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Entropy images, representing the complexity of original fundus photographs, may strengthen the contrast between diabetic ret-
inopathy (DR) lesions and unaffected areas. -e aim of this study is to compare the detection performance for severe DR between
original fundus photographs and entropy images by deep learning. A sample of 21,123 interpretable fundus photographs obtained
from a publicly available data set was expanded to 33,000 images by rotating and flipping. All photographs were transformed into
entropy images using block size 9 and downsized to a standard resolution of 100×100 pixels. -e stages of DR are classified into 5
grades based on the International Clinical Diabetic Retinopathy Disease Severity Scale: Grade 0 (no DR), Grade 1 (mild non-
proliferative DR), Grade 2 (moderate nonproliferative DR), Grade 3 (severe nonproliferative DR), and Grade 4 (proliferative DR). Of
these 33,000 photographs, 30,000 images were randomly selected as the training set, and the remaining 3,000 images were used as the
testing set. Both the original fundus photographs and the entropy images were used as the inputs of convolutional neural network
(CNN), and the results of detecting referable DR (Grades 2–4) as the outputs from the two data sets were compared. -e detection
accuracy, sensitivity, and specificity of using the original fundus photographs data set were 81.80%, 68.36%, 89.87%, respectively, for
the entropy images data set, and the figures significantly increased to 86.10%, 73.24%, and 93.81%, respectively (all p values <0.001).
-e entropy image quantifies the amount of information in the fundus photograph and efficiently accelerates the generating of
feature maps in the CNN. -e research results draw the conclusion that transformed entropy imaging of fundus photographs can
increase the machinery detection accuracy, sensitivity, and specificity of referable DR for the deep learning-based system.

1. Introduction

Diabetic retinopathy (DR) is one of the microvascular
complications related to diabetes mellitus and a major cause
of blindness globally. In the United States, the DR prevalence
among diabetic patients is between 20% and 30% [1, 2].

Fundus photography is a direct visual screening tool used
to detect DR and has been widely accepted worldwide.
However, the detection of DR and assessment of its severity
require specialized expertise, and the agreement of inter-
pretation results between examiners varied substantially
based on previous studies [3–5]. In addition, many diabetic
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patients do not have access to effective screening programs
and some cannot afford the cost of an ophthalmologist visit
[6]. Deep learning is a subset of machine learning, and in
modern medicine, using deep learning in fundus photog-
raphy has emerged as a cost-effective and practical method
for automated grading of DR [5, 7, 8].

To implement deep learning in fundus photography for
DR grading, a large data set of fundus photography is re-
quired, and the amount of data for each grade is preferred to
be evenly distributed. However, the retinal images collected
from different eye clinics are not standardized (e.g., differences
in contrast, brightness, and file size) in all known open web
data sets and epidemiology reports [8–10]. -erefore, it is
important to preprocess the original images to increase the
heterogeneity before putting the images into the training
for the automated detection of DR. Several preprocessing
methods have been applied to the deep learning of fundus
photography [5, 11, 12]. Data augmentation would gen-
erate training images utilizing different processing skills or
a combination of these skills, such as rotating, shifting, and
flipping to the original training images. In addition, con-
trast and brightness adjustment would increase the het-
erogeneity and accuracy of the testing, and therefore
enhance the automated grading performance. -ese cur-
rently available preprocessing methods can efficiently in-
crease the number of original fundus photographs used for
deep learning, without changing the morphology of most
predictive features. As the original retinal images are
preprocessed or translated to another form of quantitative
bioinformative images, they are in essence considered new
images by the CNN, so the performance of deep learning
will be improved.

-eoretically, severe DR leads to higher heterogeneity
than mild or no DR in a fundus photograph. Image entropy,
which involves measuring the complexity of an image, may
be a good preprocessing method to increase the heteroge-
neity of fundus photographs [13]. Image entropy can be
utilized to describe the total amount of information. -ere
exist differences between no or mild DR and severe DR
images from the distributions of localized image entropy
[13]. To distinguish the features of no or mild DR and severe
DR, we analyzed the complexity of fundus photographs by
calculating local image entropy. Images of low entropy have
low contrast level, and, on the contrary, high entropy stands
for high contrast level between neighboring pixels. DR
images contain papilledema and retinal capillary leakage
with high entropy values; however, no or mild DR images
may have more flat areas with low local entropy. In this
study, we hypothesized that, for this deep leaning applica-
tion, transforming the original fundus photographs to en-
tropy images may improve the performance, including
accuracy, sensitivity, and specificity of detecting the presence
of the more severe grade of DR.

2. Methods

2.1. Data Sets. -e “Kaggle Diabetic Retinopathy” data set
collected large numbers of fundus photographs from di-
abetic patients for a competition to detect DR by different

deep learning algorithms at early 2015. -e data set was
publicly available and retrieved in 2017 for images training
and testing in this study [14]. In summary, there are total
35,126 color fundus photographs, of which the sizes range
from 433× 289 pixels to 5184× 3456 pixels [14–17]. -e
photographic quality was defined as poor if the image was
subjectively blurred, and objectively not covered both the
regions of fovea and optic disc. As a result, we removed
14,003 images of poor quality and kept 21,123 fundus
photographs for the following experiments. -ese training
photographs of the Kaggle data set were obtained using
various digital fundus cameras in multiple eye centers in
California and around the United States. -e retina data set
is provided by Kaggle’s diabetic retinopathy detection
competition. Kaggle, a subsidiary company of Google, is
known to be the biggest platform of data science community
and has held over 200 competitions. In this data set, 661
teams participated in this diabetic retinopathy detection
competition. In addition, the retina data set is provided by
EyePACS, which is an efficacious store-and-forward clinical
communication system that has been tested with clinical
trials. To sum up, this data set is a representative data set for
diabetic retinopathy detection.

2.2. Grading. In the experimental images obtained from the
Kaggle data set, the severity of DR was independently graded
by well-trained clinicians according to the International
Clinical Diabetic Retinopathy scale: no DR (unaffected, Grade
0, n � 16, 500, 78.11%), mild nonproliferative DR (Grade 1,
n � 1, 333, 6.31%), moderate nonproliferative DR (Grade 2,
n � 2, 000, 9.47%), severe nonproliferative DR (Grade 3, n �

645, 3.05%), and proliferative DR (Grade 4, n � 645, 3.05%)
[18]. -e presence of severe DR of grades 2–4 that requires
a referral to a specialist was defined as referable DR (n �

3, 290), accounting for 15.6% of the original images. Referable
DR was used for the deep learning in this study.

2.3. Preprocessing of Images. To standardize the image
condition, several preprocessing steps were carried out for
the original fundus photographs before conducting the
training for deep learning. First, image pixels with values
between 0 and 255 were scaled to have values between 0 and
1. Images were then downsized to a standard resolution of
100×100 pixels.

Second, in order to balance the number of images with
no DR for effective deep learning on features, the number
of images with DR was increased evenly for Grade 1 to
Grade 4 (4,375, 4,375, 3,875, and 3,875, respectively) by
rotating and flipping their original images, for a total of
16,500 images. We randomly selected 15,000 images
without DR (Grade 0), and 15,000 images with DR
(n � 4,000, 4,000, 3,500, and 3,500, respectively, for Grade 1
to Grade 4) for a total of 30,000 images in the training data
set. In addition, the remaining 1,500 images without DR
(Grade 0), and the 1,500 images with DR (n � 375, 375, 375,
and 375, respectively, for Grade 1 to Grade 4) were used as
the testing data set.
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2.4. Preprocessing to Entropy Images. Entropy images were
computed from n × n blocks of the luminance of the original
fundus photograph based on the block spatial scale
responses. All of the entropy values were computed locally
[19] using the software Matlab v.8.2. Spatial entropy is
a function of the probability distribution of the local gray
values. Equation (1) of the local entropy image is described
as follows:

Elocal � −􏽘
i

P(i) × log2 P(i). (1)

In the probability density function, P(i) denotes the
relative frequency associated with the i-th gray level within
a n × n block. In this study, the entropy values were cal-
culated using n � 2, 3, 5, 9, and 11 in the experiments.

-e entropy images, as with the original fundus pho-
tographs, were also downsized to a standard resolution of
100×100 pixels. -is method analyzes the local entropy and
utilizes the statistical characteristics of the local regions,
which helps exhibit the local structural information of the
image [19].

2.5. Deep Feature Learning. Convolutional neural networks
(CNNs) [20], which contain architecture consisting of
multiple layers for deep learning, have been widely applied
in a large number of image recognition tasks; the CNN with
different parameters are trained and used for the feature
learning of referable DR of both fundus photographs and
entropy images, respectively, in this study. As it has been
known, the common layers of CNN include convolutional
layer, pooling layer, rectified linear unit (ReLU) layer,
dropout layer, fully connected layer, and classification layer.
Successive convolutional layers transform the input images
into serial feature maps through iterative filters and learn to
recognize features at differing spatial levels automatically.
Every layer of a deep learning system receives the data from
the adjacent upper layer and produces a presentation of the
observed pattern, then transmits it to the adjacent lower
layer. Figure 1 shows a diagram of all layers in this CNN.

In this study, we used 4 convolutional layers of the same
kernel size (5× 5), and the number of filters in each con-
volutional block is 32, 64, 64, and 128 in successive layers.
Maximal pooling layers are placed in the first 3 convolutional
layers to partition the feature maps and collect the maximal
value in the subimage. In deep convolutional networks
framework, each convolutional layer uses ReLU activation
function and adds a dropout layer to prevent overfitting. -e
CNN was implemented by TensorFlow software, and the
number of iterations for the training procedure was 200. -e
best results of detection accuracy were, respectively, selected
among the 200 iterations for original images and entropy
images to prevent the potential bias.

2.6. Statistical Analysis and Performance Comparison. -e
performance of CNNwas evaluated by the detection accuracy,
sensitivity, and specificity of the automated interpretation for
referable DR presence; the clinically defined referable DR in
the Kaggle data set was used as the benchmark. A comparison

of the accuracy was performed by using a chi-square test. In
addition, a comparison between the original fundus photo-
graphs and the entropy images for the sensitivity and spec-
ificity was performed by using a McNemar’s test.
Furthermore, the area under the receiver-operating charac-
teristic curve (AUC) was also used to evaluate and compare
the discrimination of the machinery interpretation for re-
ferable DR presence between the original retinal photographs
and entropy images. A 2-tailed value of p< 0.05 was con-
sidered statistically significant. Analyses were performed
using SAS statistical software (version 9.4, SAS Institute Inc,
Cary, NC).

-e indexes are defined in Equations (2)–(4). TP, TN,
FP, and FN represent true positive, true negative, false
positive, and false negative, respectively.

accuracy �
TP + TN

TP + TN + FN + FP
, (2)

sensitivity �
TP

TP + FN
, (3)

specificity �
TN

TN + FP
. (4)

3. Results

Figure 2 compares the accuracy of entropy images with
various block sizes (n) for the detection of referable DR. -e
results of n � 9 reach the maximal accuracy of 86.10%
among the various block sizes. Accordingly, n � 9 was se-
lected to calculate the entropy images in our experiments.

Figure 3 illustrates some examples of the original fundus
photographs of Grade 0 to Grade 4 DR and their entropy
images when block size n is 9. Table 1 reveals that the de-
tection accuracy, sensitivity, and specificity for referable DR
in the original photographs were 81.80%, 68.36%, and
89.87%, respectively, and they increased to 86.10%, 73.24%,
and 93.81%, respectively, with the entropy images data set
when n is 9.

-e AUC of the deep learning for the detection of re-
ferable DR in the original fundus photographs and the
entropy images data sets was 0.87 and 0.92 (n � 9), re-
spectively (p< 0.001), as shown in Figures 4(a) and 4(b).

4. Discussion

Our study demonstrates that, compared with the original
fundus photographs, the entropy images can improve the
deep learning performance and correctly detect the clinician-
defined referable DR (accuracy 81.80% and 86.10%). Our
result is also consistent with previous studies [5, 8, 11] that
deep feature learning may be an effective method to provide
an estimation of referable DR for the original photographs
and entropy images (sensitivity: 68.36% and 73.24% and
specificity: 89.87% and 93.81%, respectively).

Several preprocessing methods for fundus photographs
have been proposed to improve the performance of deep
learning in the detection of DR. For instance, extraction of
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Retinopathy Grade Original photographs Entropy images
(9 × 9 blocks) 

None 0

Severe
nonproliferative

Mild
nonproliferative 1

Moderate
nonproliferative

2

3

Proliferative 4

Figure 3: Original fundus photographs and entropy images of DR
of any grade (0–4).

Table 1: -e performance between the original photographs and
entropy images.

Original photographs
(%)

Entropy images
(%) p value

Accuracy 81.80 86.10 <0.001
Sensitivity 68.36 73.24 <0.001
Specificity 89.87 93.81 <0.001

Input
100 × 100

C1: feature maps
32 @ 96 × 96

C2:feature maps
64 @ 44 × 44

C3: feature maps
64 @ 18 × 18

C4:feature maps
128 @ 5 × 548 × 48

Convolutions Max pooling Convolutions Convolutions ConvolutionsMax pooling
Max pooling

22 × 22 9 × 9
C5: layer

256
Output

2

Full connection
Full connection

Figure 1: -e diagram of all layers in CNN.
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Figure 2:-e distribution of accuracy vs. various block sizes (n) for
the detection of referable DR of the entropy images.

Original AUC = 0.87
1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Tr
ue

 p
os

iti
ve

 ra
te

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False positive rate

(a)

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Tr
ue

 p
os

iti
ve

 ra
te

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False positive rate

Entropy AUC = 0.92

(b)

Figure 4: -e AUC for the discrimination of automated in-
terpretation for referable DR in (a) original photographs and (b)
entropy images.
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blood vessels from fundus photographs at baseline may
improve the accuracy of detecting referable retinopathy after
deep learning [21]. -ese preprocessing methods preserve
vital characteristics of retinopathy lesions on the back-
ground of normal retinal anatomy for CNN training. On the
contrary, the entropy images represent an index of the
complexity of the original fundus photographs, probably
resulting from the increased number of DR lesions in
contrast to the neighboring retinal vessels. In addition, we
find that the best result of detection performance by CNN is
achieved when block size� 9 for the generation of entropy
images. -e empirical selection reflects the suitable block
size for the enhancement of local image structure for fundus
photographs to distinguish the features of DR image. Our
study confirms that signs of higher grade retinopathy may
have higher complexity in fundus photograph. Although the
detection performance of CNN learning for the detection of
referable DR is only modestly improved when using entropy
images (the net improvement rate in accuracy is 4.3%), the
evidence is sufficient to demonstrate that transforming
fundus photographs to entropy images may be useful in deep
learning for referable DR.

Previous studies using the Kaggle Diabetic Retinopathy
and other publicly available data sets have shown that there
are high AUC levels and sensitivity: 90–100% [22–25] and
a wide range of specificity: 50–97.6% in the CNN learning for
any or referable DR in the original fundus photographs
[16, 21–24]. Similarly, we have a high AUC (0.87) for re-
ferable DR in the original fundus photographs. However,
compared with previous study findings [16, 21–25], our
results show relatively low sensitivity (68.36%) and high
specificity (89.87%) in the original photographs. Since we
merely selected the Kaggle training data set as our experi-
mental samples, the difference in the sensitivity and spec-
ificity between our study and those of others might be due to
a relatively lower prevalence of referable DR in the Kaggle
training data set than in other data sets, or the unequal
distribution of each DR grade in the process of augmenting
DR images.-e strength of our study is we use a well-known
and large-sized publicly available fundus photography data
set for deep learning, and we can reproduce the results and
compare our findings with other studies.

In conclusion, the entropy image quantifies the amount
of information in the retinal photograph and can efficiently
accelerate the generation of feature map in CNN. Pre-
processed entropy imaging of retinal photographs may in-
crease the machinery detection accuracy, sensitivity, and
specificity of referable DR for a deep learning-based system.
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