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Abstract

The aim of this study was to analyze the host responses to ionizing radiation by nuclear factor-kB (NF-kB) bioluminescence
imaging-guided transcriptomic tool. Transgenic mice carrying the NF-kB-driven luciferase gene were exposed to a single
dose of 8.5 Gy total-body irradiation. In vivo imaging showed that a maximal NF-kB-dependent bioluminescent intensity
was observed at 3 h after irradiation and ex vivo imaging showed that liver, intestine, and brain displayed strong NF-kB
activations. Microarray analysis of these organs showed that irradiation altered gene expression signatures in an organ-
specific manner and several pathways associated with metabolism and immune system were significantly altered.
Additionally, the upregulation of fatty acid binding protein 4, serum amyloid A2, and serum amyloid A3 genes, which
participate in both inflammation and lipid metabolism, suggested that irradiation might affect the cross pathways of
metabolism and inflammation. Moreover, the alteration of chemokine (CC-motif) ligand 5, chemokine (CC-motif) ligand 20,
and Jagged 1 genes, which are involved in the inflammation and enterocyte proliferation, suggested that these genes
might be involved in the radiation enteropathy. In conclusion, this report describes the comprehensive evaluation of host
responses to ionizing radiation. Our findings provide the fundamental information about the in vivo NF-kB activity and
transcriptomic pattern after irradiation. Moreover, novel targets involved in radiation injury are also suggested.
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Introduction

Radiation therapy is used commonly for solid cancers. More

than 50% of patients with cancers receive radiation as a

component of their treatment. Although improvements in

radiation therapy have led to a reduction in the volume of normal

tissue irradiated, injury to central nervous system, gastrointestinal

tract, and kidney occurs commonly in patients undergoing cancer

therapy. It has been known that ionizing irradiating normal tissues

leads to tissue damages [1,2]. Ionizing radiation causes DNA

damage by breaking DNA strands or generating reactive oxidative

species. Reactive oxidative species further induce oxidative stress

and subsequently elicit cellular defense mechanisms, such as cell

cycle arrest, DNA repair, inflammation, and activation of

transcription factors like nuclear factor-kB (NF-kB) [3–5].

NF-kB is an inducible transcription factor that consists of

heterodimers of RelA (p65), c-Rel, RelB, p50/NF-kB1, and p52/

NF-kB2. NF-kB is a central coordinator of innate and adaptive

immune responses. It also plays critical roles in the development of

cancer, regulation of cell apoptosis, and control of cell cycle [6–8].

NF-kB activity is induced by a large variety of signals, which

typically include cytokines, mitogens, environmental particles,

toxic metals, intracellular stresses, pathogen products, ultraviolet

light, and ionizing radiation [5]. This property suggests that NF-

kB may function as a sensor to detect cell responses to various

stimuli.

Host-ionizing radiation interaction is a very complex process.

Host responses to ionizing radiation control the performance of

therapeutics. Several studies have analyzed the long-term or short-

term effects of ionizing radiation on individual organs by

histological examination, DNA microarray, or gel shift assay [9–

13]. However, examining the responses of individual organs may

not fulfill the global evaluation of host response to ionizing

radiation. In our previous study, we have applied NF-kB

bioluminescence imaging-guided transcriptomic analysis to assess

the host-biomaterial interaction in vivo [14]. Transgenic mice
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carrying the NF-kB-driven luciferase gene were used to monitor

the host response after implantation, and the host-biomaterial

interaction was further analyzed by transcriptomic tools. In this

study, we applied such a platform to evaluate the host reaction

responsive to radiation exposure. Our findings provided the

fundamental impacts into the radiation-affected NF-kB biolumi-

nescent imaging and transcriptomic pattern in the whole body.

Additionally, novel targets involved in radiation injury were also

suggested.

Materials and Methods

Materials
D-Luciferin was purchased from Xenogen (Hopkinton, MA,

USA) and dissolved in phosphate-buffered saline (137 mM NaCl,

1.4 mM KH2PO4, 4.3 mM Na2HPO4, 2.7 mM KCl, pH 7.2) at

15 mg/ml. Mouse monoclonal antibody against NF-kB was

purchased from Chemicon (Temecula, CA, USA). Rat monoclo-

nal antibody against F4/80, and rabbit polyclonal antibodies

against phospholipase A2 (PLA2) and olig2 were purchased from

abcamH (Cambridge, UK). Biotinylated rabbit anti-mouse sec-

ondary antibody was purchased from Zymed Laboratories

(Carlsbad, CA, USA). Alexa FluorH 488-conjugated goat anti-

mouse IgG and Alexa FluorH 644-conjugated goat anti-rat and

anti-rabbit IgG were purchased from Invitrogen (Eugene, OR,

USA).

Animal experiments
Mouse experiments were conducted under ethics approval from

China Medical University Animal Ethics Committee (Permit

Number: 97-42-N). Transgenic mice carrying the NF-kB-driven

luciferase gene were constructed as described previously [15].

Male transgenic mice (6 to 8 weeks old) were exposed to a single

dose of whole-body X-ray at a dose rate of 4 Gy/min (ClinacH
6EX medical linear accelerator, Varian, Palo Alto, CA, USA).

Mice were imaged at indicated periods after irradiation with

8.5 Gy. RNAs were extracted at 3 h after irradiation.

In vivo and ex vivo imaging of luciferase activity
For in vivo imaging, mice were anesthetized with isoflurane and

injected intraperitoneally with 150 mg luciferin/kg body weight.

Five minutes later, mice were placed in the chamber and imaged

for 1 min with the camera set at the highest sensitivity by IVIS

Imaging SystemH 200 Series (Xenogen). Photons emitted from the

body were quantified using Living ImageH software (Xenogen).

Signal intensity was quantified as the sum of all detected photon

counts from the whole body and presented as photons/sec. For ex

vivo imaging, mice were anesthetized and injected with luciferin

intraperitoneally. Five minutes later, mice were sacrificed and

tissues were rapidly removed. Tissues were placed in the IVIS

system and imaged with the same setting used for in vivo studies.

Signal intensity was quantified as the sum of all detected photon

counts per second within the region of interest after subtracting the

background luminescence and presented as photons/sec/cm2/

steradian (photons/sec/cm2/sr).

Histological analysis
Organs were removed, fixed in 10% (v/v) phosphate-buffered

formalin solution for 2 d, rinsed in saline, and dehydrated in a

series of graded alcohols (50% (v/v), 70% (v/v), and 95% (v/v)) for

30 min each. Samples were then embedded in paraffin, cut into 5-

mm sections, and stained with hematoxylin and eosin (H&E). The

stained sections of each sample were examined using light

microscopy.

Immunohistochemical staining and immunofluorescence
staining

Immunohistochemical staining was performed as described

previously [15]. Sections of 5 mm were deparaffinized in xylene

and rehydrated in graded alcohol. Antigen retrieval was performed

with sodium citrate buffer (10 mM sodium citrate, 0.05% Tween

20, pH 6.0) at 60uC overnight. The nonspecific binding was blocked

with 1% (w/v) bovine serum albumin at room temperature for 1 h.

Sections were incubated with antibodies against NF-kB at 1:50

dilution, F4/80 at 1:100 dilution, PLA2 at 1:100 dilution, and olig2

at 1:1000 dilution at 4uC overnight. Sections were then incubated

with Alexa FluorH 488- or Alexa FluorH 644-conjugated secondary

antibodies at room temperature for 1 h. Finally, the immunostained

cells were visualized under a confocal laser scanning microscope

(model TCS SP2, Leica, Wetzlar, Germany).

Total RNA isolation
Total RNAs were extracted from individual organs using

RNeasy Mini kit (Qiagen, Valencia, CA, USA) and quantified

using the spectrophotometer (Beckman Coulter, Fullerton, CA,

USA). Samples with A260/A280 ratios greater than 1.8 were

further evaluated using Agilent 2100 bioanalyzer (Agilent

Technologies, Santa Clara, CA, USA). The RNA sample with a

RNA integrity number greater than 7.0 was accepted for

microarray analysis.

Microarray analysis
Microarray analysis was performed as described previously

[14,16]. Briefly, fluorescence-labeled RNA targets were prepared

from 5 mg of total RNA using MessageAmpTM aRNA kit (Ambion,

Austin, TX, USA) and cyanine (Cy5) dye (Amersham Pharmacia,

Piscataway, NJ, USA). Fluorescent targets were hybridized to the

Mouse Whole Genome OneArrayTM (Phalanx Biotech Group,

Hsinchu, Taiwan) and scanned by an Axon 4000 scanner

(Molecular Devices, Sunnyvale, CA, USA). Six replicates from six

independent mice were performed. The Cy5 fluorescent intensity of

each spot was analyzed by genepix 4.1 software (Molecular

Devices). The signal intensity of each spot was corrected by

subtracting background signals in the surrounding. We filtered out

spots that signal-to-noise ratio was less than 1 or control probes.

Spots that passed these criteria were normalized by R program [17].

The fold changes of genes were calculated by dividing the

normalized signal intensities of genes in irradiation-treated mice

by those in untreated mice. Genes with fold changes .1.8 or

,21.8 were analyzed by Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways on the Gene Ontology Tree Machine

web site (http://bioinfo.vanderbilt.edu/gotm/), a web-based and

tree-based data mining environment for gene sets [18]. We used the

geneSetTest function implemented in the limma package to test

significant KEGG pathways. Furthermore, genes with fold changes

.1.8 or ,21.8 were analyzed by gene ontology (GO) on the Gene

Ontology Tree Machine web site. We used the WebGestalt tool to

test significant GO terms [19]. Microarray data is MIAME

compliant and the raw data has been deposited in a MIAME

compliant database, the accession number is GSE25208.

Quantitative real-time PCR (qPCR)
The expression levels of chemokine (CC-motif) ligand 5 (Ccl5),

Ccl20, Jagged1, serum amyloid A2 (SAA2), and SAA3 genes were

validated by qPCR. RNA samples were reverse-transcribed for 2 h

at 37uC with High Capacity cDNA Reverse Transcription Kit

(Applied Biosystems, Foster City, CA, USA). qPCR was

performed by using 1 ml of cDNA, 26SYBR Green PCR Master

Host Responses to Ionizing Radiation
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Mix (Applied Biosystems), and 200 nM of forward and reverse

primers. The reaction condition was followed: 10 min at 95uC,

and 40 cycles of 15 sec at 95uC, 1 min at 60uC. Each assay was

run on an Applied Biosystems 7300 Real-Time PCR system in

triplicates. Fold changes were calculated using the comparative CT

method. The primer set for each gene is followed: Ccl5 forward,

59-ATATGGCTCGGACACCACTC-39; Ccl5 reverse, 59-AA-

CACGACTGCAAGATTGGAG-39; Ccl20 forward, 59-ATACA-

GACGCCTCTTCCTTCC-39; Ccl20 reverse, 59-CAGCCCTT-

TTCACCCAGTTC-39; Jagged1 forward, 59-TAGTAAACGG-

GATGGAAACAGC-39; Jagged1 reverse, 59-CAGCAGAGGAA-

CCAGGAAATC-39; SAA2 forward, 59- AATCAGTGATGCAA-

GAGAGAGC-39; SAA2 reverse, 59- CAGTATTTGGCAGG-

CAGTCC-39; SAA3 forward, 59- CCTGGGCTGCTAAAGT-

CATC-39; SAA3 reverse, 59- CACTCATTGGCAAACTGGTC-

AG-39; glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

forward, 59-ACACCCACTCCTCCACCTTT-39 ; GAPDH re-

verse, 59-TAGCCAAATTCGTTGTCATACC-39.

Statistic analysis
Data were presented as mean 6 standard error. For imaging data,

Student’s t-test was used for comparisons between two experiments. A

value of p,0.05 was considered statistically significant.

Results

Assessment of the NF-kB-driven bioluminescent signal in
ionizing radiation-exposed mice by in vivo and ex vivo
imaging

Transgenic mice constructed here contained the luciferase gene

driven by a promoter with five NF-kB-responsive elements.

Therefore, the luciferase activity reflected the NF-kB trans-activity

[14,15].

Male transgenic mice were exposed to ionizing radiation and

then imaged at different periods. As shown in Figure 1 and Figure

S1, NF-kB-driven bioluminescent signals from ventral and dorsal

areas of untreated mice were unchanged over time, while

luminescence from irradiation-exposed mice reached a maximal

intensity at 3 h. At 3 h, a diffuse luminescence was detected

throughout the body and a strong signal was emitted in the

abdominal region. These findings indicated that ionizing radiation

induced an acute activation of NF-kB at 3 h.

Next, we would like to analyze the bioluminescent signals of

individual organs after irradiation. Transgenic mice were exposed

to 8.5 Gy and sacrificed at 3 h. In comparison with mock,

luminescence from most organs was increased after irradiation

(Figure 2). These findings suggested that NF-kB activities in most

organs were affected by irradiation. Irradiation significantly

increased NF-kB-dependent luminescent signals in brain, liver,

and intestine, with a 3.7-, 4.3-, and 13.5-fold induction,

respectively. Irradiation moderately increased the luminescent

signals in heart, lung, spleen, kidney, and testis, with a 1.6-, 1.9-,

2.8-, 2.1-, and 1.4-fold induction, respectively. These data

indicated that ionizing radiation induced a strong activation of

NF-kB-driven luminescence in brain, liver, and intestine.

Immunohistochemical staining and immunofluorescence
staining of organs after irradiation

It has been known that irradiating normal tissues leads to tissue

damage, such as inflammation, fibrosis, or necrosis [2,3].

Histological examination showed that inflammation, characterized

by the infiltration of immune cells, hemorrhage, and the

Figure 1. NF-kB-dependent bioluminescence in living mice. Transgenic mice were exposed to ionizing radiation and imaged in ventral (A) and
dorsal positions (B) at indicated periods. In vivo imaging was shown on the left panel. The color overlay on the image represents the photons/sec
emitted from the animal, as indicated by the color scale. Photos are representative images (n = 10). Quantification of photon emission from the whole
animal was shown on the right panel. Shown is the total photon flux plotted over time. Values are mean 6 standard error (n = 10). * p,0.05,
** p,0.01, compared with mock.
doi:10.1371/journal.pone.0023682.g001
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Figure 2. NF-kB-dependent bioluminescence in individual organs. Transgenic mice were exposed to ionizing radiation. Three hours later,
mice were sacrificed and organs were subjected to image. (A) Ex vivo imaging. The color overlay on the image represents the photons/sec emitted
from the organ, as indicated by the color scale. Photos are representative images (n = 10). (B) Quantification of photon emission from the organ.
Values are mean 6 standard error (n = 10). * p,0.05, ** p,0.01, *** p,0.001, compared with mock.
doi:10.1371/journal.pone.0023682.g002

Host Responses to Ionizing Radiation
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accumulation of fluid, was evoked by irradiation at 3 h in brain,

liver, and intestine (Figure 3(A)). Immunohistochemical staining

with antibody against NF-kB p65 subunit revealed that, in

comparison with mock, there were many brown p65-reactive cells

in irradiation-exposed organs. In the liver, p65-negative hepato-

cytes were surrounded by many brown p65-reactive Kupffer cells

and endothelial cells. Additionally, brown-p65-reactive cells in the

intestine gland and brown-p65-reactive oligodendrocytes in the

brain were observed. To further characterize the NF-kB-

responsive cell types in each organ, we performed double

immunofluorescence staining. Sections were stained for F4/80,

PLA2, and olig2 to identify Kupffer cells in the liver, Paneth cells

in the intestine, and oligodendrocytes in the brain, respectively

[20–22]. Figure 3(B) shows that NF-kB (green fluorescence) was

colocalized with markers (ref fluorescence) for Kupffer cells,

Paneth cells, or oligodendrocytes. These results indicated that

ionizing radiation evoked acute inflammatory response in brain,

liver, and intestine at 3 h. Moreover, irradiation induced NF-kB

activation of specific cell types in these organs.

Transcriptomic analysis of organs after irradiation
By ex vivo imaging, we found that the NF-kB activities in brain,

liver, and intestine were significantly evoked by ionizing radiation.

We therefore elucidated the gene expression profiles of brain, liver,

and intestine by transcriptomic analysis. In a total 29,922 genes,

the transcripts of 430, 1,169, and 1,309 genes in brain, liver, and

intestine, respectively, passed the aforementioned criteria and were

selected for further KEGG pathway classification. Table 1 shows

that 26 pathways were significantly regulated in at least one organ

after irradiation. The half of pathways was associated with

metabolism, while others were related to immune system, cell

growth and death, signal transduction, and genetic information

process. Among 26 pathways, 5 metabolic pathways, including

arginine and proline metabolism, citrate cycle, glycerolipid

metabolism, oxidative phosphorylation and pyruvate metabolism,

and 2 genetic inflammation processes, such as proteasome and

ribosome pathways, were significantly altered in all these organs.

In addition to the commonly regulated pathways, there were

several pathways significantly and specifically regulated in one of

these organs. These pathways included gap junction in the brain,

glycerophospholipid metabolism and complement-coagulation

cascades in the liver, and fatty acid metabolism, N-glycan

biosynthesis, and hematopoietic cell lineage in the intestine. These

findings indicated that ionizing radiation altered several pathways

associated with metabolism, immune system, cell growth and

death, signal transduction, and genetic information process.

Moreover, pathways regulated by ionizing radiation displayed an

organ-specific manner in intestine, brain, and liver.

We further used the WebGestalt tool on Gene Ontology Tree

Machine web site to annotate these genes and to get an overview

of cellular physiological status altered by ionizing radiation in these

organs. GO categories were considered if they contained at least 2

genes and their p-values were below 0.01. As shown in Figure 4,

ionizing radiation affected different GO terms in different organs.

There were several GO categories specifically altered in the

intestine. Two GO terms, including T cell activation and

homeostasis, were specifically regulated in the liver and brain,

respectively. However, two GO terms, including immune system

process and response to stress, were altered commonly in these

organs. The expression levels of differentially expressed genes

belonging to the GO categories of ‘‘immune system process’’ and

‘‘response to stress’’ are shown in Table 2. The half of genes was

involved in antigen processing and presentation, chemokine or B

cell receptor signaling pathway, and complement-coagulation

cascades. Additionally, some genes were associated with cell

growth and death, transcription factors, and metabolism.

Verification of the expression levels of ionizing radiation-
regulated genes by qPCR

Transcriptomic analysis showed that ionizing radiation altered

the pathways associated with metabolism and immune system. We

therefore validated the expression levels of immuno-related and

metabolism-related genes by qPCR analysis. As shown in Table 3,

the expression levels of Ccl5 and Ccl20 genes in the intestine were

down-regulated, and the expression levels of Jagged1 gene in the

intestine, and SAA2 and SAA3 genes in the liver were upregulated

Figure 3. Histological examination, immunohistochemical staining, and immunofluorescence staining of organs exposed to
ionizing radiation. (A) Histological examination and immunohistochemical staining. Transgenic mice were exposed to irradiation. Three hours later,
mice were sacrificed, organs were excised, and the sections were stained with H&E or by immunohistochemistry using antibody against NF-kB (4006
magnification). Photos are representative images (n = 6). (B) Immunofluorescence staining. Sections from irradiation-exposed organs were stained
with antibodies against NF-kB (green) , olig2 (ref), F4/80 (ref), or PLA2 (ref). Overlap of markers appears as yellow color in the right panels. Scale
bars = 10 mm. Photos are representative images (n = 3).
doi:10.1371/journal.pone.0023682.g003
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by ionizing radiation, which were in agreement with the

microarray data.

Discussion

NF-kB can function as a sensor to detect cell responses to

various stimuli, such as ionizing radiation. Therefore, NF-kB-

dependent luminescent signal was used as a guide to indicate

which organs were affected by ionizing radiation in this study.

Irradiation significantly increased NF-kB-dependent luminescent

signals in brain, liver, and intestine, suggesting that irradiation

evoked significant biological events in these organs. Microarray

tool was further performed to elucidate the biological events

evoked by ionizing radiation. Network analysis showed that some

of the irradiation-altered genes were directly linked to NF-kB

(Figure S2). Others were directly linked to other transcription

factors like signal transducer and activator of transcription 3, and

these transcription factors were further linked to NF-kB.

Therefore, these data indicated that the expression levels of genes

were directly or indirectly regulated by NF-kB activity. Moreover,

these findings also suggested that NF-kB can be a sensor to sense

various biological events in the animals after exposure.

In this study, we applied NF-kB bioluminescent imaging to

monitor the in vivo NF-kB activity in mice after irradiation. A

single dose of 8.5 Gy was chosen because it is the lethal dose for

adult mice and it is often applied for total-body irradiation [23,24].

Irradiation induced a maximal activation of NF-kB at 3 h.

Irradiation increased the NF-kB-dependent bioluminescence in

most organs because it is well known that NF-kB activity can be

induced by various stimuli, including irradiation [5]. Despite this,

irradiation increased different levels of luminescent signals in

different organs. For examples, highly NF-kB-dependent lumines-

Table 1. KEGG pathway analysis of genes in organs at 3 h after ionizing radiation.

KEGG pathwaya p valueb (total/up/down)c

Intestine Brain Liver

Metabolism

Arginine and proline metabolism 0.01130 (52/0/2) 0.00338 (52/3/1) 0.02077 (52/1/2)

Bile acid biosynthesis 2.961026 (34/3/2) 0.68843 (34/0/0) 0.01253 (34/4/3)

Butanoate metabolism 0.00250 (41/1/3) 0.14750 (41/1/0) 0.00391 (41/4/6)

Citrate cycle (TCA cycle) 0.00078 (24/1/3) 0.01938 (24/0/0) 0.00043 (24/1/1)

Fatty acid metabolism 0.00003 (36/4/3) 0.23500 (36/0/0) 0.14559 (36/3/1)

Glycerolipid metabolism 6.061026 (38/2/4) 0.01790 (38/3/1) 0.03965 (38/3/6)

Glycerophospholipid metabolism 0.42737 (51/0/0) 0.13926 (51/0/0) 0.02609 (51/2/5)

Linoleic acid metabolism 0.00998 (40/1/2) 0.99948 (40/0/1) 0.00071 (40/4/3)

Lysine degradation 0.68298 (69/1/0) 0.00378 (69/10/1) 0.04571 (69/5/6)

Metabolism of xenobiotics by cytochrome p450 1.561027 (52/2/6) 0.61449 (52/0/2) 0.00068 (52/3/6)

N-Glycan biosynthesis 0.00628 (32/0/1) 0.08642 (32/1/0) 0.25735 (32/0/1)

Oxidative phosphorylation 7.7610213 (101/2/13) 3.6610216 (101/4/15) 5.261028 (101/3/4)

Pyruvate metabolism 0.00003 (31/3/0) 0.00632 (31/2/2) 0.00935 (31/3/3)

Tryptophan metabolism 0.02084 (59/4/2) 0.06264 (59/1/1) 0.03921 (59/3/5)

Valine, leucine and isoleucine degradation 0.01356 (41/3/1) 0.26859 (41/0/0) 0.00305 (41/2/5)

Immune system

B cell receptor signaling pathway 0.01122 (64/3/1) 0.00713 (64/4/0) 0.43761 (64/0/0)

Complement and coagulation cascades 0.09729 (68/0/3) 0.57659 (68/0/1) 0.02019 (68/4/2)

Hematopoietic cell lineage 0.00553 (82/4/2) 0.15968 (82/2/0) 0.48065 (82/6/2)

Cell growth and death

Apoptosis 0.01736 (80/6/1) 0.03479 (80/5/2) 0.73307 (80/0/0)

Gap junction 0.16539 (81/1/0) 0.00005 (81/9/2) 0.11232 (81/4/3)

Regulation of actin cytoskeleton 0.00419 (193/2/4) 7.361026 (193/12/7) 0.08328 (193/9/9)

Signal transduction

Insulin signaling pathway 0.05099 (77/1/0) 0.00004 (77/14/0) 0.01390 (77/2/10)

MAPK signaling pathway 0.01767 (248/5/5) 0.00006 (248/13/12) 0.33913 (248/3/6)

PPAR signaling pathway 0.00409 (70/5/1) 0.17488 (70/2/0) 0.00117 (70/5/5)

Genetic information process

Proteasome 0.000547 (30/0/3) 0.01046 (30/1/2) 0.00001 (30/4/2)

Ribosome 4.7610218 (80/2/17) 6.7610217 (80/0/24) 2.461026 (80/13/2)

aGenes with fold changes .1.8 or ,21.8 were analyzed by KEGG pathways.
bp values were calculated by the geneSetTest function implemented in the limma package.
cTotal number of genes in this pathway / Number of upregulated genes in this pathway/Number of downregulated genes in this pathway.
doi:10.1371/journal.pone.0023682.t001
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cent signals were observed in brain, liver, and intestine, while

moderate signals were observed in heart, lung, spleen, kidney, and

testis. These findings suggested that ionizing radiation induced an

organ-specific activation of NF-kB in vivo, which was in agreement

with previous observations [13,25]. However, there were discrep-

ancies between present findings and previous reports. Previous

reports indicated that irradiation induces NF-kB activities in

spleen, lymph node, bone marrow, and intestine, but not in liver,

Figure 4. GO analysis of organs after irradiation. Differential expressed genes responsive to ionizing radiation were organized using Gene
Ontology Tree Machine. The significantly regulated GO categories in brain, liver, and intestine are indicated.
doi:10.1371/journal.pone.0023682.g004
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Table 2. The expression levels of genes belonging to the GO categories of ‘‘immune system process’’ and ‘‘response to stress’’.

Gene description Fold changesa

Intestine Brain Liver

Antigen processing and presentation

Heat shock protein 1 (chaperonin) 25.6361.20 1.2260.03 21.4360.35

Heat shock protein 8 21.1760.91 21.2060.75 22.8061.50

Chemokine or B cell receptor signaling pathway

CD79B antigen 25.8061.13 1.1560.07 1.1560.07

CD 81 antigen 3.0060.35 1.4060.28 1.5060.57

Chemokine (CC motif) ligand 5 22.5060.70 20.5560.64 21.1560.07

Chemokine (CC motif) ligand 19 21.9060.14 1.1060.03 21.3060.28

Chemokine (CC motif) ligand 20 22.8560.21 0.3761.18 1.1360.06

Chemokine (CXC motif) ligand 1 1.8560.49 1.1560.07 7.0562.62

Chemokine (CXC motif) ligand 9 1.8560.49 21.2360.23 21.5360.45

Chemokine (CXC motif) ligand 12 22.1760.21 1.1560.21 21.1060.10

Chemokine (CXC motif) ligand 16 1.3060.82 1.4060.85 1.9360.78

Conserved helix-loop-helix ubiquitous kinase 22.1760.06 1.1060.14 21.2560.21

Cysteine-rich protein 3 1.6560.78 20.8060.35 21.5560.64

Interleukin 22 20.6062.26 23.5060.57 1.3060.20

Jagged 1 2.4060.28 1.0760.06 1.1360.15

Kinase insert domain protein receptor 2.2560.07 1.1360.15 21.3360.25

S100 calcium binding protein A9 (calgranulin B) 1.8360.29 1.3060.04 1.8060.60

Signal transducer and activator of transcription 3 2.4060.53 1.4260.49 21.4360.35

Tumor necrosis factor receptor superfamily, member 13c 22.0360.06 1.0360.06 1.1360.06

Complement and coagulation cascades

C-reactive protein, pentraxin-related 2.3060.87 22.5061.85 1.4060.20

Complement component 1, q subcomponent, alpha polypeptide 1.8761.21 21.6060.50 21.2060.10

Fibrinogen, gamma polypeptide 23.1361.10 21.0560.07 2.6061.27

Hemolytic complement 22.2061.13 1.1360.06 21.7060.28

Serine (or cysteine) peptidase inhibitor, clade A, member 1a 22.7360.81 21.2360.15 21.1760.15

Serine (or cysteine) peptidase inhibitor, clade C (antithrombin), member 1 23.7061.57 1.1060.14 21.7360.45

Serum amyloid A 2 22.2060.60 1.2060.28 13.3765.35

Serum amyloid A 3 2.4760.64 1.3060.28 11.6565.02

Cell growth and death

Alpha 1 microglobulin/bikunin 23.1361.01 21.3060.28 21.2860.03

B-cell translocation gene 2, anti-proliferative 2.7760.74 1.2560.21 1.2760.25

Bcl2-associated X protein 3.8761.40 1.2560.21 1.5360.15

Caspase 8 22.7360.76 21.0360.04 21.3560.35

Cyclin-dependent kinase inhibitor 1A (P21) 2.8060.69 1.6060.40 1.4060.42

Gap junction membrane channel protein alpha 1 20.7062.97 22.7560.35 1.0860.04

Growth arrest and DNA-damage-inducible 45 alpha 26.1063.42 1.1160.01 22.0860.04

Guanylate nucleotide binding protein 1 2.2060.60 1.3060.20 21.6560.78

Mitogen activated protein kinase 1 22.8060.72 0.4062.10 21.1560.21

Mitogen activated protein kinase 3 21.8760.76 21.2360.15 22.2060.10

Nucleophosmin 1 22.9061.35 21.3060.28 1.6060.28

Trefoil factor 1 22.2760.61 21.2060.10 21.5560.78

Transcription factors

Early growth response 1 21.2361.00 21.1060.53 22.2061.27

Interferon regulatory factor 7 1.4061.20 23.3061.00 1.0860.04

Metabolism

Adenosine deaminase 22.9360.76 1.2060.28 1.0560.07
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lung, colon, and brain. Our data showed that ionizing radiation

induced highly NF-kB-driven bioluminescence signals in brain,

liver, and intestine, and moderate signals in heart, lung, spleen,

kidney, and testis. The sensitivity of assay (NF-kB DNA-binding

ability in previous reports and NF-kB-driven luciferase activity in

this report), mice strains (C57BL/6J in previous reports and FVB

strain in this report), and dose of irradiation might contribute to

the differences in the results of experiments. For examples, when

mice are exposed to a clinically relevant dose (#2 Gy) of total

body irradiation, a significant activation of NF-kB is found in

spleen, lymph node, bone marrow, and small intestine [13].

However, when mice are exposed to a super lethal dose (20 Gy) of

total body irradiation, a significant activation of NF-kB is found in

liver and kidney [26]. The tissue-specific manner of irradiation

might result from the sensitivity to irradiation toxicity in different

organs. Microenvironment or inherent tissue-specific intracellular

signaling pathways might also contribute to the tissue-specificity of

irradiation. In comparison with previous studies, we newly

identified that a significant activation of NF-kB was observed in

brain after exposure to 8.5 Gy total body irradiation and the NF-

kB activation was observed in oligodendrocytes. Recent study

indicates that irradiation induces regionally specific alterations in

pro-inflammatory environments in rat brain and this has been

implicated in the onset and progression of neurological disorders

[27]. Moreover, low-dose irradiation causes minimal histopatho-

logic change; however, it can elicit variable degrees of cognitive

dysfunction that are associated with the depletion of neural stem

cells [28]. Since NF-kB functions as a sensor that can detect

ionizing radiation-induced tissue damage [13], NF-kB activation

found in the brain might reasonably explain the irradiation-

induced brain injury.

NF-kB bioluminescent imaging showed that NF-kB activities in

brain, liver, and intestine were significantly induced by irradiation.

The gene expression profiles of these organs were further analyzed

by DNA microarray. DNA microarray is a popular research and

screening tool for differentially expressed genes [29]. Our data

showed that ionizing radiation altered gene expression signatures

in a tissue-specific manner. Markedly different gene expression

Gene description Fold changesa

Intestine Brain Liver

Apolipoprotein E 21.8060.53 21.7760.45 21.3060.28

Fatty acid binding protein 4, adipocyte 1.2360.80 1.0060.03 3.3762.35

Ferritin heavy chain 1 22.6761.10 22.1760.85 1.6760.25

Glutathione peroxidase 1 23.0760.83 22.1060.40 21.4060.14

aValues are mean 6 standard error (n = 6).
doi:10.1371/journal.pone.0023682.t002

Table 2. Cont

Table 3. Expression levels of Ccl5, Ccl20, Jagged1, SAA2, and SAA3 genes by qPCR.

Sample Average CT of target Average CT of GAPDH DCT
a DDCT

b Relative to Mock

Intestine

Ccl5

Mock 26.8860.11 20.0360.10 6.8560.15 0.0060.15 1.00

Ionizing radiation 26.1960.04 19.0260.02 7.1760.05 0.3160.05 0.80

Ccl20

Mock 22.3660.04 19.7360.01 2.6260.05 0.0060.05 1.00

Ionizing radiation 22.9260.03 19.9260.03 2.9960.05 0.3660.05 0.77

Jagged1

Mock 27.1360.02 19.7360.01 7.4060.03 0.0060.03 1.00

Ionizing radiation 26.8060.10 19.9260.03 6.8860.10 20.5260.10 1.43

Liver

SAA2

Mock 27.8160.10 18.4160.03 9.4060.11 0.0060.11 1.00

Ionizing radiation 24.4960.10 18.6460.04 5.8560.11 23.5560.11 11.71

SAA3

Mock 27.6660.11 19.7360.01 7.9360.11 0.0060.11 1.00

Ionizing radiation 26.8260.08 19.9260.03 6.9060.09 21.0360.09 2.04

aThe DCT value is determined by subtracting the average GAPDH CT value from the average target gene CT value. The standard deviation of the difference is calculated
from the standard deviations of the target gene and GAPDH.

bThe calculation of DDCT involves subtraction by the DCT calibrator value. This is a subtraction of an arbitrary constant, so the standard deviation of DDCT is the same as
the standard deviation of the DCT value.

doi:10.1371/journal.pone.0023682.t003
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responses between kidney and brain have been reported previously

[9]. Gap junction and ribosome were regulated in the brain after

irradiation with 8.5 Gy at 3 h (this study) or 20 Gy at 24 h [10].

Lipid metabolism and cell progression pathways were influenced

in the liver after irradiation with 8.5 Gy at 3 h (this study) or 1 Gy

at 3 h [11]. Signal transductions, including epidermal growth

factor and insulin-like growth factor, are altered in liver cells

exposed to a-particles [12], while we newly identified that insulin

and peroxisome proliferator-activated receptor (PPAR) signal

transduction pathways were significantly regulated in the liver.

Radiation-induced small intestine injury is characterized by cell

loss in the progenitor cell compartment and a dose-dependent loss

of barrier properties [30]. Loss of the intestinal absorptive surface

and a consequent decrease in active transport leads to the change

in intestinal absorption after irradiation. Previous studies indicated

that abdominal irradiation influences the uptake of carbohydrates,

amino acids, fatty acids, cholesterols, and bile acids into the

jejunum [31–33]. By KEGG pathway analysis, we found for the

first time that nutrient metabolisms, including lipids, carbohy-

drates, amino acids and energy, and metabolism-related pathway,

such as PPAR signaling pathway, were significantly altered in the

intestine after irradiation. These findings suggested that, in

addition to the absorption, radiation might influence the nutrient

metabolism in the intestine. Overguard and Mutsui [33] have

shown that the absorption insufficient in the small intestine is only

present acutely after irradiation and no late abnormalities are seen

12 months later. Whether the irradiation led to the long-term

influence on the nutrient metabolism in the intestine remained to

be clarified.

The expression levels of some immunomodulatory genes,

including Ccl5, Ccl19, Ccl20 and cluster of differentiation 79B

(CD79B) antigen, in the intestine were downregulated after

irradiation. Chemokine (CC motif) ligands are potent chemoat-

tractants for monocytes, memory helper T-lymphocytes, eosino-

phils, basophils, mast cells, and dendritic cells [34]. CD79B

antigen is a B-lineage-specific member of the immunoglobulin

superfamily. It is consisted of a single extracellular immunoglob-

ulin-like domain and an intracytoplasmic tail that contains a motif

involved in lymphocyte activation [35]. Downregulation of

chemokine (CC motif) ligands and CD79B antigen gene

expressions suggested that irradiation might suppress the inflam-

mation or immune response of intestine. The expression level of

Jagged1 gene was upregulated in the intestine after irradiation.

Jagged1 is a ligand for canonical Notch signaling [36]. Notch

signaling is required for the control of intestinal epithelial cells self-

renewal and the allocation of these cells to specific differentiation

lineages [37]. The expression of Jagged1 is restricted to

enteroendocrine cells and undetectable in the mucosa of the

normal human small and large intestine [38,39]. Elevated Jagged1

expression in the intestine after irradiation might activate Notch

signaling and, in turn, amplify the intestinal progenitor pool and

inhibit cell proliferation. Additionally, recent study indicates that

Notch activation, accomplished by Wnt signaling-mediated

upregulation of Jagged1, is required for tumorigenesis in the

intestine [39,40]. Therefore, irradiation altered the expression

levels of Ccl5, Ccl19, Ccl20, CD79B antigen, and Jagged 1 genes,

suggesting that these genes might be involved in the radiation

enteropathy.

The expression levels of immunomodulatory genes, including

chemokine (CXC motif) ligand 1 (Cxcl1) and S100 calcium binding

protein A9 (calgranulin B) (S100A9), in the liver were upregulated.

Cxcl1 is a small cytokine belonging to the CXC chemokine family.

Cxcl1 is expressed in macrophages, neutrophils, and epithelial cells,

and has neutrophil chemoattractant activity [41]. S100A9 is a small

calcium-binding protein that is highly expressed in neutrophils and

monocytes. It is at a high level in the extracellular milieu during

inflammatory conditions and involved in neutrophil migration to

inflammatory sites [42]. Fatty acid binding protein 4 (FABP4),

SAA2, and SAA3 were also upregulated by irradiation in the liver.

FABP4 has an important role in regulating systemic insulin

resistance and lipid metabolism [43]. Moreover, the metabolic-

inflammatory pathway cross-regulation by FABPs contributes to the

adaptive immune responses and the subsequent autoimmune

inflammation [44]. SAA proteins are a family of apolipoproteins

associated with the high-density lipoprotein in plasma. SAA2 and

SAA3 are regulated in the liver by the proinflammatory cytokines,

such as interleukin-1, interleukin-6, and tumor necrosis factor-a
[45]. SAA2 are induced locally and systematically in mice under

acute inflammatory conditions. Additionally, SAAs are also

involved in lipid metabolism [46]. FABP4, SAA2, and SAA3 are

participated in both inflammation and lipid metabolism, suggesting

that irradiation might affect the cross pathways of metabolism and

inflammation in the liver.

In conclusion, we applied NF-kB bioluminescent imaging-

guided transcriptomic analysis to evaluate the host responses to

irradiation. Irradiation induced an acute activation of NF-kB at

3 h. Microarray analysis of brain, liver, and intestine showed that

irradiation altered several pathways associated with metabolism

and immune system. GO analysis further showed that irradiation

altered two common GO terms, including immune system process

and response to stress, in these organs. This report described the

comprehensive evaluation of host responses to irradiation

exposure. Our findings provided the fundamental impacts into

the radiation-affected NF-kB activity and transcriptomic pattern

in the whole body. Moreover, novel targets involved in radiation

injury were also suggested.
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