
sensors

Article

Discovering Hidden Mental States in Open
Multi-Agent Systems by Leveraging Multi-Protocol
Regularities with Machine Learning

Emilio Serrano *,† and Javier Bajo

Ontology Engineering Group, Department of Artificial Intelligence, Universidad Politécnica de Madrid,
28660 Madrid, Spain; jbajo@fi.upm.es
* Correspondence: emilioserra@fi.upm.es
† Current address: Departamento de Inteligencia Artificial, Escuela Técnica Superior de Ingenieros Informáticos,

Universidad Politécnica de Madrid, Boadilla del Monte, 28660 Madrid, Spain.

Received: 8 August 2020; Accepted: 8 September 2020; Published: 12 September 2020
����������
�������

Abstract: The agent paradigm and multi-agent systems are a perfect match for the design of smart
cities because of some of their essential features such as decentralization, openness, and heterogeneity.
However, these major advantages also come at a great cost. Since agents’ mental states are hidden
when the implementation is not known and available, intelligent services of smart cities cannot
leverage information from them. We contribute with a proposal for the analysis and prediction of
hidden agents’ mental states in a multi-agent system using machine learning methods that learn
from past agents’ interactions. The approach employs agent communication languages, which is a
core property of these multi-agent systems, to infer theories and models about agents’ mental states
that are not accessible in an open system. These mental state models can be used on their own or
combined to build protocol models, allowing agents (and their developers) to predict future agents’
behavior for various tasks such as testing and debugging them or making communications more
efficient, which is essential in an ambient intelligence environment. This paper’s main contribution is
to explore the problem of building these agents’ mental state models not from one, but from several
interaction protocols, even when the protocols could have different purposes and provide distinct
ambient intelligence services.

Keywords: open multi-agent system; smart city; agent communication languages; agent-oriented
software engineering

1. Introduction

Smart cities are technologically based on the combination of several socio-technical innovations
such as: the Internet of Things (IoT), mobile Internet access, smartphones, data analytics, open data
initiatives, and sharing economy models, among others [1]. This allows these cities to manage assets
and resources efficiently by services enhanced with intelligence such as: traffic management, hospitals,
transportation systems, power and water plants, waste management, etcetera.

The open and heterogeneous nature of multi-agent systems (MASs) addresses naturally the
dynamism and scalability problems of smart cities and ambient intelligence [2]. High-level interaction
protocols and communications are a cornerstone of MASs, which are capable of establishing conversation
by following these protocols, sending and receiving messages, or sharing vocabularies.

However, how do we leverage information from an open MAS to provide citizens with intelligent
services? MAS platforms and frameworks usually allow developers to analyze agents’ mental states
and interactions among agents for testing, debugging, and verification purposes [3]. Regarding the

Sensors 2020, 20, 5198; doi:10.3390/s20185198 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/ORCID ID: 0000-0001-7587-0703
https://orcid.org/ORCID ID: 0000-0002-4392-4743
http://www.mdpi.com/1424-8220/20/18/5198?type=check_update&version=1
http://dx.doi.org/10.3390/s20185198
http://www.mdpi.com/journal/sensors

Sensors 2020, 20, 5198 2 of 19

study of agents’ mental states, these tools tend to assume that the agents’ implementation is available.
This is not the case in an open MAS for a smart city or large-scale ambient intelligence systems where
the use of MASs is motivated, among others, because of agents’ capacity of migration from one to
another platform at run-time. Moreover, these agents can be designed and implemented by different
developers and operators, which may want to use proprietary code. Concerning interaction analysis,
these tools usually study fixed elements in messages and protocols such as the performative or the
sender without analyzing the message semantics and content. This hinders smart city users, developers,
and agents from performing a number of interesting tasks beyond using a black-box service such
as verifying or validating agents or analyzing their trustworthiness. We address these drawbacks
and limitations in the specialized literature by leveraging semantic information in agents’ interaction
protocols to build mental state models and protocol models with machine learning methods.

Let us consider the FIPAcontract-net protocol [4] to illustrate the utility of studying and
discovering agents’ mental states. In this protocol, one agent (the Initiator) takes the role of manager,
which wishes to have some task performed by one or more other agents (the Participants) and further
wishes to optimize a function that characterizes the task [4]. This protocol can be used in several
services of a smart city as transport renting or accommodation finders. The specialized literature [3]
emphasizes syntactic analysis of the conversations such as: statistics about how many conversations
an agent has started; errors in the order of the messages specified in the protocol; participants whose
proposal is rejected, etcetera. However, the specific semantics of messages, which can be made explicit
in the protocol definition via semantic annotations, contains more interesting information. For instance,
the Initiator agent (or its developer) may want to know what is a Participant’s mental state or decision
rules to propose or refuse a specific type of act. Of course, this information is hidden if the Participant
agents’ implementation is unknown by the Initiator, which is the case in a smart city. Nonetheless, as in
human interactions, the Initiator agent can get insights into a Participant’s behavior after participating
in several conversations with it. Hopefully, the Initiator can generalize a theory about this participant’s
decision-making mechanisms and act intelligently based on this theory, for instance not starting
conversations with a participant who seems unwilling to conduct a specific kind of task. In this
example, the Initiator would reduce the load of the communications network, which is essential in IoT,
by leveraging a theory about the Participant’s hidden mental state.

These theories about agents’ mental states try to predict logical constraints and decision rules,
which are typically attached to the specification of interaction protocols. Machine learning methods can
leverage regularities in previously observed interactions to build a model capable of getting insights
into these hidden mental states used by agents for decision-making. Then, these machine learning
models can be used in several manners, such as: predicting agents’ future behavior for improving
negotiations or reducing the communications; verifying or validating agents whose implementation
is not available by checking if the expected behavior meets machine learning models’ predictions;
or analyzing the trustworthiness of agents in a multi-agent system.

The main contribution of this paper over some previous works [5–7] is the specification of several
approaches to leverage information from different protocols to build hidden mental state models and
protocol models combining them. Returning to the example of the FIPA contract-net protocol, when the
initiatorasks a participant to undertake some task T, at some point in the execution, the participant
considers if it is interested or able to do T. This evaluation depends more on the task, the semantics in
the protocol, than on the protocol itself. As a matter of fact, this same evaluation would be present if
the protocol used was FIPA request [8]. Therefore, this paper claims that information from executions
of FIPA request could be used to gain insights into the behavior of agents for FIPA contract-net.
In other words, when several protocols share semantics properties, the behavior of agents when
they interact by one of them can be extrapolated from the interactions by the remaining protocols.
For instance, the dates negotiated for an accommodation service in a smart city could be used to
negotiate available transport.

Sensors 2020, 20, 5198 3 of 19

This paper shows experimental results in a car renting multi-agent system to illustrate the potential
of our approach. Past agents’ interactions are used: to feed general machine learning algorithms;
to learn a specific hidden mental state in an agent; to predict negotiation outcomes; to study incoherent
behaviors and changes in agents’ preferences; and to use information from other protocols, an online
game in the case study, to improve the learned models for the car renting system.

The paper outline is the following. Section 2 revises the related works. Section 3 introduces the
formal framework of our proposal. Then, Section 4 discusses different approaches to build hidden
mental state models from different interaction protocols. Section 5 gives empirical results obtained in a
case study. Finally, Section 6 concludes.

2. Related Work

In a recent systematic review about agent systems’ verification, Bakar and Selamat [3] analyzed
231 research works and concluded that only 25% of these approaches are suitable for run-time analysis.
Model checking has been the main method for agents’ verification (142 works). The second main line
has been debugging or testing techniques performed during the development phase to detect faults and
agents’ property violations (40 works). However, only 21 works were found to check the satisfactions
of agent properties at run-time. As stated in the Introduction, this is the main scenario in the use
of multi-agent system to design smart cities, where agents from different users and manufacturers
have to coexist in an artificial society without being able to impose a design method. Our approach
considers a trace with all messages exchanged and constraints with semantic annotations as training
data for machine learning models that, after being trained, are used for run-time analysis.

Most methods and tools for the analysis of run-time multi-agent executions are meant to be used
for testing and verification purposes when the agents’ implementation is open and available. In this
manner, the JADEXagent platform counts with tools [9] capable of verifying the events and messages
declared and transforming them into a graph. In the Agent Factory Agent Programming Language
(AFAPL), the inspector tool [10] allows developers to inspect agents’ internal states and to monitor
agents’ performance. The INGENIAS [11,12] platform integrates visual inspection tools for testing
and debugging agents’ mental states. These and other approaches such as the Tracer Tool [13] are not
suitable for a multi-agent system where agents’ code can be proprietary and not disclosed. However,
these are very useful and valuable tools for multi-agent system developers in their code.

Many agent development frameworks also offer graphical tools for the visual inspection of
interactions (e.g., [14]). These are usually built on a three-step procedure: (1) defining protocols that
specify the interaction between agents, (2) automatically testing that these protocols were correctly
performed, and (3) locating the errors found using some sort of visualization. Padgham et al. [15]
used a translation from AUMLprotocols to Petri-nets, which can be used by the debugger to monitor
conversations and throw error messages when protocols are not followed correctly. The typical
errors that can be identified in multi-agent systems using this approach [15] are: uninitialized
agent, failure to send, the wrong recipient, message sent multiple times, and wrong message sent.
Other approaches use extensions of the propositional dynamic logic [16], statecharts [17], or Dooley
graphs [18]. Chopra et al. [19] formalized the semantic relationship between agents and protocols,
which allows the human designer to verify if a protocol supports particular agent goals and whether
the agent’s specification supports the satisfaction of particular commitments required by a protocol.

In contrast to the run-time analysis of multi-agent systems, another main approach to MAS
analysis considers only static property agents. In this vein, MABLE [20] is an imperative programming
language for the design and automatic verification of MASs. MABLE allows developers to design
agents’ mental states following the beliefs, desires, and intentions paradigm. By using linear temporal
logic, MASs implemented in MABLE can use the spin model checker to be automatically verified.
More recently, the MCAPLframework by Dennis et al. [21,22] provided a suite of tools for building
interpreters for agent programming languages and verifying the correctness of programs running
in these interpreters using the model checking technique. Again, this approach is not valid when

Sensors 2020, 20, 5198 4 of 19

the agents’ code is not available. Besides, these works focus on the verification of a single agent’s
behavior or reasoning according to the (single) agent’s beliefs and goals, omitting the verification of
the interaction of multiple agents.

Besides MAS analysis works, there are similarities between ontology matching [23–25] proposals
and the method presented in this paper. Among others, both research lines are based on considering
the semantics of terms and concepts appearing in previous agents’ conversations and looking for
relationships between them. On the other hand, in the ontology alignment literature, the purpose
is not inferring models of agents’ hidden mental states, but resolving conflicts between ontologies
used by these agents. Ancona et al. [26,27] also explored the semantic definition of the protocols by
parametric trace expressions for run-time verification. As in our approach, the authors pointed out that
the correctness of protocol interactions depends on the specific data, and that, in general, cannot be
predicted statically. However, the proposed automatic verification cannot detect MAS’s emergent
behaviors like the use of machine learning methods in our proposal.

As explained in this section, the main limitation in the existing works is that the semantics of
messages exchanged between agents is not contemplated for the analysis of their behavior. As pointed
out by Savaglio et al. [28] in a recent review about the use of MAS in the IoT, software agents have
evolved in “non-semantic directions”. Moreover, there are very few works that attempt to build
compact models of agents’ mental states when their code is not available [5–7]. Last, but not least,
combining information from different interaction protocols to discover agents’ hidden mental states is
a novel problem introduced in this paper. We consider the methods presented here as an unexplored
opportunity for providing intelligent services in smart cities with new methods from leveraging
information from unknown agents.

3. Formal Approach for Discovering Hidden Mental States in Multi-Agent Systems

In this section, we specify a formal framework for defining protocols with semantic annotations
and how to leverage these annotations for building hidden mental state models using machine learning
methods. This framework only covers the minimum amount of requisites to allow our approach to be
used. Moreover, the extension of specific MAS platforms to cover these requirements is outside of the
scope of this paper.

3.1. Defining a Semantically Annotated Protocol

A MAS interaction protocol can be formalized as a graph G = (V, E) where vertices or
nodes represent messages and links or edges indicate mental states, which are evaluated by the
message sender.

A node v ∈ V representing a message would contain at least four characteristic fields of MAS
messages: a performative q, a sender X, a receiver (or a list of them) Y, and the message content Z.
Therefore, each node/message can be labeled with a semantic annotation m(v) = q(X, Y, Z).

A link representing a mental state could be any predicate φ ∈ L of a logical language L.
However, for the sake of simplicity, our semantic protocol definition labels each link with a conjunction
of n constraints or decision-making functions (or better said, predicates, since they are evaluated with
a truth value). These links can be labeled with c(e) = {c1(t1, . . . , tk1), . . . , cn(t1, . . . tkn)} where each
of the constraints ci that composes the mental state has arity ki and arguments tj indicating terms
that can be replaced at run-time by a constant, functions, or variables. As in Prolog and other logic
programming languages, all variables are considered universally quantified. The outcoming links
or messages from a node or mental state have distinct performatives, i.e., for all (v, v′), (v, v′′) ∈ E,
(m(v′) = q(. . .) ∧m(v′′) = q(. . .))⇒ v′ = v′′.

Note that the protocol only specifies the header with the name and arguments of the constraints
composing the agents’ mental states, the code and its evaluation considering these arguments and
other agents’ beliefs and desires stored in each agent. As explained below, this allows our approach
to discover mental state (machine learning) models. On the other hand, the exact mental states may

Sensors 2020, 20, 5198 5 of 19

not be leveraged from these machine learning models following our approach, which essentially
considers a trace with all messages exchanged and constraints evaluated as training data for these
models. Another disadvantage of our approach is that this protocol definition moves complexity from
the agents to the interaction protocol, which may not be desirable in a layered architecture. Note also
that other modeling approaches for defining interaction protocols may be used as long as the messages
and constraints are semantically labeled, e.g., representing messages as edges instead of nodes in the
graphs, or using enhanced UMLor AUML diagrams.

The result is that when two or more agents interact using a protocol defined with these
requirements, the produced message sequence corresponds to one path π in G. Figure 1 illustrates this
generic format for defining protocols semantically annotated for illustration purposes.

The semantics of a protocol G can be defined considering the pairs 〈π, θ〉 containing the path and
variable substitution that any message sequence m corresponds to in the protocol G, the context of
m the expression being C(G(m)) =

∧n−1
i=1 c(ei)θ where m = 〈m1, . . . , mn〉, G(m) = 〈π, θ〉, and c are

constraints or mental states associated with each link in the path π. More importantly, the conjunction
of mental states described in nodes or message sequence m of a path π in the protocol G is logically
true at the time of the interaction.

The problem addressed in this paper is how to use these paths with ground terms, pairs 〈π, θ〉,
to allow machine learning to learn hidden mental state models of all participants and protocol models
capable of predicting the conversations’ outcome. More specifically, how do we build these models
when several protocols (or graphs G1, G2, ..., Gn) are considered?

request(A,B,T)

cannotOffer(B,A,T)

termsWantedA(T) inStockB(T)

alternativeB(T)

provide(B,A,T)

alternative(B,A,T)

acceptableA(T)

keepNegotiatingA(T)ר

m1 m2

m3

m4

m5

m6

c1 c2

c3

c4

c5

acceptableA(T) ^ keepNegotiatingA(T)ר

suceed(A,B,T)

fail(A,B,T)

c4

Figure 1. A negotiation protocol model where an initiator A asks for a product with some terms T from
a provider B. B replies based on the availability of an item with the requested terms. When T
cannot be satisfied by B, A and B can negotiate new terms for the product. Several predicates
representing participants’ mental states are evaluated during this negotiation: keepNegotiating,
acceptable, and alternative. Subscript A or B in link labels represent the agent that has to evaluate
the predicate. Additional (redundant) shorthand notation ci/mj is introduced indicating different
constraints and messages, respectively.

3.2. Obtaining Hidden Mental State Models with Machine Learning

The basic method for applying machine learning methods to agents’ conversations following the
formal protocols defined in the previous section is the following. Given a protocol model G and a
message sequence m from a past conversation following G, the sequence can be translated into a pair
G(m) = 〈π, θ〉. These substitution-annotated paths are preprocessed as discussed in Section 3.3 to
obtain a training dataset D. Then, an inductive machine learning algorithm L : D → H can map any
concrete dataset D ⊆ D, where D is the set of all possible observations, to a learning hypothesis h ∈ H,
which constitutes a hidden mental state model for the protocol G.

Our approach assumes that only allowed message sequences occur, but some verification
approaches revised in Section 2 can be used to ensure this. Moreover, our approach could be modified
on the fly to accommodate unexpected messages by adding constraint-free links and message nodes.
Finally, the learning data D can be augmented by the logical context of the data samples including
inferable data from the logical formula C(G(m)).

Sensors 2020, 20, 5198 6 of 19

As explained in the following section, the machine learning task involved in obtaining these
hidden mental state models is a classification where the class labels reflect the outcome of a protocol
for protocol models, or constraints occurring within the protocol for the hidden mental state model.
Figure 2 illustrates a hidden mental state model for the the constraint acceptableA of the protocol
described in Figure 1 when negotiating a car rental. This specific model uses a decision tree as a
machine learning method, but any other algorithm suitable for classification could be employed.

Version September 5, 2020 submitted to Sensors 11

1 safety = low: F (368.0)

2 safety = med: F (373.0)

3 safety = high

4 | doors = 2: F (87.0)

5 | doors = 3: F (89.0)

6 | doors = 4

7 | | maint = v-high

8 | | | buying = v-high: F (4.0)

9 | | | buying = high: F (7.0)

10 | | | buying = med: S (63.0)

11 | | | buying = low: F (4.0)

12 | | maint = high

13 | | | buying = v-high: F (5.0)

14 | | | buying = high: F (4.0)

15 | | | buying = med: S (60.0)

16 | | | buying = low: F (6.0)

17 | | maint = med: S (321.0)

18 | | maint = low

19 | | | buying = v-high: F (5.0)

20 | | | buying = high: F (5.0)

21 | | | buying = med: S (58.0)

22 | | | buying = low: F (10.0)

23 | doors = 5-more

24 | | buying = v-high

25 | | | maint = v-high: F (4.0)

26 | | | maint = high: F (5.0)

27 | | | maint = med: S (49.0)

28 | | | maint = low: F (6.0)

29 | | buying = high

30 | | | maint = v-high: F (5.0)

31 | | | maint = high: F (7.0)

32 | | | maint = med: S (59.0)

33 | | | maint = low: F (8.0)

34 | | buying = med: S (302.0)

35 | | buying = low

36 | | | maint = v-high: F (8.0)

37 | | | maint = high: F (6.0)

38 | | | maint = med: S (67.0)

39 | | | maint = low: F (5.0)

Figure 2. Hidden mental state model of the acceptableA constraint, obtained using a decision tree
algorithm (J48) with a dataset gathering 2000 conversations which follow the protocol defined in Figure
1. The notation “a = v : T/F” indicates that “if the term a has value v the target predicate has value
of true or false”. Every leaf includes the number of instances classified under a certain branch in
parentheses.

comparable results (97.28% and 97.04%, respectively). On the other hand, J48 and NNge required418

more data samples, i.e. conversations observed, than the artificial neural network. Finally, the Bayes419

classifier gets an accuracy below 86.08% although it reaches its maximum predictive power sooner420

than J48 and NNge.421

Table 1 shows the time needed to build the protocol outcome models in these experiments.422

With 88.21 seconds to build a model for 5000 tuples, the feed-forward neural network is the slowest423

algorithm. Note that the use of ten-fold cross-validation requires to train the models 11 times, not424

being typical this kind of validation in Deep Learning methods. The induction of rules only needs425

1.468 seconds and the remaining methods below one second, being the Bayes classifier the fastest426

algorithm. These efficiency and scalability issues are essential in Smart Cities and Ambient Intelligence427

environments. The little extra accuracy achieved by the artificial neural network, 2.42%, may not428

Figure 2. Hidden mental state model of the acceptableA constraint, obtained using a decision tree
algorithm (J48) with a dataset gathering 2000 conversations, which follow the protocol defined in
Figure 1. The notation “a = v : T/F” indicates that “if the term a has value v, the target predicate has a
value of true or false”. Every leaf includes the number of instances classified under a certain branch
in parentheses.

3.3. Obtaining Training Data for Hidden Mental State Models

This section describes the additional design decision to be made before standard machine learning
methods can be used. This involves essentially the transformation of message sequences or graph
paths into tabular data composed of same-length vectors. As mentioned in the Future Work section,
recurrent neural networks that deal with sequences or graph neural networks [29] that can learn from
graphs represent possible alternatives to be explored.

The first major decision to be made is how to cope with multiple agents in conversations.
The purpose of our approach is to infer the definitions of constraints or hidden mental states that are

Sensors 2020, 20, 5198 7 of 19

specific to an agent or a group of agents. To filter the data, assume an assignment σ : Var→ Ag where
Ag is the set of agent names and Var is the set of all variables occurring as sender or receiver variables
in the graph nodes. Then, for any agent a ∈ Ag, Vσ(a) are the nodes that correspond to messages
sent by agent a under role assignment σ, and Eσ(a) are the incoming links to those nodes/messages.
This can be formally expressed as Eσ(a) = {(v, v′) ∈ E|v′ ∈ Vσ(a)}. These notions can be generalized
to Vσ(A)/Eσ(A) for A ⊆ Ag by taking the union over the respective sets of agents.

A second decision is how to deal with the paths of different lengths when building the training
data tuples since the messages, constraints, and variables contained in them can differ. A simple
solution is to “pad” these tuples with “unknown” values for all messages and mental state variables
not occurring in them. Therefore, the length of the tuple will depend on the longest path. A similar
“padding” strategy is used in several deep learning methods such as convolutional neural networks
or the BERT(pre-training of deep bidirectional transformers for language understanding) model [30].
Another alternative would be creating different datasets for different paths π in the protocol graph
G. Finally, different paths can be merged into a single set introducing an artificial label with the
conversation result, e.g., success = true.

Thirdly, the results of the hidden mental states in the paths (but not the terms of these) must
be removed. Otherwise, machine learning methods would learn obvious relations between these
mental states and the conversation’s overall outcome, e.g., “if not continuing to negotiate, then the
conversation fails” in the protocol example given in Figure 1.

Fourthly, the existence of a loop in a protocol means that variables occurring in a hidden
state or message can have several constants as ground instantiations in the same conversation
{g1, g2, ..., gn}, where n is the number of iterations in the loop. This is a multi-instance learning
problem, i.e., learning where each example in the data comprises several different instances [31].
A simple strategy is to consider only the first/last ground term g1/gn or other aggregate functions
such as the average, minimum, or maximum of the ground terms. More advanced multi-instance
methods can also be considered [32].

4. Leveraging Multi-Protocol Regularities for Hidden Mental State Models

One possibility for the hidden mental state models presented in this paper that has not been
previously explored in the literature is to gain knowledge about agents’ behavior in the performance
of a protocol by using information from a second protocol different, or potentially, from a complete set
of different protocols.

In this section, a first protocol under study p1 with a possible execution path π1 is considered.
Then, the hidden mental state models learned for this protocol are enhanced by data from interactions
in a second or auxiliary protocol p2 whose possible execution path is π2.

4.1. Combining Complete Paths

Let us call p1 the protocol under analysis and p2 the “auxiliary” protocol. The basic method to
extend the tuples of the training data, which allow a protocol model for p1 to be built with p2 data, is to
find paths in p2 that include all the constraints that a complete path in p1 presents (where a complete
path is a path from the beginning of the protocol to a final message); in other words, finding paths
of p1 whose constraints, ordered or not, also are present in paths of p2, with other constraints or not.
For example, if we consider as p1 the protocol shown in Figure 1 to negotiate the sale of a product,
the shortest complete path this protocol has is the following:

π1 =
termsWanted→ request ¬inStock∧¬alternative→ cannotO f f er (1)

A seller agent implementing this protocol can also implement, for example, a protocol to offer
advertising about products offered or a protocol for auctions. In this possible second protocol, p2,
the path π1 is feasible. In this case, sellers may, and indeed human sellers do, use the information gained

Sensors 2020, 20, 5198 8 of 19

through advertising protocols to improve their sales negotiation protocols. In this proposal, and once
the agents have implemented a learning strategy for a specific protocol as explained in Section 3.3,
checking for common constraints in protocols to combine their tuples is completely automatic.

4.2. Combining Partial Paths

This first approach for combining protocols, although automatic and innovative, is also very
restrictive. Of course, designers can implement protocols aiming at maximizing the reusability of
paths for discovering hidden mental states. However, in practice, finding protocols with disparate
purposes sharing long sequences of mental processes is difficult. To solve this, a second combination
approach is presented here.

As explained in Section 3.2, the class of a hidden mental state model does not have to be the
overall output of the protocol. This class can also be an unknown mental process that is implemented
by another agent whose behavior is under analysis. Therefore, all the constraints of complete paths of
p1 do not have to occur in p2, but only the constraints from the beginning of the protocol in p1 to the
hidden mental state that is used as a class. Therefore, at the cost of not being able to articulate a theory
for the protocol in general, this approach allows developers to reuse larger amounts of information
than the first. Returning to the example of the protocol in Figure 1, if the goal is to construct a hidden
mental state model explaining the behavior of the constraint c3 = alternative, tuples from executions
of a second protocol can be included if those executions include the constraints in:

π2 =
termsWanted→ request ¬inStock∧alternative→ (2)

This is possible because the information beyond that sequence, and that makes the protocol p1

end in different ways, is irrelevant to study the generation of alternatives to out-of-stock orders by
the seller.

4.3. Finding Logical Consequence in Mental States of Different Protocols

While the second approach is much less restrictive than the first, finding sequences encompassing
all constraints of paths of the protocol to be analyzed in different protocols can be difficult.
A third approach that this paper proposes is to look for logical consequence relationships between
the constraints of p2 and p1 to replace the results of the constraints in the latter by the results
of the constraints in the former. For example, consider a constraint c1 = isExpensive(T) in a
protocol p1, that determines whether a product is expensive based on the terms, and a protocol p2

that does not use c1, but c2 = isLuxurious(T), which determines whether a product is luxurious.
Assuming isLuxurious⇒ isExpensive, then every interpretation that makes isLuxurious true also makes
isExpensive true.

Therefore, we can add tuples with the parameters and results of c2 in p2, for those cases where c2

is evaluated as true, to study p1. More generally, when the auxiliary protocol constraints are evaluated
as true, the constraints in the protocol under analysis also have to be true. This simple example can be
generalized to more complex arguments where several constraints are considered in the antecedent of
the logical consequence, i.e., {c2, c3, ..., cn} ⇒ c1.

As in the strategies to form the training data explained in Section 3.3, smart city designers can find
these relationships for a set of protocols given in advance. Then, the agents can combine information
from different protocols automatically. Moreover, the use of ontologies allows intelligent services to
discover these logical consequences automatically [33]. For instance, the basic Resource Description
Framework (RDF) schema [34] can specify that Luxurious is a subClassOf Expensive, which formalizes
an if-then sentence without requiring more expressive logic such as the Web Ontology Language
(OWL) [35] or horn-like rules such as the Semantic Web Rule Language (SWRL) [36].

Sensors 2020, 20, 5198 9 of 19

4.4. Using Hidden Mental State Models to Pseudo-Label Unknown Constraints

Finally, a fourth approach consists of using hidden mental state models of constraints to complete
tuples in p2 to be used as tuples for p1 when the former protocol, despite not having a constraint
needed, has the parameters for this mental process. While this approach will not be treated in the
experimental results section, the idea is perfectly feasible since, as proven in Section 5.3, a model of
a specific constraint can not only be very accurate, but also exact. Therefore, the predictions of this
model can be used to complete the necessary information in a path of p2. For example, consider the
protocol of Figure 1 as p1, the path π1 reflected in the expression 1, and a p2 protocol with the following
possible path π2:

π2 =
termsWanted→ query ¬alternative→ reject (3)

With the above methods, p1 cannot include executions of π2 because the constraint inStock
is only in π1. However, if there is enough information about the executions of p1 to construct a
very accurate model of inStock, agents can use this model to predict the output of inStock taking as
parameters the data from the executions of π2. Then, this execution of π2 can be used as a tuple
representing an execution of π1 provided: (1) the output predicted by the model for inStock is false,
(2) termsWanted = true in π2, and alternative = f alse in π2. This strategy is reminiscent of the
pseudo-labeling method, which is one of the simplest approaches of semi-supervised learning for deep
neural networks [37].

Note that none of the strategies discussed in this section require similarities in messages between
different protocols, but only the terms used in them. Therefore, our approach to learning hidden
mental state models and protocol models focuses on semantics, unlike most of the proposals revised
in Section 2.

5. Case Study

This section describes a multi-agent system in a car renting domain to illustrate how to discover
hidden mental states by leveraging multi-protocol regularities with machine learning. The agents in
the system interact using the protocol shown in Figure 1 and a second protocol described in Figure 5.

Section 5.1 starts giving a description of this case study, and then, Section 5.2 explains the strategies
used to gather a dataset to build hidden mental state models. Section 5.3 describes how to build these
models to explain an unknown mental process. Beyond building models for a single hidden mental
state in an interaction protocol, Section 5.4 illustrates the use of the methods presented in this paper to
construct a model capable of explaining a whole protocol. Section 5.5 details a practical application of
these models, which is studying the coherence of agents’ behavior. Finally, Section 5.6 combines two
different protocols to generate a single protocol model.

5.1. Description of the Multi-Agent System

The MAS used in this section negotiates cars with the terms and features described in a public
database for car evaluation [38] where cars are described by technical characteristics and prices.
The dataset contains 1728 instances and six attributes. More specifically, car characteristics are given as
a tuple T = (doors, persons, lug_boot, safety, buying, maint). The possible values for these attributes are
the following:

• buying: vhigh, high, med, low.
• maint: vhigh, high, med, low.
• doors: 2, 3, 4, 5, more.
• persons: 2, 4, more.
• lug_boot: small, med, big.
• safety: low, med, high.

Sensors 2020, 20, 5198 10 of 19

The data do not contain missing values and are associated with classification tasks, the possible
class values being: unacc, acc, good, or vgood.

Agents in the system follow the negotiation protocol detailed in Figure 1. In this manner,
a customer with the role A can request offers from a car renting agent with the role B giving
the wanted terms for the car T (such as number of doors, capacity, the size of luggage boot,
and estimated safety). This case study was implemented using the MASON Multiagent Simulation
Toolkit (https://cs.gmu.edu/~eclab/projects/mason/).

In our experiments, ten customer or renter agents are defined (Ci, where 1 ≤ i ≤ 10). These agents
have five different mental states associated with them, which correspond to different preferences
regarding T that determine what offers they will accept. Ci := MSi mod 5, meaning that: agents C1 and
C6 have mental state MS1, C2 and C7 have mental state MS2, and so on. For example, the mental state
indicating C1 preferences in the MAS is the following:

MS1(T)⇔(doors = 4∧ safety = high∧maint = med)∨
(doors = 4∧ safety = high∧ buying = med)∨
(doors = 5-more∧ safety = high∧maint = med)∨
(doors = 5-more∧ safety = high∧ buying = med)

The case study assumes that a single seller or lessor agent S is studying the system’s evolution
from its local point of view to predict the different outcomes of its interactions based on perceived
regularities regarding the observed behavior of the customers or renters.

5.2. Building the Training Data for Discovering Hidden Mental States

This section describes the strategies to build a training dataset from sequences of message
exchanges in the case study by using some of the methods detailed in Section 3.3.

As explained above, a seller or lessor agent with name S (B = S in the protocol specification in
Figure 1) is performing the analysis to obtain knowledge about the other agents’ hidden mental states.
Therefore, the learning input is restricted to the mental states in the customer agents, i.e., Vc(A) and
Ec(A), c being the customer role in the protocol. All attributes contained in the “terms” descriptions
T are gathered including an unknown value for those not mentioned in a given execution trace.
To address loops, only the last value of every term is gathered for the training data. Finally, an artificial
variable outcome ∈ {S, F, N} is introduced to indicate a conversation with a successful completion (m11

is the last message in the protocol of Figure 1), failure (conversation ends with m4 or m6), and neutral
for the remaining paths.

Even thought evaluating the best machine learning algorithm for the analysis of opaque
mental states is out of the scope of this paper, five open-source implementations are employed [39].
These include a decision tree algorithm (J48), a rule induction method (NNge), a Bayesian network
classifier (BayesNet), a feed-forward artificial neural network (multilayer perceptron), and a
clustering-based classification (SimpleKMeans). This selection includes some of the major learning
paradigms in machine learning. Moreover, this mix of white-box and black-box classifiers will prove
in our experimental results that sometimes, white-box models can perform equally well as black-box
models, while the former are greatly superior in supporting other extremely significant issues such as
interpretability and explainability [40]. The default parameters are used for these five implementation
except the number of layers in the artificial neural network (two instead of one) and the number of
classes in SimpleKMeans (three instead of two to cover the three classes in the dataset, i.e., S, F, and N).

5.3. Learning a Hidden Mental State Model

In this experiment, the seller agent wants to learn a hidden mental state model for the predicate
c4 = acceptableA(T) evaluated by a customer agent C1. The decision tree resulting after learning from
2000 protocol executions is shown in Figure 2. The tree contains 15 nodes and summarizes the mental

https://cs.gmu.edu/~eclab/projects/mason/

Sensors 2020, 20, 5198 11 of 19

state of C1. This tree can be transformed into the following logic formula (any decision tree can be
transformed into a set of rules, it not being possible to transform any set of rules into a decision tree).

acceptableC1 (T)⇔(doors = 4∧ safety = high∧maint = med)∨
(doors = 4∧ safety = high∧ buying = med)∨
(doors = 5-more∧ safety = high∧maint = med)∨
(doors = 5-more∧ safety = high∧ buying = med)

The reader can check that this tree or its equivalent set of rules corresponds to the mental state
implemented by the customer, see MS1(T) in Section 5.1, which is opaque or hidden to the seller who
has learned it.

Note that this comparison is possible because the machine learning model employed, a decision
tree, is a white-box model. A white-box is a model whose inner logic, workings, and programming
steps are transparent, and therefore, its decision-making process is interpretable [40]. In contrast,
a black-box model, such as artificial neural networks, is a model whose inner workings are not known
and are hard to interpret [40], making evaluations such as the one presented in this section impossible.

5.4. Protocol Outcome Prediction Leveraging Hidden Mental States’ Information

In this experiment, the seller tries to learn a model for the overall outcome of the protocol,
which needs to understand not one, but all customers’ mental states, which are hidden to the seller.
Figure 3 shows the average model accuracy in predicting successful or failed sales across 100 repeated
experiments. The accuracy of the machine learning models is evaluated using ten-fold cross-validation
across 100 experiments with 5000 negotiations each.

Figure 3. Protocol outcome prediction leveraging information from hidden mental states. The average
accuracy is shown for 100 experiments with 5000 negotiations each. The learning algorithms considered
include: a decision tree algorithm (J48), a rule induction method (NNge), a Bayesian network classifier
(BayesNet), a feed-forward artificial neural network (multilayer perceptron), and a clustering-based
classification (SimpleKMeans).

The results show that the models can correctly classify over 80% of all instances after considering
200 negotiations, i.e., 20 conversations for each one of the 10 customers. An exception is the use
of the clustering-based classification method, which has the naive assumption that clusters will
correspond to given classes. The feed-forward neural network gets the best accuracy, over 85%
with only 50 negotiations and 99.70% after 5000 negotiations. This illustrates the potential of deep
learning in predicting conversation outcomes, although at the cost of losing all the interpretability
and explainability of the hidden mental states. J48 and NNge, which are white-box machine learning
models, obtain comparable results (97.28% and 97.04%, respectively). On the other hand, J48 and NNge
require more data samples, i.e., conversations observed, than the artificial neural network. Finally,

Sensors 2020, 20, 5198 12 of 19

the Bayes classifier gets an accuracy below 86.08%, although it reaches its maximum predictive power
sooner than J48 and NNge.

Table 1 shows the time needed to build the protocol outcome models in these experiments.
With 88.21 s to build a model for 5000 tuples, the feed-forward neural network is the slowest algorithm.
Note that the use of ten-fold cross-validation requires training the models 11 times, this kind of
validation not being typical in deep learning methods. The induction of rules only needs 1.468 s and the
remaining methods below one second, the Bayes classifier being the fastest algorithm. These efficiency
and scalability issues are essential in smart cities and ambient intelligence environments. The small
extra accuracy achieved by the artificial neural network, 2.42%, may not justify the extra time required
for training it. Moreover, the interpretability and explainability of the model can be a must in health
domains such as Ambient Assisted Living (AAL) environments [41].

Table 1. Time in seconds required to build protocol outcome models in a laptop Dell xps 13 9343
(Core i5 5200U, 8 GB RAM). Learning algorithms: a decision tree algorithm (J48), a rule induction
method (NNge), a Bayesian network classifier (BayesNet), a feed-forward artificial neural network
(multilayer perceptron), and a clustering-based classification (SimpleKMeans).

Negotiations J48 NNge Bayes Perceptron Clustering

50 0.04 0.006 0.002 0.915 0.007

100 0.04 0.002 0.002 1748 0.002

250 0.001 0.013 0.002 4366 0.005

500 0.001 0.034 0.002 8737 0.008

750 0.003 0.063 0.002 13,035 0.012

1000 0.003 0.103 0.002 17,337 0.019

2000 0.006 0.36 0.002 35,048 0.042

3000 0.012 0.682 0.006 52,647 0.055

4000 0.024 1046 0.005 70,300 0.076

5000 0.019 1468 0.002 88,219 0.083

These experiments illustrate the potential of our approach to leverage hidden mental state information
in protocol interactions to predict the final conversation outcome. Moreover, the computational cost of
building these models is more than affordable for agents at run-time.

5.5. Studying the Coherence of Hidden Mental State Models

The trustworthiness of some renter agents can be evaluated based on an initial mental state
model held by the seller, which we assume to be the decision tree model obtained from 5000 past
negotiations. We use this model to classify the next 1000 negotiations performed with renters C1, C2,
and C3. C1 adheres to its original preferences truthfully; C2 picks a random new model from the set of
mental states implemented for each conversation; and C3 switches from a different mental state only
once (MS1, the mental state used by C1 in the previous experiments).

We observe that 100% of the new runs with C1 are correctly classified, which is in accordance with
the fact that C1 has maintained its preferences. On the other hand, we only obtain 48.75% and 43.6%
correctly classified instances for C2 and C3, respectively. This could indicate a change in preferences,
as indeed C3 does, or the presence of contradictions in the behavior, as in the case of C2. The seller can
build a model for the latest 1000 negotiations to resolve this issue.

The resulting model for the communications with C3 is shown in Figure 4. Since C3 negotiated
using C1’s preferences (whose logic expression is shown in Section 5.1), this tree is consistent with
the model obtained for the acceptable constraint of C1, see Figure 2. Note that the trees have
different labels because Figure 2 is a hidden mental state model predicting a protocol constraint

Sensors 2020, 20, 5198 13 of 19

or predicate (classes True or False) and Figure 4 is a protocol model predicting the conversation
outcome (classes Success, Neutral, or Failure). This model presents 100% correctly classified instances.
Hence, the seller may conclude that there has been a change in preferences after studying a protocol
model with only the last interactions.

On the other hand, cross-validation for the model obtained from the last 1000 interactions with
agent C2 shows 24% of instances incorrectly classified, which expresses a possibly untrustworthy
or at least incoherent behavior. The seller can examine the log of negotiations and detect several
contradictory conversations; see Table 2. In this table, the first and second tuples detail two negotiations
regarding cars with identical terms. However, the former failed, and the latter succeeds. Three more
incoherent pairs of executions are shown in the table. Hence, after a suspiciously high number of
incorrect classifications with a tested model, the seller can verify that the behavior of another agent is
not trustworthy by studying the semantics exchanged in the protocol.

These initial experiments only hint at the potential analyses that can be conducted regarding trust
in agents and illustrate the usefulness of qualitative protocol mining in real-world scenarios.

5.6. Using an Argumentation Protocol to Analyze Negotiations

This section illustrates the strategies for the combination of protocols explained in Section 4.
The protocol to analyze or p1 is shown in Figure 1. Consider also Figure 5 as the p2 protocol,
the auxiliary protocol, which is used by agents (or developers) to improve protocol models of p1.
This second protocol shows a simple process of argumentation that a lessor could offer as a game
online in popular social networks to find out customer preferences. In this vein, a number of smart city
services are supported by social networks’ data [42]. This protocol for the online game is detailed below.

A starts the game with a message “play”. B proposes to compare two products, the first one being
a product in stock or a possible alternative to be offered by this agent and the second one a product
that is not currently available in stock. A answers with a message “best”, if a product proposed is
considered better, or “ambiguous”, if they are considered equally acceptable. If the product selected
is the first one, the protocol ends with a “succeed” message. If the product selected is the second
one (which cannot be offered by B), B produces an argument supporting the first product with a
message “propose”. Arguments are threats or prizes to make customers change their minds. If this
argument convinces A, the protocol ends again with “succeed”. If the argument is not acceptable,
A quits the game. Finally, if the argument is not convincing, but acceptable for the terms discussed,
A proposes the kind of product that would be wanted with a message “repropose”, and the game starts
again. Additional (redundant) shorthand notation ci/mj is introduced continuing the numeration of
p1 in Figure 1.

Table 2. Some contradictory negotiations with C2. An additional “id” field has been added to refer to
these examples in the text.

id doors persons lug_boot safety buying maint outcome

1 2 2 small high ? ? F

2 2 2 small high low low S

3 3 4 med high ? ? F

4 3 4 med high low low S

5 5-more more big low med med N

6 5-more more big low med med S

7 5-more more med high low low N

8 5-more more med high low low S

Sensors 2020, 20, 5198 14 of 19

Version September 5, 2020 submitted to Sensors 14

1 safety = low: F (152.0)

2 safety = med: F (122.0)

3 safety = high

4 | doors = 2: F (34.0)

5 | doors = 3: F (25.0)

6 | doors = 4

7 | | maint = v-high

8 | | | buying = v-high: N (14.0)

9 | | | buying = high: N (16.0)

10 | | | buying = med: S (22.0)

11 | | | buying = low: N (23.0)

12 | | maint = high

13 | | | buying = v-high: N (23.0)

14 | | | buying = high: N (24.0)

15 | | | buying = med: S (22.0)

16 | | | buying = low: N (19.0)

17 | | maint = med: S (94.0)

18 | | maint = low

19 | | | buying = v-high: N (20.0)

20 | | | buying = high: N (29.0)

21 | | | buying = med: S (14.0)

22 | | | buying = low: N (26.0)

23 | doors = 5-more

24 | | maint = v-high

25 | | | buying = v-high: N (20.0)

26 | | | buying = high: N (20.0)

27 | | | buying = med: S (18.0)

28 | | | buying = low: N (17.0)

29 | | maint = high

30 | | | buying = v-high: N (20.0)

31 | | | buying = high: N (19.0)

32 | | | buying = med: S (17.0)

33 | | | buying = low: N (20.0)

34 | | maint = med: S (100.0)

35 | | maint = low

36 | | | buying = v-high: N (21.0)

37 | | | buying = high: N (17.0)

38 | | | buying = med: S (14.0)

39 | | | buying = low: N (18.0)

Figure 5. Protocol model of negotiations with C3 after changing its preferences to C1 preferences.
Model obtained using a decision tree algorithm (J48) with a dataset gathering 1000 negotiations. The
notation “a = v : S/F/N” indicates that “if the term a has value v the negotiation succeeds, fails or is
neutral.”. Every leaf includes the number of instances classified under a certain branch in parentheses.

Figure 4. Protocol model of negotiations with C3 after changing its preferences to C1 ’s preferences.
Model obtained using a decision tree algorithm (J48) with a dataset gathering 1000 negotiations.
The notation “a = v : S/F/N” indicates that “if the term a has value v, the negotiation succeeds,
fails, or is neutral.”. Every leaf includes the number of instances classified under a certain branch
in parentheses.

compare(B,A,T1,T2)

(inStockB(T1)v

alternativeB(T1))

inStockB(T2)ר ^

best(A,B,T1)

argumentB(T1,φ)

acceptableA(T1,φ)^

termsWantedA(T1)

acceptableA(T1)^

 acceptableA(T2)ר

best(A,B,T2)

ambiguous(A,B)

 ^acceptableA(T1)ר

acceptableA(T2)

propose(B,A,T1,φ)

suceed(A,B,T)

convincingA(T1,φ)

argumentB(T1,φ)

acceptableA(T1,φ)ר

quit(A,B)

play(A,B)

argumentB(T1,φ)ר

repropose(A,B,T1)

cannotOffer(B,A,T1)

c2

c3
c4

c6

c8

c1

m4

m5m7 m8 m9

m10
m11 m12

m13

c7

Figure 5. A simple argumentation protocol model for a game online. Additional (redundant) shorthand
notation ci/mj is introduced indicating different constraints and messages, respectively.

Assume that we have 50 different customers and ten sellers who are able to offer products that
satisfy the different mental state models used by customers. To add more difficulty, we implemented
a number of seller agents who argue offering prizes or threats randomly regardless of the terms

Sensors 2020, 20, 5198 15 of 19

discussed. Runs were performed for both protocols with 50 customers and 10 sellers. The accuracy of a
model of p2 with the same learning strategies studied in Section 5.2 is shown in Table 3. Despite dealing
with a protocol where learning is more complicated because the tuples include terms of two different
products, an accuracy greater than 90% using a decision tree learning algorithm is obtained from a
thousand conversations. If the random behavior of sellers is eliminated, this accuracy of the mental
state model rises to 96%. Although these results are irrelevant to the use of data from p2 to build
context models of p1, they give further evidence of the potential of the protocol analysis method
presented in this paper.

Table 3. Accuracy in cross-validation for the protocol model obtained from interactions using the
argumentation protocol.

Conversations With Randomness Without Randomness

1000 90% 96%
5000 95% 99%
10,000 95% 99%

As can be seen following the shorthand notation of the two protocols explained above, there are
a number of common constraints (c1, c2, c3, and c4) and a series of messages that are used in both
protocols (m4 and m5), which suggest that the combination of these protocols in a unified dataset is
possible. To apply the first protocol combination strategy explained in Section 4, p2 must include
complete paths whose constraints allow paths of p1 to be formed. Specifically, there are two paths
meeting these requisites in p2, both including a loop with the message “repropose” (m12) and ending
with “succeed” and “cannotOffer”, respectively.

π2.1 = ...
c7(T1)∧c1(T1)→ m13 → m7

(c2(T1)∨c3(T1))∧¬c2(T2)→ m8
c4(T1)∧¬c4(T2)→ m9 → m5

π2.2 = ...
c7(T1)∧c1(T1)→ m13 → m7

¬((c2(T1)∨c3(T1))∧¬c2(T2))→ m4

Note that π2.1 and π2.2 contain evaluations of the four constraints common to both protocols for
some specific terms (T1). Taking executions of these paths, the following three paths in the p1 protocol
can be derived:

π1.1 =
c1→ m1

c2→ m2 → m5

π1.2 =
c1→ m1

¬c2∧c3→ m3
c4→ m5

π1.3 =
c1→ m1

¬c2∧¬c3→ m4

where π2.1 allows π1.1 and π1.2 to be derived and π2.2 allows π1.3 to be derived. There are other paths
that contain π2.1 and π2.2 in p2 through more iterations in loops, but the complete paths that can be
derived in p1 from these longer paths are the same. For 1000 executions of p2, only 27 of them were
useful to derive a tuple to build the protocol model of p1 by this method.

Following the third approach to the combination of protocols explained in Section 4,
the logic consequence in the constraints of both protocols can be looked for. Specifically, it can be
assumed that if a product proposed by a seller is acceptable to the customer, the customer ultimately
also wants that product. That is, acceptableA ⇒ termsWantedA. Hence, if a path in the argumentation
includes the former, we can assume the latter. Thus, a third path of p2 can be added to deduce
p1’s information:

π2.3 = m7
(c2(T1)∨c3(T1))∧¬c2(T2)→ m8

c4(T1)∧¬c4(T2)→ m9 → m5

In this manner, tuples representing executions of p1 that take paths π1.1 and π1.1 can be deduced.
Although π2.2 is very similar to this new path considered π2.3, the fundamental difference is that the

Sensors 2020, 20, 5198 16 of 19

latter requires no loops, and it is the fastest and most direct way to the end of the argumentation
protocol. After running 1000 conversations of the argumentation protocol, two-hundred nineteen
tuples were extracted for the negotiation, i.e., almost 25% of the executions in p2 were reused to study
p1. This significant increase shows the importance of flexible strategies in the combination of protocols
to build hidden mental state models. The final result is that, whereas the accuracy of a model of p1

for 1000 protocol executions was 94.30%, after including the 219 extracted tuples, this number rose to
97.45%. Figure 6 shows that for this specific implementation of the argumentation protocol shown in
Figure 5, the number of argumentation tuples that can be used to study negotiation by improving its
protocol model remains around 25% of the argumentation runs.

Figure 6. Average of tuples to improve a negotiation protocol model with argumentation executions
across the total number of argumentations (100 experiments). Error bars show the standard deviation.

6. Conclusions and Future Work

In a smart city, we cannot assume that the implementation of all the devices involved is known,
not even their manufacturers or operating systems. This situation also occurs in multi-agent systems,
and therefore, they are a widely studied technology for the design of ambient intelligence. This opacity
in agents’ mental states may hinder intelligent services from obtaining information from these.
This paper proposes the use of semantic annotations in interaction protocols for multi-agent systems
to allow machine learning methods to get insights into these mental states, even when the information
comes from different protocols with distinct purposes in the smart city.

This proposed approach consists of obtaining theories, called hidden mental state models or
protocol models, which can explain the behavior or decision-making of agents in the interaction
protocol. Moreover, these models leverage the specific semantics exchanged in that conversation.
The typical quantitative analysis, very present in the specialized literature, is capable of extrapolating
models based on the number of successes in the execution of a protocol. However, more powerfully,
the use of the presented machine learning models allows developers (and agents) to figure out under
which semantic conditions these successes happened and to make predictions about how to improve
such interactions.

Of course, a semantic analysis involves more difficulties than a quantitative approach. To succeed,
designing interaction protocols properly is crucial, i.e., including sufficient semantic annotations. It is
also necessary to deal with a series of problems that mostly have to do with how data are extracted
from interaction protocols to form the training data. Some of these problems, for which this paper
provides specific strategies, are: the presence in protocols of multiple agents, loops, paths of different
lengths, different forms of termination, etcetera. Finally, the most significant contribution of this paper
is that improving the learning of agents’ behaviors for a specific interaction model through experiences
of different communication protocols is feasible. The underlying idea is that if semantic annotations are
shared (or related by the logic consequence), learning from them is possible regardless of the specific
protocol or purpose for which they are used.

This paper shows experimental results for a car renting multi-agent system. The explained
methods are applied: to feed general machine learning algorithms with past interactions in the
system; to learn a specific hidden mental state in an agent; to predict the outcome of the negotiations;

Sensors 2020, 20, 5198 17 of 19

to study incoherent behaviors and changes of preferences in agents’ mental states; and to use
information from other protocols, an online game in the case study, to improve the learned models
for the car renting system. Although our approach is agnostic to the machine learning paradigm,
we experimented with five algorithms of different learning paradigms. Deep learning techniques such
as the multi-layer perceptron outperform other methods in accuracy. However, the interpretability of
the model is lost, and its training has a computational cost several orders of magnitude higher than the
alternatives studied.

Regarding our future work, the most immediate is the application of the ideas presented in
this paper to more complex and realistic scenarios for smart cities such as: transport services [43],
Ambient Assisted Living (AAL) services [44], or e-commerce systems (Amazon, eBay, etcetera).
Another important future work is implementing our formal framework in a multi-agent system platform.
In this line, the use of annotations in Jason is an extremely flexible mechanism frequently used to extend
AgentSpeak (http://jason.sourceforge.net/doc/tech/annotations.html). Furthermore, experiments with
more advanced machine mining techniques are also necessary such as Recurrent Neural Networks
(RNN). These networks are able to remember a given sequence of messages to conduct a classification
without requiring the same length vector to represent a protocol execution. Finally, exploring the
interpretability and explainability of the machine learning models used is essential. As shown in a
recent review [45], most prediction and decision-making methods in intelligent environments are
interpretable. Therefore, the use of grey-box models, which combine the interpretability of a white-box
model with the accuracy of a black-box model, will be considered [40].

Author Contributions: Conceptualization, E.S. and J.B.; methodology, E.S. and J.B.; software, E.S.; validation, E.S.;
formal analysis, E.S.; investigation, E.S. and J.B.; writing–original draft preparation, E.S. and J.B.; writing–review
and editing, E.S. and J.B.; funding acquisition, J.B. All authors have read and agreed to the published version of
the manuscript.

Funding: This research work is supported by the Spanish Ministry of Economy, Industry and Competitiveness
under the R&D project “Datos 4.0: Retos y soluciones” (TIN2016-78011-C4-4-R, AEI/FEDER, UE); by the Spanish
MCIU, AEI, and FEDER (EU) Project RTI2018-094403-B-C31; and by the Autonomous Region of Madrid through
the program CABAHLA-CM (GA No. P2018/TCS-4423).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Anand, P.; Navío-Marco, J. Governance and economics of smart cities: Opportunities and challenges.
Telecommun. Policy 2018, 42, 795–799. [CrossRef]

2. Bajo, J.; Campbell, A.T.; Omatu, S.; de Carvalho, A.C.P.L.F.; Corchado, J.M. Mobile sensing and social
computing. Int. J. Distrib. Sens. Netw. 2016, 12. [CrossRef]

3. Bakar, N.A.; Selamat, A. Agent systems verification: Systematic literature review and mapping. Appl. Intell.
2018, 48, 1251–1274. [CrossRef]

4. FIPA Contract Net Interaction Protocol Specification. SC00030; Foundation for Intelligent Physical Agents. 2002.
Available online: http://www.fipa.org/ (accessed on 10 September 2020).

5. Serrano, E.; Rovatsos, M.; Botia, J. An Approach for the Qualitative Analysis of Open Agent Conversations.
In Proceedings of the Third International Workshop on Iinfraestructures and Tools for Multiagent Systems,
ITMAS 2012, Valencia, Spain, 5 June 2012; pp. 79–92.

6. Serrano, E.; Rovatsos, M.; Botia, J. A qualitative reputation system for multiagent systems with
protocol-based communication. In Proceedings of the 11th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS’12), Valencia, Spain, 4–8 June 2012; pp. 307–314.

7. Serrano, E.; Rovatsos, M.; Botía, J.A. Data mining agent conversations: A qualitative approach to multiagent
systems analysis. Inf. Sci. 2013, 230, 132–146. [CrossRef]

8. FIPA Request Protocol Specification. SC00026; FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS.
FIPA Request Interaction Protocol. Available online: http://www.fipa.org/specs/fipa00026/SC00026H.
html (accessed on 10 September 2020).

http://jason.sourceforge.net/doc/tech/annotations.html
http://dx.doi.org/10.1016/j.telpol.2018.10.001
http://dx.doi.org/10.1177/1550147716665512
http://dx.doi.org/10.1007/s10489-017-1112-z
http://www.fipa.org/
http://dx.doi.org/10.1016/j.ins.2012.12.019
http://www.fipa.org/specs/fipa00026/SC00026H.html
http://www.fipa.org/specs/fipa00026/SC00026H.html

Sensors 2020, 20, 5198 18 of 19

9. Sudeikat, J.; Braubach, L.; Pokahr, A.; Lamersdorf, W.; Renz, W. Validation of BDI Agents. In Proceedings
of the PROMAS’06, Hakodate, Japan, 8–12 May 2006; pp. 185–200.

10. Collier, R.W. Debugging Agents in Agent Factory. In Proceedings of the PROMAS’06, Hakodate, Japan,
8–12 May 2006; pp. 229–248.

11. Gómez-Sanz, J.J.; Botia, J.; Serrano, E.; Pavón, J. Testing and Debugging of MAS Interactions with
INGENIAS. In Proceedings of the Ninth International Workshop on AGENT ORIENTED SOFTWARE
ENGINEERING (AOSE’08), Estoril, Portugal, 12–13 May 2008; pp. 199–212.

12. Fernández-Isabel, A.; Fuentes-Fernández, R.; Martín de Diego, I. Modeling multi-agent systems to simulate
sensor-based Smart Roads. Simul. Model. Pract. Theory 2020, 99, 101994. [CrossRef]

13. Lam, D.N.; Barber, K.S. Comprehending agent software. In Proceedings of the Fourth International Joint
Conference on Autonomous Agents and Multiagent Systems, Utrecht, The Netherlands, 25–29 July 2005;
pp. 586–593.

14. Ndumu, D.T.; Nwana, H.S.; Lee, L.C.; Collis, J.C. Visualising and debugging distributed multi-agent
systems. In Proceedings of the 3rd International Conference on Autonomous Agents (AGENTS’99), Seattle,
WA, USA, 1–5 May 1999; pp. 326–333.

15. Padgham, L.; Winikoff, M.; Poutakidis, D. Adding debugging support to the Prometheus methodology.
Eng. Appl. Artif. Intell. 2005, 18, 173–190. [CrossRef]

16. Paurobally, S. Developing agent interaction protocols using graphical and logical methodologies.
In Proceedings of the PROMAS’03, Melbourne, Australia, 15 July 2003; pp. 149–168.

17. Harel, D.; Politi, M. Modeling Reactive Systems with Statecharts: The Statemate Approach; McGraw-Hill, Inc.:
New York, NY, USA, 1998.

18. Parunak, H.V.D. Visualizing Agent Conversations: Using Enhanced Dooley Graphs for Agent Design
and Analysis. In Proceedings of the Second International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS’03), Melbourne, Australia, 14–18 July 2003; pp. 275–282.

19. Chopra, A.K.; Dalpiaz, F.; Giorgini, P.; Mylopoulos, J. Reasoning about agents and protocols via goals
and commitments. In Proceedings of the Ninth International Conference on Autonomous Agents and
Multiagent Systems (AAMAS’10), Toronto, ON, Canada, 10–14 May 2010; pp. 457–464.

20. Wooldridge, M.; Fisher, M.; Huget, M.P.; Parsons, S. Model checking multi-agent systems with MABLE.
In Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS’02), Bologna, Italy, 15–19 July 2002; pp. 952–959.

21. Dennis, L.A. The MCAPL Framework. Available online: https://zenodo.org/record/1237635#
.X1oiE4sRVPY (accessed on 10 September 2020).

22. Dennis, L.A.; Farwer, B.; Bordini, R.H.; Fisher, M. A flexible framework for verifying agent programs.
In Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2008), Estoril, Portugal, 12–16 May 2008; pp. 1303–1306.

23. Atencia, M.; Schorlemmer, W.M. I-SSA: Interaction-Situated Semantic Alignment. In Proceedings of
the OTM 2008 Confederated International Conferences, CoopIS, DOA, GADA, IS, and ODBASE 2008,
Monterrey, Mexico, 9–14 November 2008; pp. 445–455.

24. Besana, P.; Robertson, D. Probabilistic Dialogue Models for Dynamic Ontology Mapping. In Proceedings of
the Fourth International Conference on Uncertainty Reasoning for the Semantic Web (URSW’08), Karlsruhe,
Germany, 26 October 2008; pp. 41–51.

25. Lv, Z.; Peng, R. A novel meta-matching approach for ontology alignment using grasshopper optimization.
Knowl. Based Syst. 2020, 201–202, 106050. [CrossRef]

26. Ancona, D.; Ferrando, A.; Mascardi, V. Parametric Runtime Verification of Multiagent Systems.
In Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems (AAMAS 2017),
São Paulo, Brazil, 8–12 May 2017; pp. 1457–1459.

27. Ancona, D.; Ferrando, A.; Franceschini, L.; Mascardi, V. Parametric Trace Expressions for Runtime
Verification of Java-Like Programs. In Proceedings of the 19th Workshop on Formal Techniques for
Java-Like Programs, Barcelona, Spain, 20 June 2017; pp. 10:1–10:6.

28. Savaglio, C.; Ganzha, M.; Paprzycki, M.; Bădică, C.; Ivanović, M.; Fortino, G. Agent-based Internet
of Things: State-of-the-art and research challenges. Future Gener. Comput. Syst. 2020, 102, 1038–1053.
[CrossRef]

http://dx.doi.org/10.1016/j.simpat.2019.101994
http://dx.doi.org/10.1016/j.engappai.2004.11.018
https://zenodo.org/record/1237635#.X1oiE4sRVPY
https://zenodo.org/record/1237635#.X1oiE4sRVPY
http://dx.doi.org/10.1016/j.knosys.2020.106050
http://dx.doi.org/10.1016/j.future.2019.09.016

Sensors 2020, 20, 5198 19 of 19

29. Wang, M.; Yu, L.; Zheng, D.; Gan, Q.; Gai, Y.; Ye, Z.; Li, M.; Zhou, J.; Huang, Q.; Ma, C.; et al. Deep Graph
Library: Towards Efficient and Scalable Deep Learning on Graphs. arXiv 2019, arXiv:cs.LG/1909.01315.

30. Devlin, J.; Chang, M.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. arXiv 2018, arXiv:1810.04805 .

31. Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J. Data Mining: Practical Machine Learning Tools and Techniques,
4th ed.; Morgan Kaufmann: Amsterdam, The Netherlands, 2017.

32. Xiao, Y.; Yang, X.; Liu, B. A new self-paced method for multiple instance boosting learning. Inf. Sci. 2020,
515, 80–90. [CrossRef]

33. Gilani, S.; Quinn, C.; McArthur, J. A review of ontologies within the domain of smart and ongoing
commissioning. Build. Environ. 2020, 107099. [CrossRef]

34. Brickley, D.; Guha, R. RDF Vocabulary Description Language 1.0: RDF Schema. In W3C
Recommendation; World Wide Web Consortium: 2004. Available online: https://www.w3.org/ (accessed on
10 September 2020).

35. Hitzler, P.; Krötzsch, M.; Parsia, B.; Patel-Schneider, P.F.; Rudolph, S. OWL 2 Web Ontology Language
Primer. In W3C Recommendation; World Wide Web Consortium: 2009. Available online: https://www.w3.
org/ (accessed on 10 September 2020).

36. Horrocks, I.; Patel-Schneider, P.F.; Boley, H.; Tabet, S.; Grosof, B.; Dean, M. SWRL: A Semantic Web
Rule Language Combining OWL and RuleML; W3C Member Submission: 2004. Available online: https:
//www.w3.org/Submission/SWRL/ (accessed on 10 September 2020).

37. dos Santos Ferreira, A.; Freitas, D.M.; da Silva, G.G.; Pistori, H.; Folhes, M.T. Unsupervised deep learning
and semi-automatic data labeling in weed discrimination. Comput. Electron. Agric. 2019, 165, 104963.
[CrossRef]

38. Frank, A.; Asuncion, A. UCI Machine Learning Repository; Center for Machine Learning and Intelligent
Systems at the University of California: Irvine, CA, USA, 2010.

39. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA Data Mining
Software: An Update. SIGKDD Explor. Newsl. 2009, 11, 10–18. [CrossRef]

40. Pintelas, E.G.; Livieris, I.E.; Pintelas, P.E. A Grey-Box Ensemble Model Exploiting Black-Box Accuracy and
White-Box Intrinsic Interpretability. Algorithms 2020, 13, 17. [CrossRef]

41. Molnar, C. Interpretable Machine Learning; 2018. Available online: https://christophm.github.io/
interpretable-ml-book/ (accessed on 10 September 2020).

42. Moustaka, V.; Theodosiou, Z.; Vakali, A.; Kounoudes, A. Smart Cities at Risk!: Privacy and Security
Borderlines from Social Networking in Cities. In Proceedings of the World Wide Web Conference 2018
(WWW 2018), Lyon, France, 23–27 April 2018; pp. 905–910.

43. de La Iglesia, D.H.; Villarrubia, G.; Paz, J.F.D.; Bajo, J. Multi-Sensor Information Fusion for Optimizing
Electric Bicycle Routes Using a Swarm Intelligence Algorithm. Sensors 2017, 17, 2501. [CrossRef] [PubMed]

44. Costa, Â.; Rincon, J.A.; Carrascosa, C.; Novais, P.; Julián, V. Activities suggestion based on emotions in
AAL environments. Artif. Intell. Med. 2018, 86, 9–19. [CrossRef] [PubMed]

45. Amador-Domínguez, E.; Serrano, E.; Manrique, D.; Paz, J.F.D. Prediction and Decision-Making in
Intelligent Environments Supported by Knowledge Graphs, A Systematic Review. Sensors 2019, 19, 1774.
[CrossRef] [PubMed]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ins.2019.12.015
http://dx.doi.org/10.1016/j.buildenv.2020.107099
https://www.w3.org/
https://www.w3.org/
https://www.w3.org/
https://www.w3.org/Submission/SWRL/
https://www.w3.org/Submission/SWRL/
http://dx.doi.org/10.1016/j.compag.2019.104963
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.3390/a13010017
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
http://dx.doi.org/10.3390/s17112501
http://www.ncbi.nlm.nih.gov/pubmed/29088087
http://dx.doi.org/10.1016/j.artmed.2018.01.002
http://www.ncbi.nlm.nih.gov/pubmed/29426681
http://dx.doi.org/10.3390/s19081774
http://www.ncbi.nlm.nih.gov/pubmed/31013899
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Formal Approach for Discovering Hidden Mental States in Multi-Agent Systems
	Defining a Semantically Annotated Protocol
	Obtaining Hidden Mental State Models with Machine Learning
	Obtaining Training Data for Hidden Mental State Models

	Leveraging Multi-Protocol Regularities for Hidden Mental State Models
	Combining Complete Paths
	Combining Partial Paths
	Finding Logical Consequence in Mental States of Different Protocols
	Using Hidden Mental State Models to Pseudo-Label Unknown Constraints

	Case Study
	Description of the Multi-Agent System
	Building the Training Data for Discovering Hidden Mental States
	Learning a Hidden Mental State Model
	Protocol Outcome Prediction Leveraging Hidden Mental States' Information
	Studying the Coherence of Hidden Mental State Models
	Using an Argumentation Protocol to Analyze Negotiations

	Conclusions and Future Work
	References

