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Abstract 

Epileptic seizures prediction and timely alarms allow the patient to take effective and preventive actions. In this paper, a 
convolutional neural network (CNN) is proposed to diagnose the preictal period. Our goal is for those epileptic patients 
in whom seizures occur late and it is very challenging to record the preictal signal for them. In the previous works, 
generalized methods were inevitably used for this group of patients which were not very accurate. Our approach to 
solve this problem is to provide a few-shot learning method. This method, having the previous knowledge, is trained 
with only a small number of samples, learns new tasks and reduces the efforts to collect more data. Evaluation results 
for three patients from the CHB–MIT database, for a 10-min seizure prediction horizon (SPH) and a 20-min seizure 
occurrence period (SOP), averaged sensitivity of 95.70% and a false prediction rate (FPR) of 0.057/h and for the 5-min 
prediction horizon and the 25-min seizure occurrence period averaged sensitivity of 98.52% and a false prediction rate 
of (FPR) of 0.045/h. The proposed few-shot learning method, based on previous knowledge gained from the generaliz-
able method, is regulated with a few new patient samples for the patient. Our results show that the accuracy obtained 
in this method is higher than the generalizable methods.
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1  Introduction
Epileptic seizures are transient signs or symptoms of 
abnormal, intense, and synchronous activities of the nerv-
ous system caused by electrical discharge from neurons. 
Approximately 50–60 million people worldwide have 
epilepsy [1]. In some patients, seizures may occur every 
few months or even every few years. Despite the low fre-
quency of clinical symptoms, unpredictable seizures have 
profound effects on the patient’s life [2].

Seizures, due to their unpredictability, often cause 
stress in the patient. More than 99.95% of the times, the 
patient is not having a seizure and should be able to live a 
relatively normal life, but the patient is always concerned 
that seizure can occur at any time and this affects their 
daily lives, often leading to anxiety and depression and 

lowering their quality of life [3]. The ability to accurately 
predict the seizures and to provide early warning before 
seizure occurrence can make significant changes in the 
lives of people with epilepsy, giving them greater confi-
dence and freedom, as well as reducing sudden deaths in 
patients with epilepsy. In these cases, patients can take 
medication when necessary and not constantly. The elec-
troencephalogram (EEG) signal has a higher temporal res-
olution than other brain imaging modalities and is used to 
predict more epileptic seizures. The EEG signal is a mul-
tivariate time series of a nonlinear and multidimensional 
system, so only complex nonlinear functions with a high 
degree of freedom can reveal the complex relationship 
between them. Today, there are significant advances in the 
field of machine learning, powerful algorithms such as the 
CNNs are utilized, since they have good results in natural 
language processing, object detection and classification 
and they acted very strongly to discover complex struc-
tures in data [4, 5]. One of the hypotheses for predicting 
epilepsy is that changes in brainwave patterns occur as we 

Open Access

Brain Informatics

*Correspondence:  jamal_n62@yahoo.com

1 Faculty of Electrical, Biomedical and Mechatronics Engineering, Qazvin 
Branch, Islamic Azad University, Qazvin, Iran
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-7014-522X
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40708-022-00170-8&domain=pdf


Page 2 of 9Nazari et al. Brain Informatics            (2022) 9:21 

approach ictal. There are two perspectives for identifying 
these changes during the preictal interval that in one view, 
only the preictal interval is analyzed and it is compared to 
the threshold level [6]. In the second perspective, the dis-
tinctive patterns between the preictal and interictal inter-
vals are identified and a binary classification is performed 
[7]. The commonality between these two perspectives is 
the extraction of the best features from the EEG signal. 
Many models have been used to predict seizures, yet the 
lack of efficient way for prediction still exists.

Most of the work done to diagnose and predict epilep-
tic seizures is such that a number of time domain features 
such as median, mean, variance, standard deviation, maxi-
mum and minimum, etc.; frequency domain features such 
as power spectrum density, etc.; time–frequency domain 
features such as wavelet transform coefficients, Pseudo-
Winger–Will, etc.; and chaotic features such as fractal 
dimension, approximate entropy and spectral entropy and 
correlation dimension, etc. are manually extracted. The 
combination of them is best described by the expert. In 
[6], they predicted epileptic seizures by introducing a sim-
ilarity index based on symbolic dynamics techniques (sta-
tistical behavior of local extremes) with the sensitivity of 
63.75% and FPR = 0.33/h for 21 patients from the Freiburg 
database and sensitivity of 96.66% and FPR = 0.33/h for 
eight patients.

In the last few years, various methods have been pro-
posed to select the most appropriate combination of fea-
tures and classifiers, including the results of extracting 
linear features from the EEG signal, such as autoregressive 
coefficients [8]. The emergence of dynamical systems the-
ory introduced several nonlinear properties using features 
of Lempel–Ziv, noise level, correlation entropy complex-
ity, and correlation dimension of intracranial EEG with 
the sensitivity of 86.7% and 92.9% with FPR = 0.126/h and 
0.096 /h for SOP = 30 min and 10-s forecast horizon [9]. 
Spike rate used in this work [10]. For the CHB–MIT data-
base, tailored feature extractions are customized and per-
formed independently for each patient with a sensitivity 
of 98% and an FPR of less than 0.05/h [11]. With synchro-
nization information, achieved a 95.4% sensitivity and 
FPR of 0.36/h [12].

A patient-specific method using the common spatial 
pattern (CSP) for feature extraction was reported with lin-
ear discriminant analysis (LDA) classifier with 89% sensi-
tivity, FPR = 0.39/h, and SPH = 120 min for 24 CHB–MIT 
database patients [13]. In [14], the authors presented a 
patient-specific prediction algorithm using multiple fea-
tures of spectral power of EEG signals and support vector 
machine (SVM) for classification, and reported sensitiv-
ity of 97.5% and FPR = 0.27/h for 18 Freiburg patients 
as well. In [15], authors have used the Recurrent Neural 

Network (RNN) to learn temporal dependencies between 
successive samples. Manual extraction of features is not 
only time-consuming but also imperfect. When faced 
with a wide range of data, it is challenging to engineer 
features and achieve high-level features. Generalized net-
works remove this constraint and allow data features to be 
extracted and learned without explicit structural informa-
tion, and create an automated feature extraction path. In 
[16], they achieved FPR = 0.11–0.02/h and sensitivity 99% 
using the features of statistical moments, zero crossings, 
wavelet transform coefficients, PSD, graph theory, cross-
correlation and using Long–Short-Term Memory (LSTM) 
for CHB–MIT data for 15–120 min SOP and zero SPH. 
In [17], using resting-state functional magnetic resonance 
imaging  (rs-fMRI), EEG and LSTM achieved 96% sensi-
tivity. In another study, they used convolution neural net-
work on Functional near-infrared spectroscopy (fNIRS) 
and EEG data of 49 patients to reach 95.24–100% sensitiv-
ity [18]. In [19], using CNN, SVM for data set of 5 dogs 
and 2 patients, achieved 0.72% sensitivity. Used CNN and 
wavelet, was obtained sensitivity of 87.8% and an FPR 
of 0.147/h [20]. However, patient-specific feature-based 
tasks are generally high sensitivity and low FPR. Because 
the best feature combination is extracted and performed 
independently for each patient. However, the biggest 
problem with these methods is that they have to access a 
lot of preictal signals from each patient, which is difficult, 
especially in patients who have seizures late. The next 
problem with these methods is the manual extraction of 
features that is both time-consuming and error prone. In 
this work, to resolve these problems, we use the Few-shot 
learning method which requires a small amount of data 
from each patient and convolutional neural networks are 
also used to extract the feature, which eliminates the need 
for manual feature extraction.

The rest of the paper is organized as follows. We first 
describe the proposed method in the next section. Evalua-
tion method, database and experimental results are given 
in Sect. 3. Section 4 presents discussion and comparisons 
and Sect. 5 finally concludes the paper.

2 � Proposed method
In this section, we will present the database, preprocess-
ing, and the details of the proposed methods for predict-
ing epileptic seizures.

2.1 � Database
EEG signals are recorded in two ways: intracranial EEG 
(iEEG) and scalp EEG. In the iEEG technique, the elec-
trodes are located exactly on the brain and it is an invasive 
method, but in the scalp EEG method, the registration is 
done on the scalp and it is easy to register, so because it is 
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non-invasive and more accessible, the scalp EEG is used 
for this work.

Boston Children’s Hospital (CHB)–MIT data set [21]. 
Included scalp EEG data from 23 subjects with 844 h of 
continuous EEG recording and 163 seizures. All signals 
were sampled at 256 samples per second with a 16-bit 
resolution. The EEG signals were captured with the use 
of 22 electrodes. In this study, we consider patients whose 
signal was recorded at least 30 min before the seizure. In 
this work we will use data from 18 patients and 16 com-
mon channels.

2.2 � Preprocessing
In this work, 16 raw EEG channels are used simulta-
neously. Two-dimensional (2D) CNN convolution is 
required. Our method is based on two-class classification 
to distinguish the preictal from the interictal. However, it 
is essential to know how long the preictal interval starts 
from the seizure onset and how long it lasts, because if the 
Seizure prediction horizon (SPH) is longer, the patient has 
enough time for coping and taking vital actions. The sei-
zure occurrence period (SOP) should not be long so that 
the patient is less anxious. In trial 1, we consider the signal 
5  min before the ictal to 30  min before the ictal, that is 
a 25 min interval that is considered as the preictal inter-
val. This means SOP = 25  min and SPH = 5  min. In trial 
2, we consider the signal 10 min before the ictal to 30 min 
before the ictal, that is a 20 min interval is considered as 
the preictal interval. This means that SOP = 20  min and 
SPH = 10  min as shown in Fig.  1. SPH is the space of 
between the alarm and the onset of the SOP. For the alarm 
to be true, seizures should begin after SPH and within 
the SOP. Passing the signal through a bandpass filter, we 
select the middle frequency of 0.5–100 Hz, and we elimi-
nate a 60 Hz frequency power line noise via a notch filter.

After normalization, by passing a sliding window with 
a length of 5  s with variable overlap, segments with a 
length of 1280 samples are selected from the preictal and 

interictal range equally due to the balance of data in both 
classes. One of the essential issues in classification is the 
balance of the data set which means that each class has an 
equal number of data. Due to the fact that in the database 
used, the length of the preictal period is short in a num-
ber of patients. To select segments from preictal intervals 
with shorter lengths, the variable overlap is used in learn-
ing phase. It is noteworthy that overlapping segments are 
not used in the test. As a result, each segment is a two-
dimensional matrix with a size of 16*1280, which means 
that each channel with a length of 5 s (1280 samples) is 
located in a row.

2.3 � Generalizable
The proposed generalizable method consists of a CNN 
architecture in first stage for feature extraction and a 
SVM for binary classification. Deep architecture allows 
the reuse of features (mid-level features that are shared 
between all classes). It has also the potential to create 
high-level features.

CNN is a feed-forward network inspired by the ani-
mal visual cortex. CNNs can detect complex structures 
in data. They require little preprocessing, meaning that 
the model itself is responsible for learning the features 
extracted manually in traditional algorithms [22]. Auto-
matic feature extraction from raw data, without the 
need for prior knowledge and without the need for an 
expert or a specialist, as well as the concept of hierarchi-
cal learning in it, has made it essential to do this work. It 
has been shown that in the early layers, low-level features 
are learned, and as it deepens, higher level concepts are 
learned [20, 23]. In this model, Dropout and max-pooling 
layers are used to prevent overfitting [24]. The batch nor-
malization technique is used in all layers for faster train-
ing and improved accuracy [25]. The model used has an 
end-to-end learning architecture, that is learning from the 
raw EEG without any feature extraction.

Fig. 1  Preictal intervals used in Trial 1 and Trial 2
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Two layers of the convolutional layer are applied to the 
input, which is an EEG signal with size (n * 16 * 1280), n 
is the number of input data sets. Each convolution layer 
contains a 3*3 kernel and single stride. Dropout and batch 
normalization is applied to all layers. A max-pooling layer 
of 2*2 size is then applied in with two strides. Afterward, 
the convolution output is first flattened and then an FC 
(fully connected) with two hidden layers and one output 
layer is used. In every two hidden layers, the Dropout and 
Batch normalization is performed. The two neurons of the 
last layers use the soft-max activation function and the 
rest of the layers use the ReLU activation function. In the 
second case, an SVM classifier is used instead of employ-
ing fully connected layers and a soft-max activation func-
tion. The generalizable method architecture is shown in 
Fig. 2.

2.4 � Few‑shot learning
The main method in the discussion, which is the primary 
purpose of this work, is called few-shot learning (FSL), 
which we will examine.

Few-shot learning is a machine learning method that 
aims to achieve good performance with the help of lim-
ited data [26, 27]. FSL methods are trained with just a few 
examples of labeled data. FSL can quickly learn new tasks 
that have little data with the help of prior knowledge and 
reduce the effort to collect more data [28, 29]. FSL meth-
ods can be classified into three groups:

1.	 Data: Enhancing educational data sets using methods 
such as manual data augmentation in preprocessing 
or techniques such as Generative Adversarial Net-
works (GANs) to generate unrecognizable synthetic 
data.

2.	 Model: Reducing the number of network learnable 
parameters with methods, such as parameter sharing.

3.	 Algorithm: Using models that have already been 
trained for related tasks. Transferring prior knowl-
edge from a pre-trained model to do the same work is 
known as transfer learning [30].

For the definition of transfer learning, denote the 
domain Q = {H, P(X)} for feature space H and marginal 
probability distribution P(X), where X = {× 1, …, xm} ∈ H. 
A task K included a label space Y and target predictive 
function f: H → Y, defined by K = {Y, f(x)} is learned by the 
training data consisting of pairs {xi, yi}, where xi ∈ X and 
yi ∈ Y. Given a source domain QS and learning task KS, a 
target domain QT and learning task KT, where QS ≠ QT 
or KS ≠ KT, transfer learning goals to modify the learn-
ing of the target predictive function fT(.) in QT using the 
knowledge in QS and KS [31].

Transferring previous knowledge from the proposed 
generalizable method which has been trained with the 
data of 15 subjects in the CHB_MIT database is used 
to extract the feature. The weights of the convolution 
layers are not updated and the classifier layers are fine-
tuned using only a few data from the patient. By freez-
ing the weights of the CNN layers, we have reduced the 
number of learnable parameters and, in fact, imple-
mented the concept of parameter sharing. A block dia-
gram of both methods is given in Fig. 3. To increase the 
data manually, which was described in the pre-process-
ing section, a slider window with variable overlap was 
used to increase the training data.

In this method, which is a patient-specific method, 
we use several methods for FSL. Using transfer learn-
ing methods, parameter sharing, Manually Data Aug-
mentation together in this method has improved its 
performance.

The generalizable method includes the input of 15 
patients who enter CNN after preprocessing and then 

Fig. 2  Proposed generalizable method
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use SVM or FC as a classifier. In the few-shot learning 
method, a new patient’s data is entered to a CNN, which 
is the same as CNN used in the previous generalizable 
method, and it finally is applied to the classifier layers 
to update weights of the classifier layers for the new 
patient.

3 � Results and discussion
We define the following parameters to evaluate and 
compare these methods for different preictal intervals:

a)	 Seizure prediction horizon (SPH) is defined as the 
interval between the alarm and the onset of the sei-
zure occurrence period (SOP). For the alarm to be 
actual, seizures should begin after SPH and within the 
SOP.

b)	 False prediction rate per hour (FPR/h) is the number 
of incorrect alarms per hour when they are positively 
predicted, but no seizure occurs in the SOP [7].

c)	 Sensitivity is determined the percentage of rightly 
predicted seizures divided on the all seizures.

d)	 Area Under the Curve (AUC) of the Receiver Operat-
ing Characteristics (ROC) curve It is one of the most 
essential evaluation metrics for checking any classifi-
cation method’s performance. sections.

3.1 � Generalizable method results
Generalizable method that we trained with 15 patients 
from the CHB–MIT database. The evaluation results 
of this method with the leave-one-out cross-validation 
(LOOCV) method for trial 1 and trial 2 are shown in 
tables 1 and 2. The LOOCV technique uses all data except 
one for training and the residuum data for the method 
testing. This garlic is repeated N times; N presents the 
number of data folders. With this work all data will be 
used to train and test the method. The method error rate 
is equal to the average error rate per iteration. For com-
parison of the results, the average of sensitivity, FPR, and 
AUC for 15 patients are calculated and given in the table.

3.2 � Few‑shot learning method results
To evaluate the few-shot learning method, used six sei-
zures from subject Chb03 of which three seizures were 
used for fine-tuning the method and three seizures were 
excluded for method testing. We repeated the above 
experiment for subject Chb10 and subject Chb16 in the 
same way. The test results of few-shot learning method 
are given in tables 3 and 4.

To compare better the results of both methods, three 
patients who were not used in the generalizable method 
were tested with both methods and the results are shown in 
fig. 4. The sensitivity of the FSL method is better, especially 

Fig. 3  Proposed method block diagram
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when the SVM is used. For Shorter SPH, there is more sen-
sitivity and there is a tradeoff between the SPH and the sen-
sitivity. Averaged sensitivity for three patients in the 5-min 
prediction horizon and the 25-min seizure occurrence 
period is 98.52% and a false prediction rate of 0.045/h. These 
results easily show the outperformance of the proposed 
method in predicting seizures with only a few records.

4 � Discussion
The works done to predict epilepsy are either patient-
specific or generalizable. The patient’s specific methods 
are more accurate and the reason is to choose the best 
combination of features for that patient. Among the gen-
eralizable technique, those that have used deep neural 
networks, especially CNN, have more acceptable results. 

Table 1  Test results of the generalizable method for Trial 1 (SOP = 25 min, SPH = 5 min)

Patient name Fully connected SVM

Sensitivity (%) FPR (/h) AUC​ Sensitivity (%) FPR (/h) AUC​

Chb01 94.09 ± 0.2 0.013 ± 0.001 0.954 ± 0.004 98.78 ± 0.7 0.011 ± 0.006 0.984 ± 0.002

Chb02 50.00 ± 0.7 0.103 ± 0.006 0.901 ± 0.002 68.62 ± 0.1 0.100 ± 0.006 0.699 ± 0.004

Chb04 95.45 ± 1.2 0.110 ± 0.005 0.967 ± 0.005 90.72 ± 0.2 0.097 ± 0.006 0.973 ± 0.005

Chb05 71.36 ± 0.5 0.030 ± 0.009 0.786 ± 0.004 68.65 ± 0.4 0.121 ± 0.003 0.798 ± 0.003

Chb06 100.00 ± 0.3 0.051 ± 0.002 0.984 ± 0.012 86.92 ± 0.8 0.041 ± 0.006 0.894 ± 0.001

Chb07 81.54 ± 0.6 0.018 ± 0.005 0.912 ± 0.009 100.00 ± 0.0 0.023 ± 0.009 0.982 ± 0.007

Chb09 82.91 ± 1.1 0.032 ± 0.004 0.891 ± 0.021 98.32 ± 0.1 0.110 ± 0.007 0.996 ± 0.002

Chb14 62.98 ± 0.7 0.114 ± 0.006 0.919 ± 0.004 71.82 ± 0.6 0.050 ± 0.001 0.957 ± 0.008

Chb15 99.19 ± 0.7 0.023 ± 0.009 0.997 ± 0.007 90.02 ± 0.5 0.000 ± 0.006 0.949 ± 0.002

Chb17 81.73 ± 0.9 0.083 ± 0.001 0.924 ± 0.006 86.49 ± 0.2 0.097 ± 0.005 0.934 ± 0.004

Chb18 78.18 ± 1.4 0.112 ± 0.006 0.897 ± 0.001 71.22 ± 0.7 0.105 ± 0.002 0.798 ± 0.001

Chb19 99.09 ± 0.6 0.017 ± 0.005 0.998 ± 0.002 91.64 ± 0.1 0.001 ± 0.004 0.929 ± 0.005

Chb20 100.00 ± 0.8 0.040 ± 0.008 0.901 ± 0.007 89.84 ± 0.3 0.091 ± 0.001 0.897 ± 0.002

Chb21 77.72 ± 1.2 0.110 ± 0.008 0.867 ± 0.020 89.81 ± 0.5 0.106 ± 0.002 0.928 ± 0.003

Chb22 86.05 ± 0.1 0.135 ± 0.002 0.944 ± 0.001 98.10 ± 0.2 0.124 ± 0.006 0.967 ± 0.001

Avg 84.02 ± 0.7 0.066 ± 0.005 0.922 ± 0.007 86.73 ± 0.3 0.071 ± 0.004 0.912 ± 0.003

Table 2  Test results of the generalizable method for Trial 2 (SOP = 20 min, SPH = 10 min)

Patient name Fully connected SVM

Sensitivity (%) FPR (/h) AUC​ Sensitivity (%) FPR (/h) AUC​

Chb01 92.12 ± 0.3 0.024 ± 0.003 0.933 ± 0.005 95.84 ± 0.6 0.036 ± 0.005 0.969 ± 0.001

Chb02 83.05 ± 0.2 0.151 ± 0.002 0.891 ± 0.004 85.36 ± 0.2 0.120 ± 0.002 0.874 ± 0.005

Chb04 93.87 ± 0.4 0.090 ± 0.004 0.958 ± 0.005 91.25 ± 0.4 0.087 ± 0.005 0.984 ± 0.005

Chb05 75.54 ± 0.4 0.098 ± 0.002 0.892 ± 0.001 79.44 ± 0.5 0.134 ± 0.001 0.718 ± 0.002

Chb06 91.89 ± 0.7 0.097 ± 0.005 0.943 ± 0.015 100.00 ± 0.4 0.097 ± 0.005 0.997 ± 0.006

Chb07 83.35 ± 0.2 0.089 ± 0.001 0.907 ± 0.001 90.12 ± 0.1 0.114 ± 0.004 0.921 ± 0.004

Chb09 79.88 ± 0.6 0.087 ± 0.006 0.851 ± 0.007 88.52 ± 0.7 0.210 ± 0.003 0.864 ± 0.003

Chb14 95.18 ± 0.2 0.044 ± 0.005 0.912 ± 0.005 90.66 ± 0.6 0.077 ± 0.008 0.943 ± 0.004

Chb15 91.22 ± 0.1 0.073 ± 0.002 0.945 ± 0.006 91.65 ± 0.3 0.034 ± 0.001 0.951 ± 0.001

Chb17 67.83 ± 0.1 0.094 ± 0.001 0.902 ± 0.001 81.80 ± 0.1 0.058 ± 0.002 0.974 ± 0.005

Chb18 71.91 ± 0.5 0.124 ± 0.003 0.825 ± 0.003 75.41 ± 0.2 0.165 ± 0.005 0.795 ± 0.004

Chb19 94.02 ± 0.4 0.072 ± 0.004 0.976 ± 0.005 92.83 ± 0.1 0.084 ± 0.002 0.988 ± 0.002

Chb20 87.20 ± 0.2 0.079 ± 0.001 0.895 ± 0.002 88.25 ± 0.0 0.088 ± 0.003 0.926 ± 0.003

Chb21 70.98 ± 0.7 0.205 ± 0.002 0.798 ± 0.009 80.00 ± 0.4 0.211 ± 0.001 0.897 ± 0.005

Chb22 90.11 ± 0.2 0.121 ± 0.003 0.951 ± 0.002 96.23 ± 0.1 0.099 ± 0.002 0.943 ± 0.006

Avg 83.94 ± 0.3 0.087 ± 0.003 0.905 ± 0.004 88.49 ± 0.3 0.114 ± 0.003 0.916 ± 0.004
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Most importantly, they do not require hand-crafted fea-
ture extraction and feature engineering. They also have 
better generalizability. However, all of the above methods 
require a lot of data. Recording the preictal EEG signal 
from an epileptic patient is complexed and annoying for 
the patient and in some cases impossible. In this work, 
we have presented a method called few-shot learning 
that is suitable for patients who have difficulty recording 
the preictal signal or may eventually have several signals 
available.

In this article, we first trained the network with data 
from 15 patients, and once we used SVM and once FC 
as a classifier, we froze the weights of CNN layers. In the 
next step, we tuned the above network for the data of a 
new patient, and in fact, we updated the weights of the 
classifier layers.

The proposed FSL method, having the prior knowl-
edge gained from the generalizable method, is adjusted 
for the patient with only a few samples of preictal EEG 
signal from the new patient. This method reduces the 
effort to collect more data. Figure 4 shows that the accu-
racy obtained in this method is higher than generalizable 
methods. In addition to the fact that there is no need for 
long recordings, another advantage of this method over 
the patient-specific method is that it does not require 
hand crafted feature extraction, feature selection and 
model personalization, and it can be changed quickly for 
a new patient.

In this work the evaluation results showed a mean sen-
sitivity of 98.52% and FPR = 0.045/h for the 5 min predic-
tion horizon and the 25  min seizure occurrence period 
which is improved compared to previous works [7] with 

an equal forecast horizon. For the 10  min SPH and the 
20 min SOP, we reached an average sensitivity of 95.70% 
and FPR = 0.057/h. In the references [33–35], the preictal 
interval is considered exactly at the beginning of the ictal 
interval, which means SPH = 0, while the higher the fore-
cast horizon, the better. Tables 1, 2, 3, and 4 show that the 
higher the SPH, the lower the sensitivity. In the proposed 
method, the SPH is relatively high, about 5–10 min, which 
is suitable for the patient’s preventive measures, and the 
SOP is low, about 20–25  min, which makes the patient 
wait less for occurrence and have less anxiety. In Table 5, 
we see that tasks [16, 20, 32, 36, 37] are less sensitive than 
our work and also have a higher false prediction rate per 
hour, which shows the superiority of our FSL method. 
Examining the results in both methods shows that SVM 
instead of FC is better for classification. The use of the 
SVM classifier, in trial 1 and trial 2 has increased the sen-
sitivity by 2.71% and 3.50%. Figure 4 shows that the test 
results of the FSL method with three seizures from the 

Table 3  Test results of the few-shot learning method for Trial 1 (SOP = 25 min, SPH = 5 min)

Patient name Fully connected SVM

Sensitivity (%) FPR (/h) AUC​ Sensitivity (%) FPR (/h) AUC​

Chb03 96.18 ± 0.1 0.086 ± 0.006 0.963 ± 0.003 100.00 ± 0.5 0.056 ± 0.002 0.990 ± 0.003

Chb10 94.90 ± 0.4 0.061 ± 0.007 0.988 ± 0.001 95.76 ± 0.6 0.079 ± 0.001 0.984 ± 0.002

Chb16 98.54 ± 0.7 0.019 ± 0.006 0.984 ± 0.006 99.82 ± 0.4 0.000 ± 0.004 0.996 ± 0.005

Avg 96.54 ± 0.4 0.055 ± 0.006 0.978 ± 0.003 98.52 ± 0.5 0.045 ± 0.002 0.990 ± 0.003

Table 4  Test results of the few-shot learning method for Trial 2 (SOP = 20 min, SPH = 10 min)

Patient name Fully connected SVM

Sensitivity (%) FPR (/h) AUC​ Sensitivity (%) FPR (/h) AUC​

Chb03 94.18 ± 0.2 0.066 ± 0.001 0.944 ± 0.007 95.92 ± 0.1 0.070 ± 0.006 0.989 ± 0.003

Chb10 90.10 ± 0.8 0.069 ± 0.006 0.908 ± 0.002 93.42 ± 0.7 0.101 ± 0.005 0.975 ± 0.004

Chb16 92.24 ± 0.6 0.080 ± 0.002 0.937 ± 0.003 97.78 ± 0.5 0.002 ± 0.002 0.986 ± 0.002

Avg 92.17 ± 0.5 0.071 ± 0.003 0.929 ± 0.004 95.70 ± 0.4 0.057 ± 0.004 0.983 ± 0.003

Fig. 4  Sensitivity chart for three CHB–MIT patients with different 
methods and trials. (G3 = Generalizable method for patient Chb03, 
FSL3 = FSL method for patient Chb03)
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Chb03 patient are more accurate than the test results of 
the generalizable method on the same patient. The results 
have also improved for the Chb10 and Chb16 patients. By 
comparing the results, we showed that setting up a gener-
alizable method for a specific patient by the FSL method 
is more efficient and accurate. To compare the obtained 
results with some state-of-the-art, in Table 5, which show 
that there is relatively good sensitivity and FPR for this 
prediction horizon in our work.

The ideal work in the field of epilepsy prediction is to 
reach high sensitivity and low FPR on a high seizure pre-
diction horizon (SPH) and a low seizure occurrence period 
(SOP). Our main goal in this work is epileptic patients in 
whom seizures occur late and there is not much data avail-
able about them. The above proposed method is trained 
with only a small number of samples and the results are 
closer to the ideal compared to other works.

5 � Conclusions
Seizure prediction allows the patient to take effective and 
preventive measures and also make a variety of treatments 
for patient possible. For example, instead of continuous 
medication that causes neurological complications, treat-
ment can only be given at the necessary times when the 
onset is likely to occur. For example, patients who are tak-
ing persistent antiepileptic drugs can take seizure drugs, 
such as episodic ones. We used EEG signals that do not 
require surgery and are recorded on the scalp for this task. 
In this paper, a new few-shot learning perspective was pro-
posed to predict epileptic seizures based on multi-channel 
raw EEG signals. In the proposed method, recording a long 
signal is not required. The method works with low amount 
of data, short time, without employing an expert, is adjust-
able for each new patient and is more efficient compared 
to patient-specific methods and other generalizable 

methods that were examined. This study provided a prom-
ising solution for seizure prediction with multi-channel 
raw EEG for patients with a low frequency of seizures or 
even for patients who do not have the conditions for long-
term recording of EEG signals. In the next works, we will 
use different data sets in different age ranges along with 
data set CHB–MIT, which is mostly related to children, to 
further evaluate the efficiency of our model.
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Table 5  Comparison of the results of the state-of-the-art

In this work the evaluation results showed a mean sensitivity of 98.52% and FPR=0.045/h for the 5 minute prediction horizon and the 25 minute seizure occurrence 
period which is improved compared to previous works [7] with an equal forecast horizon
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