2-dioleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (DOPG), 1,2-dioleoyl-sn-glycero-3-
phosphocholine (DOPC) and cholesterol. Despite polyarginines strongly adsorbed on
PG/PC bilayers containing cholesterol [113], their membrane translocation efficiency was
drastically reduced [113,114]. In a more biomimetic study by Lorents and co-workers [111],
the uptake of Arg-rich amphiphilic CPPs such as Arg9 and Tat-peptide (pTat) into giant
plasma membrane vesicles (GPMVs) derived from different cell lines was also favoured
by decreasing the cholesterol content of the membrane. Previous results by Pae et al. [115]
reinforce the experimental evidence that higher cholesterol content severely interferes
with the interaction between GPMVs and CPPs containing Arg residues. A high mole
fraction of membrane cholesterol has also been shown to suppress the uptake of other
amphipathic CPPs such as transportan 10 (TP10) across vesicle bilayers comprising a
DOPG/DOPC mixture [117]. Interestingly, the direct translocation of amphipathic CPPs
such as transportans and analogues into biomimetic systems was observed to be more
strongly inhibited by cholesterol-induced bilayer rigidification with respect to polyarginine
Arg9 or pTat peptides [115]. Other Arg-based CPPs of prime importance such as penetratin
peptides have been reported to exhibit a significant decrease in vesicle uptake efficiency
upon cholesterol incorporation into the lipid bilayer [116]. Solid evidence for the impact
of cholesterol in inhibiting the entry of membrane-permeable CPPs into cells has also
been provided. Key studies by Futaki et al. [118,121] and Watkins et al. [122], for example,
clearly show that the conditions for direct translocation of Arg-rich CPPs across living
cell membranes are significantly promoted by the loosening of lipid packing induced by
cholesterol depletion (e.g., via treatment with methyl-β-cyclodextrin).

As pointed out above, strong similarities in the mechanisms of interaction of lipid
membranes with amphiphilic AuNPs and amphiphilic peptides can also be found when
membrane-active AMPs, which share analogous physicochemical properties to CPPs, are
considered [123]. Even in this context, certain amino acid sequences, such as Arg, Lys
and histidine residues, contribute to establishing favourable hydrophobic and electrostatic
interactions with the different regions of the lipid bilayer [124], assisting the peptide translo-
cation across the membrane [125,126]. When looking at the combination of cholesterol
and zwitterionic PC phospholipids in biomimetic systems, numerous examples reveal a
dramatic reduction in the membrane-binding properties of Arg-containing amphipathic
AMPs [127]. This is the case, for instance, of honeybee melittin (one of the most studied
antimicrobial peptides) [128], temporin L derived from the frog Rana temporaria [129] and
Arg-rich protegrin-1 isolated from porcine leukocytes [130,131]. Remarkably, in homoge-
neous PC bilayers with a high cholesterol content, the spontaneous membrane incorpora-
tion of melittin has been reported to be strongly delayed compared to phase-separated lipid
systems with the same amount of cholesterol [132]. This result confirms that lateral phase
separation is an important factor driving the membrane activity of peptides exhibiting
hydrophilic and hydrophobic properties, in agreement with previous studies involving
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amphiphilic thiol-protected AuNPs [44,77,82]. Cholesterol-attenuated peptide insertion
into zwitterionic or anionic PG-containing membranes has also been demonstrated for
many known amphipathic AMPs that do not include Arg residues, including gramicidin
S [133], maculatin 1.1 [134], pleurocidin [135] and the LL-37 peptide belonging to the cathe-
licidin family [129]. Based on this general behavior, studies conducted in recent decades
increasingly attribute a protective role to cholesterol in eukaryotic membranes against
damage caused by host AMPs [72–74]. Indeed, depending on the membrane content in
each cell type, cholesterol acts as an effective molecular regulator of antimicrobial peptide-
membrane interactions, making the membrane more resistant to structural transformations
induced by embedding AMPs.

3.3. Aggregation Effects on the Membrane Surface

In the previous paragraphs, we observed how exogenous entities with amphiphilic
properties such as synthetic NPs or peptides can passively and stably penetrate the mem-
brane bilayer. Moreover, we remarked that the biological membrane has a multicomponent
nature, meaning that many different macromolecules, mainly proteins, are structurally
embedded in the lipid bilayer frame. We can refer to all bilayer-embedded entities as
membrane inclusions, independently from their biological or synthetic nature. The interac-
tions in these systems can then be categorized into inclusion-lipid interactions, lipid-lipid
interactions, and inclusion-inclusion interactions, all of which can be mutually influenced,
as well as influenced by the interactions with the solvent. We have already addressed the
case of the inclusion-lipid interaction: the process of membrane penetration of amphiphilic
AuNPs and amphiphilic peptides, and the impact of membrane cholesterol in hindering
this event. Moreover, the perturbation of membrane lateral phase separation represents
a clear case of the impact of membrane inclusions on lipid-lipid interactions. However,
if we consider more than a single inclusion, we must also consider direct and indirect
inclusion-inclusion interactions, the combination of which can lead to the aggregation of
membrane inclusions.

Membrane proteins offer several instructive examples of how the aggregation of
biological membrane inclusions is crucial in allowing many of their functions to be carried
out [136,137]. Several membrane receptors, such as tyrosine kinase and G-protein coupled
receptors, can in fact only be activated after oligomerization [138,139]. In other cases,
the cell takes advantage of the aggregation of membrane proteins to stabilize functional
structures of the lipid bilayer: the dimerization of caveolin proteins, for instance, allows the
formation of membrane folds called caveolae [140]. Proteins with a ‘Bin/Amphiphysin/Rvs’
(BAR) domain also work by scaffolding and assembling [141–143]. Aggregation is also
part of the functioning mechanisms of smaller peptide molecules, as in the case of AMPs
that are able to disrupt the membrane by creating pores [144,145]. According to both
the barrel-stave and toroidal model, the mechanism of pore formation requires peptide
oligomerization [146–148]. Protein and peptide aggregation is also involved in pathological
processes, such as amyloid formation [149]. Given the similarity between the behavior of
amphiphilic AuNPs and numerous examples of amphiphilic peptide families, we expect
the aggregation of membrane-embedded NPs to affect membrane structure in a similar
way. Ideally, the NP aggregation tendency could be controlled to prevent their potential
toxicity [150] or exploited for targeted biomedical applications [151].

The driving force for membrane inclusion aggregation can vary significantly at dif-
ferent length scales. For instance, inclusions of tens or hundreds of nanometers typically
interact thanks to motor-driven systems, in which the motor is composed of actin com-
plexes in various configurations [152–155]. In the case of smaller inclusions, the dominating
driving force at medium range is usually the minimization of the membrane elastic energy.
Indeed, for distances larger than the typical bilayer thickness (4–5 nm), the membrane
can be seen as a thin, flexible sheet [142,152,156], for which deformations come at an en-
ergy cost given by the Helfrich Hamiltonian [157]. In such a scheme, when inclusions are
inserted, they modify the local curvature of the membrane. In response, the membrane
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changes the distribution of the inclusions to minimize the overall elastic energy (Figure 5a).
The resulting effective inclusion-inclusion interactions can be quite complex when con-
sidered at the collective level [158–160]. Shallow membrane deformations often induce
repulsion [152,161,162], but in some instances, the resulting interaction can be attractive,
leading to aggregation [163,164]. When considering very short length scales (in the order of
1 nm), the effects of the finite size of the lipids, with their partial order and ability to bend,
rotate and tilt, cannot be neglected. In multicomponent lipid bilayers, the inclusions can
induce domain formation in their surrounding area; in this case, aggregation is driven by
the minimization of the interfacial tension between the separated domains (capillary forces,
Figure 5c) [165–168]. Inclusions can also create a region of lipid depletion: this happens
if the conformational freedom of the lipids is somewhat constrained. For instance, the
height mismatch between the hydrophobic surface of the inclusion and the lipid tails can
induce lipid depletion (Figure 5b). As for capillary forces, aggregation is favored because it
minimizes the extent of the depleted region [169–172].
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Figure 5. The tendency for membrane aggregation is shared by amphiphilic AuNPs and amphiphilic
peptides. (a) Top, sketch of two curvature inducing membrane inclusions; due to the elastic energy of
the membrane, an effective interacting potential can arise and, depending on the system, the interac-
tion can be attractive and thus lead to aggregation. Bottom, system in which the inclusions suppress
the natural fluctuations of the membrane; aggregation can minimize this region. (b) Aggregation
induced by lipid depletion. (c) Aggregation induced by capillary forces. In configuration (1), there
are two regions of modified lipid density around the inclusion; dimerization allows to minimize their
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total area, as shown in configuration (2). (d) Ordered aggregate of MUS:OT NPs adsorbed on a
DOPC membrane. The snapshot is taken from unbiased MD simulations (Martini CG). Nanoparticles
are represented with yellow beads (Au), pink beads (S), cyan (MUS ligands) and blue (OT ligands);
membrane lipids are represented with red beads. (e) Dimer of adsorbed NPs on DOPC membrane
from unbiased MD simulations (Martini CG). The extended ligand configuration can be observed.
Representation as in (d). (f) Cryo-EM image of MUS:OT aggregation on the surface of a DOPC
liposome. The NP-NP is compatible with the extended ligand configuration. (g) Ordered aggregate
of MUS:OT NPs embedded in a model neuronal plasma membrane. The snapshot is taken from
unbiased MD simulations (Martini CG). The NP are represented with a yellow core, blue OT ligands
and cyan MUS ligands. The membrane is represented with red DliPC lipids, light pink sphingomyelin,
yellow ganglioside and grey cholesterol. (h) Dimer of MUS:OT NPs embedded in a model neuronal
plasma membrane. The deformation of the ligand shell and the presence of the stabilizing layer of
ions (red beads) can be observed. The membrane headgroups are shown as semi-transparent surface,
lipid tails are not shown for clarity. (i) Supramolecular lattice formed by M1 bilayer-embedded
MUS:OT NPS, imaged by AFM. The digital zoom of the area with blue contour shows the lattice
order at higher magnification. (a–c) adapted with permission from Johannes et al. [152] Copyright ©
2022 Elsevier B.V. All rights reserved. (d–f) adapted from Lavagna et al. [173] with permission from
the Royal Society of Chemistry. (g–i) adapted from Canepa et al. [44] under a CC BY-NC 3.0 license
with permission from the Royal Society of Chemistry.

The interaction mechanisms described above were originally characterized for pro-
tein and peptide inclusions but may remain valid for protein-mimicking objects such as
amphiphilic AuNPs. Mechanisms involving subtle perturbations of membrane lipids are
particularly suited to be studied using molecular models and MD simulations. Simulations
from Chan et al. [174] proved that membrane aggregation of sub-2-nm-AuNPs coated
with hydrophobic thiol ligands depends on the strength of ligand-lipid interactions; this
in silico result closely reproduces the experimental observations reported by Rasch et al.
using cryogenic transmission electron microscopy (cryo-TEM) [175]. Interestingly, recent
coarse-grained MD results from Angelikopoulos et al. [176] highlighted the complexity
of the aggregation mechanisms of amphiphilic MUS:OT AuNPs. In their study, AuNPs
with a core diameter of 3 nm and a 1:1 MUS:OT surface composition self-assemble in a
1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) membrane containing cholesterol.
They explain the aggregation showing that NPs induce a region of cholesterol depletion,
in which lipids form a liquid disordered phase, rather than a liquid ordered bulk phase.
Thus, NP aggregation minimizes liquid ordered-liquid disordered interface. Moreover,
they observe that the shape of the aggregates is linear, which cannot be explained only with
the minimization of the liquid ordered-liquid disordered interface. The linear geometry
depends on the reshaping ability of the ligand shell: both the NP-NP and the NP-lipid
interfaces are stabilized by the MUS ligand terminals, which are in a finite number. Thus,
each embedded MUS:OT AuNP can form only a finite number of NP-NP bonds before their
membrane embedding becomes unstable. It is worth noting that this effect is dependent on
the surface density of the charged terminals of the thiol ligands, which strongly depends on
the NP core size and ligand monolayer composition. These properties were not explored in
this work, implying that the generality of the process is not guaranteed. However, linear
aggregation is not even peculiar to soft-shell NPs: it can also be explained by membrane
curvature forces, as recently demonstrated in the case of rigid hydrophobic NPs [177]. Still
focusing on the case of amphiphilic MUS:OT AuNPs, an interesting effect of the NP core
size on bilayer aggregation was observed in silico in a recent study by Canepa et al. [44],
where the NPs were free to diffuse in a quaternary mixture of PC, SM, cholesterol, and
ganglioside GM1 mimicking the neuronal plasma membrane. In this study, embedded NPs
of two different core sizes (2 and 4 nm) were used, both with a MUS:OT ligand shell in a 2:1
ratio (Figure 1a). While embedded 2 nm-AuNPs did not show any tendency to aggregate,
4 nm-AuNPs formed well ordered, hexagonal lattices (Figure 5d). The authors concluded
that the transition from the non-aggregation to the aggregation regime happens somewhere
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between the 2 and 4 nm size range. Again, NP-NP dimerization was mediated by the
charged terminals of MUS ligands (Figure 5e). The difference in aggregation geometry
compared to the results of Angelikopoulos et al. [176] can be explained by the different size
of the AuNPs and the different composition of the surface ligand shell: a larger NP size
and a higher MUS concentration may in fact result in a higher density of charged ligands,
allowing each NP to form more NP-NP bonds. Furthermore, Canepa and co-workers [44]
note a possible correlation between the degree of NP aggregation and the degree of NP
embedding within the membrane. Their computational results are corroborated by experi-
mental AFM investigations performed on lipid bilayers of similar composition. The AFM
images clearly confirm the formation of bilayer-embedded NP aggregates and their highly
ordered geometry. Remarkably, the experimental NP-NP spacing within the aggregates is
coherent with the extended ligands configuration of the MD simulations [44], as shown in
Figure 5f.

A recent work from Lavagna et al. [173] exploits coarse-grained MD simulations to
investigate the aggregation driving forces of amphiphilic MUS:OT AuNPs, focusing on the
effects of different NP-membrane penetration states. The NP models employed in this study
have a 4 nm core diameter, and the membrane is composed of a single lipid (DOPC) in its
liquid disordered phase. The authors observe the formation of ordered planar aggregates
at all the investigated penetration stages (adsorbed, semi-snorkeled, and fully snorkeled)
(Figure 1b) while highlighting different driving forces, as detailed below. Adsorbed planar
aggregates (Figure 5g,h) on the surface of the membrane are due to ion-bridging: a layer
of positive counterions glues the negatively charged NP interfaces. This ion-mediated
interaction is a short-range phenomenon that happens in the water phase. It is a peculiar,
non-DLVO driving force present also in the absence of membranes, as shown by Petretto
et al. with atomistic simulations [178] and experimental images (Figure 5i). The fact that
ion-bridged aggregates can be found in water implies that the aggregates adsorbed on
the membrane could come from two different pathways: from the lateral diffusion of
single adsorbed NPs or from the flattening of a NP cluster formed in the water phase.
For semi-snorkeled NPs, ordered aggregates still form, but the aggregation kinetics are
somewhat slower. Indeed, while the aggregation is again stabilized at a short range by
ion-bridging, the strong membrane curvature that the NPs induce on the bilayer generates
a free energy barrier in the dimerization process. To form a dimer, the deformations
induced by two NPs must become a large one, with intermediate configurations with a
high curvature point, implying a high energy cost. Thus, in this example, the elastic energy
of the membrane contributes to shaping the attractive inclusion-inclusion interactions.
Finally, for fully snorkeled NPs, a longer-range interaction is observed and explained
by measuring a lipid tail depletion aura around NPs. When two lipid depletion auras
come in contact, the particles start attracting each other. Then, once again, ion briding can
stabilize the aggregation at short range. Numerous cryo-TEM images confirm the presence
of MUS:OT AuNP aggregates in different penetration configurations on the membrane
of DOPC liposomes [47,179]. As in the work of Canepa et al. previously discussed [44],
also in this context the measured NP-NP distance in ordered aggregates is compatible
with the extended ligand configuration observed in simulations [173]. Based on all these
theoretical and experimental observations, it is important to remark that the reshaping of
the NP ligand shell allows these amphiphilic AuNPs to display a wide variety of behaviors
in terms of formation of different stable NP-membrane configurations. These could be
finely tuned through minimal changes not only in the composition of the NP ligand shell,
but also in the size of the gold core.

4. Conclusions

A large number of functionalization strategies have been proposed to decorate the
surface of gold nanoparticles resulting in an amphiphilic behavior for targeted biological
applications [180–184]. When interacting with lipid membranes, amphiphilic AuNPs pro-
tected by mixed thiol monolayers share remarkable similarities with well-known functional
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peptides endowed with amphipathic properties and biomedical potential. These include,
for example, cell-penetrating peptides and antimicrobial peptides that have emerged as
interesting categories of therapeutic agents. Analogous to many examples in these peptide
families, amphiphilic AuNPs are able to spontaneously insert into the lipid bilayer through
a penetration mechanism that relies on a ligand snorkeling process, which results in the
translocation of flexibleω-charged ligands across the hydrocarbon moiety of the membrane
bilayer from one polar interface to the opposite one. Furthermore, amphiphilic AuNPs
are able to undergo aggregation in the membrane, in parallel to oligomerization processes
exhibited by antimicrobial peptides and, in general, to functional or pathologic aggregation
of peptides and proteins. Both AuNPs and peptides also preferentially interact with the
Ld phase of the bilayer, being excluded from highly ordered gel phase domains, and can
induce lateral reorganization of phase-separated lipid systems. Finally, their uptake in the
bilayer is strictly modulated by the membrane cholesterol content, which is known to play
a key role in the regulation of membrane rigidity.

The strong similarities between nanoparticle membrane and peptide-membrane inter-
actions suggest that the passive incorporation into cell membranes of amphiphilic agents
with biomedical potential could target the membrane fluid phase and could be regu-
lated, in vitro, by modulating the cholesterol-related membrane fluidity. From an opposite
perspective, the effects of membrane cholesterol and phase separation in governing the
dynamic processes of eukaryotic cell membranes should be taken into high consideration
when interpreting and/or bioengineering the direct and selective uptake of amphiphilic
AuNPs or amphiphilic peptides into cells in vivo. This certainly has a strong impact on
the biological activity of both nanoparticles and peptides; however, the molecular details
underlying the mechanism of action between nanoparticles or peptides and the membrane
environment have yet to be fully elucidated.

Collectively, the evidence reported in this review indicates that amphiphilic AuNPs
protected by thiol ligands may provide an excellent model for elucidating the mechanistic
aspects of the interaction between functional peptides and the lipid bilayer of cell mem-
branes. In addition, it reveals the extreme biological versatility of amphiphilic AuNPs,
which constitute a very powerful tool not only for simulating the interaction with the
membrane but also in the control and regulation of this interaction by tailoring the size of
the NP core and the design of the core-shell assembly [40,47], thus allowing a synthetic
biology approach to gain insight into biologically relevant membrane processes. In this
scenario, a very interesting example is the recently demonstrated ability of amphiphilic
thiol-protected AuNPs to promote Ca2+-triggered membrane fusion in a manner similar
to much more complex endogenous protein structures [185]. Overall, this biomimetic
approach could open the way for more systematic studies at the nanoscale that could ulti-
mately lead to the development of engineered NPs with rationally designed biosynthetic
activity for next-generation nanomedicine-based technologies. Among others, these can
include novel agents for cancer therapy and treatment of bacterial infections, as well as
finely tuned vehicles for intracellular delivery.
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