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Antileukemic activity of the HSP70 inhibitor pifithrin-l in acute leukemia
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Heat shock protein (HSP) 70 is aberrantly expressed in different
malignancies and has emerged as a promising new target for
anticancer therapy. Here, we analyzed the in vitro antileukemic
effects of pifithrin-l (PFT-l), an inhibitor of inducible HSP70, in
acute myeloid leukemia (AML) and acute lymphoblastic leuke-
mia (ALL) cell lines, as well as in primary AML blasts. PFT-l
significantly inhibited cell viability at low micromolar concen-
trations in all cell lines tested, with IC50 values ranging from 2.5
to 12.7 lM, and was highly active in primary AML blasts with a
median IC50 of 8.9 lM (range 5.7–37.2). Importantly, higher IC50
values were seen in normal hematopoietic cells. In AML and
ALL, PFT-l induced apoptosis and cell cycle arrest in a dose-
dependent fashion. PFT-l also led to an increase of the active
form of caspase-3 and reduced the intracellular concentrations
of AKT and ERK1/2 in NALM-6 cells. Moreover, PFT-l enhanced
cytotoxicity of cytarabine, 17-(allylamino)-17-desmethoxygelda-
namycin, suberoylanilide hydroxamic acid, and sorafenib in
NALM-6, TOM-1 and KG-1a cells. This is the first study
demonstrating significant antileukemic effects of the HSP70
inhibitor PFT-l, alone and in combination with different
antineoplastic drugs in both AML and ALL. Our results suggest
a potential therapeutic role for PFT-l in acute leukemias.
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Introduction

Despite risk-adapted treatment strategies, only about 35% of
adult patients with acute myeloid leukemia (AML) under 60
years of age can be cured.1 Equally, in acute lymphoblastic
leukemia (ALL), outcome of adult patients remains poor, with a
long-term survival of 30–50%.2 Further dose intensification of
chemotherapeutic agents showed limited antileukemic efficacy
and high toxicity, with an increased risk of early deaths.
Therefore, efforts have been made to develop new molecular
therapies for combination treatment with classic chemothera-
pies. In BCR-ABL positive ALL, outcome has considerably
improved with the introduction of imatinib mesylate.3 Similarly
in AML, different molecular drugs like FLT3 inhibitors,4

proteasome inhibitors,5 histone deacetylase inhibitors6 or heat
shock protein (HSP) 90 inhibitors7 are currently under
preclinical and clinical investigations.

Besides HSP90, also HSP70, the second major HSP, has been
identified as a promising target for antileukemic therapy. HSP70
(also termed HSP72) constitutes the inducible cytosolic isoform
of the human HSP70 family that consists of at least eight
different members.8 HSP70 is an ATP-dependent chaperone that
is induced by cellular stress and protects cells against various
apoptotic stimuli. HSP70 mainly acts as stabilizer of multi-
protein complexes and prevents the intracellular accumulation
of misfolded or damaged proteins.9

Although in normal unstressed cells the expression of HSP70
is very low, aberrant overexpression of HSP70 is observed in
many solid and hematologic tumors.10 In different carcinomas,
high expression of HSP70 has been correlated with poor
outcome.11,12 In AML, overexpression of HSP70 mRNA has
been associated with a lower complete remission rate and
inferior overall survival.13 High expression of cell-surface
HSP70 and high serum levels of circulating HSP70 were
associated with shorter survival in AML patients.14,15 These
clinical findings are confirmed by in vitro and in vivo studies
that suggest an active role of HSP70 in tumorigenicity16–18 and
chemoresistance.19 Accordingly, reduction of HSP70 levels
induced cell death in different cancer cell lines20–22 and
sensitized tumor cells to antineoplastic agents.23,24 In leukemic
cells, HSP70 has an important role in cell cycle control, survival
and inhibition of caspase-dependent and -independent apopto-
sis.25,26 In particular, upregulation of HSP70 has been shown to
confer drug resistance in AML and chronic myeloid leukemia
cells.27,28 Conversely, depletion of HSP70 by small interfering
RNA enhanced the antileukemic activity of the HSP90 inhibitor
17-(allylamino)-17-desmethoxygeldanamycin (17-AAG).29

Because of its prognostic implications and functional role in
acute leukemias, HSP70 represents an interesting target for
antileukemic therapy. However, the design of selective
pharmacological inhibitors of HSP70 has been difficult and
only few have been described so far.30 Recently, the small
molecule pifithrin-m (PFT-m) was identified as a specific inhibitor
of inducible HSP70.31 PFT-m interferes with the carboxyterminal
substrate-binding domain of inducible HSP70 and disrupts its
association with client proteins. Here, we have evaluated
in vitro effects of PFT-m in acute leukemia cell lines and in
primary AML blasts and found a remarkable antileukemic
potential of this inhibitor.

Materials and methods

Cell lines and cell culture
The human cell lines KG-1a (AML), NALM-6 (B-precursor ALL),
TOM-1 (B-precursor ALL; BCR-ABL positive), Jurkat, BE-13 (both
T-cell leukemia) and K562 (chronic myeloid leukemia, blast
crisis) were obtained from the DSMZ (Braunschweig, Germany)
and cultured as recommended. The cytarabine-resistant K562
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cell line was generated by continuous exposure of K562 cells
over several passages to subsequently increasing concentrations
of cytarabine (0.5 to 256 ng/ml).

Patient samples
Primary human bone marrow (BM) leukemic blasts were
obtained from patients with newly diagnosed or relapsed AML
with sufficient material available. Morphological and genetic
diagnostic analyses were performed in the institutional
laboratories.

BM leukemia blasts were separated using density gradient
centrifugation with Ficoll-Hypaque (Amersham Pharmacia
Biotech, Uppsala, Sweden). Cells were resuspended in RPMI
1640 supplemented with 20% fetal calf serum, and immediately
seeded in 96-well plates for experimental procedures. Periph-
eral blood (PB) mononuclear cells (MNC) and CD34-positive
hematopoietic progenitor cells were collected from healthy
donors, as described previously.32 MNC were directly resus-
pended in RPMI 1640 with 20% fetal calf serum and incubated
with PFT-m for further analyses. Selected CD34-positive cells
were suspended in RPMI 1640 (20% fetal calf serum), with the
addition of 50 ng/ml stem cell factor and 20 ng/ml interleukin-3
(both from Miltenyi Biotech, Bergisch Gladbach, Germany).
Cells were cultivated for 48 h before being seeded in 96-well
culture plates. Human BM mesenchymal stromal cells (BMSC)
were isolated by plastic adherence as previously described,33

and early passages were used for further analyses. Because of
the BMSCs’ lower proliferation rate, cells were exposed to PFT-m
for 72 h instead of 48 h for viability assays.

Informed consent was obtained from all patients and donors,
and the study was conducted with approval of the local ethics
committee and in accordance with the Declaration of Helsinki.

Reagents
Pifithrin-m (2-phenylethynesulfonamide; Merck Chemicals,
Darmstadt, Germany), 17-AAG, suberoylanilide hydroxamic
acid (SAHA) and sorafenib (BAY 43-9006; all from Alexis/Enzo
Life Sciences, Loerrach, Germany) were dissolved in dimethyl
sulfoxide and stored at �80 1C. Cytarabine (Merck Chemicals)
was freshly dissolved in water and stored for limited time
intervals at 4 1C. Pan caspase inhibitor Z-VAD-FMK (BD
Biosciences, Heidelberg, Germany) was dissolved in dimethyl
sulfoxide and stored at �20 1C.

Viability assays
Changes in cell viability were determined using the colorimetric
WST-1 (2-[4-Iodophenyl]-3-[4-nitrophenyl]-5-[2,4-disulfophe-
nyl]-2H-tetrazolium; Roche Diagnostics, Mannheim, Germany)
assay. Briefly, cells were plated in 96-well plates in quad-
ruplicates. Cell lines were allowed to proliferate for 24 h to
reach exponential growth rates. Subsequently, PFT-m, 17-AAG,
cytarabine, SAHA or sorafenib were added at different
concentrations, either as single substance or in combination.
In order to determine additive effects in combination experi-
ments, substances were added at sub-apoptotic concentrations
simultaneously for 48 h. In addition, SAHA was also tested with
24 h of pre-incubation time as a single substance, before PFT-m
was added for additional 48 h of co-incubation. For experiments
with PB MNC or primary leukemia blasts, PFT-m was added
immediately to cells after sample preparation. Cells were then
incubated for 48–72 h at cell culture conditions and prolifera-
tion assays were performed according to the manufacturer’s

protocol. Chemical reduction of the WST-1 dye was determined
by optical density absorption analyses at 450 nm, using an ELISA
plate reader (Dynatech International, Chantilly, VA, USA).

Cell cycle and apoptosis assays
Cell lines NALM-6 and KG-1a were cultured until reaching
exponential growth phase and were incubated in the presence
of PFT-m for additional 24 h. Subsequently, bromodeoxyuridine
(BrdU) was added for the final 2 h of incubation. Cells were
resuspended in Cytofix/Cytoperm buffer (BD Biosciences),
stained with anti-BrdU FITC-conjugated monoclonal antibodies
(BD Biosciences) and 7-aminoactinomycin D (7-AAD) for the
determination of total DNA levels. Cells were analyzed by flow
cytometry (BD Biosciences) and data analysis was performed
using CellQuest Pro software (BD Biosciences). Cells were gated
for intact cell material by forward/sideward scatter properties,
and populations representing subG0/1, G0/1, S and G2/M
phases were identified and quantified by their individual BrdU/
7-AAD staining pattern. At least two independent sets of
experiments were performed for each cell line.

For detection of apoptosis, cells were incubated in the presence
of PFT-m for 48 h. Subsequently, cells were stained for Annexin V
using the Annexin V-FITC/7-AAD apoptosis detection kit (BD
Biosciences) following the manufacturer’s instructions. Specific
apoptosis was calculated as described before.34

Caspase-3 activity assay
After reaching exponential growth rates, NALM-6 and KG-1a were
incubated with PFT-m for 24 h. Active caspase-3 was analyzed by
flow cytometry, using an anti-active-caspase-3 PE antibody (BD
Biosciences) after cells were fixed and permeabilized.

Staining of intracellular proteins
NALM-6 cells in exponential growth phase were incubated with
10mM PFT-m for 10 h under regular cell culture conditions.
Afterwards, cells were fixed with Fix Buffer I (BD Biosciences)
and permeabilized with methanol. Target proteins were stained
using antibodies against AKT (#9272), p-AKT (Ser473) (#4058),
ERK1/2 (#9102; all from Cell Signaling Technology, Danvers,
MA, USA), p-ERK1/2 (T202/Y204), (612593; BD Biosciences)
and HSP70 (GTX23148; GeneTex, Irvine, CA, USA). Except for
p-ERK1/2, which is a primary Alexa Fluor 647 conjugated
antibody, incubations with primary antibodies were followed
by staining with Alexa Fluor 647 goat anti-rabbit antibody
(A21244; Invitrogen, Karlsruhe, Germany). Corresponding iso-
type antibody controls were performed for each experiment.
Cells were analyzed by flow cytometry and gated for the live
cell population defined in forward/sideward scatter plots. Data
were analyzed using Flowjo software (Tree Star, Ashland, OR,
USA). Shifts in median fluorescence value (MFV) of treated
samples versus the corresponding controls were analyzed, and
MFVs of untreated controls were defined as 100%. Shifts in
MFVs of more than 25% in the treatment group in relation to
untreated controls were considered as increases or decreases in
intracellular protein concentrations. MFV of isotype controls
of untreated and treated cells were virtually unaffected (MFV
shifts o10%).

Statistical analysis
Non-parametric statistics (Mann–Whitney U-test) were per-
formed using SPSS Version 18.0 software (SPSS Software,
Munich, Germany). P-values o0.05 were regarded significant.
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Results

PFT-m inhibits proliferation of leukemic cell lines and
primary blasts
Leukemic cell lines and primary cells from AML patients were
exposed to different concentrations of PFT-m (0.5 to 100mM) for
48 h. PFT-m induced a dose-dependent inhibition of proliferation
in all cell samples tested (Table 1 and Figure 1). In leukemic cell
lines, incubation with PFT-m strongly inhibited viability, with
IC50 values ranging from 2.5 to 12.7 mM (Table 1). PFT-m of
50mM led to a complete abrogation of viability in all cell lines
tested. Interestingly, the least sensitive cell line KG-1a revealed
a particularly low basal HSP70 expression as determined by
intracellular fluorescence-activated cell sorting analysis. How-
ever, no significant association between basal HSP70 levels and
IC50 values were observed in the different leukemic cell lines.
In primary AML blasts, IC50 values ranged from 5.7 to 37.2mM

(median 8.9 mM), with a maximum inhibition of 79 to 100%
(Table 1). The lowest sensitivity to PFT-m was observed in a
sample derived from a patient with FLT3-internal tandem
duplication; however, no statistically significant associations
between patients’ clinical or genetic features and IC50 values
were found. Notably, no difference was seen between pretreat-
ment samples and relapsed patients regarding IC50 values in the
small number of patient samples tested (Table 1).

To evaluate cytotoxicity of PFT-m in non-malignant cells, we
analyzed BMSC samples of four AML patients, as well as PB MNC
(n¼ 6) and CD34-positive cell samples (n¼ 5) from healthy
donors. In one BMSC sample, IC50 value was not reached with
100mM PFT-m. The remaining three BMSC samples showed a
median IC50 value of 37.7mM (range 36.3–44.1). Median IC50
values in PB MNC and CD34-positive cells were 17.6mM (range
10.4–42.3) and 15.1mM (range 8.0–20.0), respectively, suggesting

a higher resistance of normal hematopoietic and stromal cells to
PFT-m, as compared with leukemic blasts.

PFT-m induces cell cycle arrest and apoptosis in
leukemic cells
To further evaluate the impact of PFT-m on leukemic cells, we
performed cell cycle and apoptosis analyses with the cell lines
NALM-6 and KG-1a. Cell cycle analyses using BrdU/7-AAD
staining revealed a markedly reduced proportion of cells in S
phase after 24 h incubation, with PFT-m at concentrations of 4
and 5mM for NALM-6, and 40 and 60 mM for KG-1a (Figure 2a).
NALM-6 cells shifted equally to G0/1 and G2/M phases, KG-1a
mainly entered G2/M phase arrest (Figure 2a). Interestingly,

Table 1 IC50 and maximum inhibition values of PFT-m in leukemic cell lines and primary cells derived from AML patients

Cell line Characteristics IC50 (mM) Max. inhib. (%)

NALM-6 B-precursor ALL 2.5 100
TOM-1 B-precursor ALL; BCR-ABL pos. 6.1 100
BE-13 T-lineage ALL 4.4 100
Jurkat T-lineage ALL 6.1 100
KG-1a AML 12.7 100
K562 CML, blast crisis 8.4 100
K562-r K562, cytarabine-resistant 11.2 100

Patient number Sex Age FAB Cytogenetics Molecular genetics Clinical state IC50 (mM) Max. inhib. (%)

1 M 20 M5 46,XY FLT3-ITD, NPM1 mut. R 5.7 100
2 F 71 M4 Complex karyotypea FLT3 wt, NPM1 wt N 7.1 96
3 M 40 M5 46,XY del(11)(p13B14p15) FLT3 wt, NPM1 wt R 7.6 95
4 M 70 M4 47,XY +8, t(11;19) FLT3 wt, NPM1 wt N 8.6 92
5 F 50 ND 46,XX FLT3 wt, NPM1 wt N 8.6 100
6 F 37 M4 46,XX FLT3-ITD, NPM1 wt N 8.9 100
7 M 22 M5b 46,XY t(9;11)(p22;q23) FLT3-ITD, NPM1 wt N 8.9 97
8 M 66 M4 47,XY + 8 FLT3 wt, NPM1 wt N 9.0 88
9 F 43 M4 46,XX FLT3 wt, NPM1 mut. N 11.8 100
10 F 67 M2 46,XX FLT3 wt, NPM1 wt N 15.3 99
11 F 58 M1 46,XX FLT3-ITD, NPM1 wt R 18.7 79
12 F 60 M5a 46,XX FLT3-ITD, NPM1 wt N 37.2 82

Abbreviations: AML, acute myeloid leukemia; ALL, acute lymphoblastic leukemia; CML, chronic myeloid leukemia; FAB, French-American-British
classification; PFT-m, pifithrin-m; M, male; F, female; Max., maximum; inh., inhibition; ITD, internal tandem duplication; ND, not defined; mut.,
mutated; wt, wild type; R, samples of relapsed AML; N, samples of newly diagnosed AML; WST-1, (2-[4-Iodophenyl]-3-[4-nitrophenyl]-5-[2,4-
disulfophenyl]-2H-tetrazolium).
Cells were cultured in the presence of 0.5–100mM PFT-m for 48 h and viability was determined by WST-1 assay.
a52,XX, +1, -3, del5 (q2?, 2q3?5), +11, +19, +21, -22, +4.

Figure 1 Dose-dependent inhibition of proliferation of primary AML
cells by PFT-m. A representative figure is shown (patient no. 5). Cells
were incubated with different concentrations of PFT-m for 48 h and
viability was measured by WST-1 assay. Data are presented as the
mean value of four replicates. Error bars indicate standard error.
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about 22% of NALM-6 cells were in the sub-G0/1 fraction after
incubation with 5 mM PFT-m (two-fold IC50), whereas only 2% of
KG-1a cells were observed within this fraction after 60 mM PFT-m
(4.7-fold IC50; Figure 2a).

The impact of PFT-m on specific apoptosis was determined
by AnnexinV/7–AAD staining after incubation with various

concentrations of PFT-m for 48 h in NALM-6, KG-1a, TOM-1,
BE-13, Jurkat and K562 cells. PFT-m significantly induced
specific apoptosis in all cell lines in a dose-dependent fashion
(Figure 2b; data only shown for NALM-6 and KG-1a). In
accordance with the results from cell cycle analyses, induction
of apoptosis by PFT-m was more pronounced in NALM-6 cells as
compared with KG-1a. In NALM-6, incubation with PFT-m at 4,
5 and 6.5mM resulted in 34, 59 and 80% apoptotic cells above
spontaneous apoptosis (11%), respectively. KG-1a cells showed
a rate of specific apoptosis of 17% (20 mM PFT-m), 18% (30mM

PFT-m) and 25% (40 mM PFT-m) above control (11%; Figure 2b).
Determination of caspase-3 activation revealed a dose-

dependent increase of the cleaved, active form of caspase-3 in
NALM-6 cells after treatment with 3, 4 and 5 mM PFT-m for 24 h
(Figure 2c). In KG-1a, no caspase-3 activation was detected after
incubation with 20, 40 and 60mM PFT-m. This observation was
further strengthened by the fact that pre-incubation with pan
caspase inhibitor Z-VAD-FMK (50 mM for 1 h) significantly
reduced apoptosis after PFT-m in NALM-6, whereas KG-1a cells
were not rescued by Z-VAD-FMK (data not shown). Thus, PFT-m
exerted different impacts on cell cycle and apoptosis in the two
leukemic cell lineages.

PFT-m reduces intracellular concentrations of AKT and
ERK1/2 in NALM-6 cells
Next, we performed intracellular staining and fluorescence-
activated cell sorting analyses of AKT, p-AKT, ERK1/2 and p-
ERK1/2 kinases in NALM-6 cells to evaluate whether PFT-m
affects these two major signaling kinases or their phosphoryla-
tion status. After incubation with 10 mM PFT-m for 10 h, a
decrease in AKT and ERK1/2 levels was detected (Figure 3).
Interestingly, concentrations of the phosphorylated forms p-AKT
and p-ERK1/2 were very low at baseline and did not change
after PFT-m treatment (data not shown).

PFT-m sensitizes acute leukemia cells to antileukemic
drugs
To determine the potential use of combination therapy of PFT-m
with classic and novel antileukemic drugs, we performed co-
incubation experiments of PFT-m with HSP90 inhibitor 17-AAG,
cytarabine, histone deacetylase inhibitor SAHA and multikinase
inhibitor sorafenib in NALM-6, TOM-1 and KG-1a cells.

Combination of PFT-m with 17-AAG resulted in a significantly
decreased cell viability, compared with either drug alone. In
detail, viability for PFT-m and 17-AAG monotherapies in

Figure 2 Cell cycle arrest, apoptosis and caspase-3 activation
induced by PFT-m in NALM-6 and KG-1a cells. (a) Cell cycle arrest
after PFT-m determined by BrdU/7-AAD staining and fluorescence-
activated cell sorting analysis. A representative result is shown.
Percent of cells in sub-G0/1, G0/1, S and G2/M phase, respectively.
NALM-6 dimethyl sulfoxide control: 1.6, 44.1, 47.7, 6.6; NALM-6
4 mM PFT-m: 9.9, 53.0, 20.3, 16.8; NALM-6 5 mM PFT-m: 21.6, 51.8,
12.3, 14.3; KG-1a dimethyl sulfoxide control: 0.4, 55.8, 36.6, 7.2; KG-
1a 40 mM PFT-m: 1.7, 50.9, 16.2, 31.1; KG-1a 60mM PFT-m: 2.4, 58.0,
2.0, 37.6. (b) Dose-dependent induction of apoptosis by PFT-m
determined by AnnexinV/7-AAD staining and fluorescence-activated
cell sorting analysis. Means of four values from three independent
experiments plus standard errors are shown. The statistical significance
between treated samples and dimethyl sulfoxide control was
calculated by the Mann–WhitneyU-test. *Po0.05. (c) Induction of
activated caspase-3 by PFT-m in NALM-6. NALM-6 cells were
incubated with PFT-m for 24 h, and activated caspase-3 was
determined using a monoclonal anti-active-caspase-3 antibody and
subsequent fluorescence-activated cell sorting analyses. Y-axis values
of overlay histograms are normalized to % of maximum. Curves
represent samples treated with dimethyl sulfoxide (grey), 3 mM PFT-m
(black dashed), 4 mM PFT-m (black dotted) and 5mM PFT-m (black solid),
showing 1%, 14%, 34% and 56% active caspase-3 positive cells,
respectively.

Figure 3 Impact of PFT-m on intracellular AKT and ERK1/2 levels.
NALM-6 cells were incubated with 10mM PFT-m for 10 h and
concentrations of AKT and ERK1/2 proteins were measured with
intracellular staining and fluorescence-activated cell sorting analyses.
Representative figures are demonstrated. Grey line indicates dimethyl
sulfoxide control, black line indicates sample treated with PFT-m.
Y-axis values of overlay histograms are normalized to % of maximum.
Decrease of (a) AKT and (b) ERK1/2 following PFT-m.
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comparison with combination treatment was 70%, 70% versus
42% in NALM-6 (2 mM PFT-m, 2 mM 17-AAG), 85%, 57% versus
36% in TOM-1 (3 mM PFT-m, 1mM 17-AAG), and 81%, 72%
versus 29% in KG-1a (10 mM PFT-m, 5 mM 17-AAG), respectively
(Figure 4a). Also, co-incubation of PFT-m with cytarabine
showed a decrease of cell proliferation, as compared with the
particular monotherapy; cell viability of monotherapies versus
combination were as follows: NALM-6 (2 mM PFT-m, 9 nM

cytarabine): 78%, 76% versus 53%; TOM-1 (3mM PFT-m,
40 nM cytarabine): 74%, 59% versus 45%; KG-1a (10 mM

PFT-m, 100 nM cytarabine): 93%, 80% versus 63% (Figure 4b).
Combination of PFT-m with SAHA induced significant additive
effects regarding viability in all cell lines. Cell viability for either
monotherapy at indicated concentrations versus combination
treatment were 78%, 100% versus 37% for NALM-6 (2 mM PFT-
m, 6mM SAHA), 96%, 90% versus 65% for TOM-1 (3mM PFT-m,
0.4mM SAHA), and 78%, 79% versus 55% for KG-1a (25mM

PFT-m, 0.4 mM SAHA; Figure 4c). Interestingly, combination of
PFT-m and SAHA in TOM-1 and KG-1a cells was most effective
when SAHA was administered 24 h before PFT-m as described in
the methodical section. Simultaneous treatment of cells with
PFT-m and sorafenib resulted in a significant inhibition of
proliferation with viability values for either substance, alone or
the combination for NALM-6: 92%, 86% versus 68% (2mM PFT-
m, 3mM sorafenib), for TOM-1: 81%, 75% versus 62% (3mM PFT-
m, 4mM sorafenib), and for KG-1a: 99%, 97% versus 16% (7 mM

PFT-m, 1 mM sorafenib; Figure 4d). Thus, addition of PFT-m
increased the cytotoxic effect of all drugs tested both in myeloid
and in lymphoblastic cell lines. Although KG-1a was the least
sensitive cell line for PFT-m as monotherapy, combination
treatment of PFT-m with 17-AAG, SAHA or sorafenib seemed
most effective in this otherwise resistant cell line.35

Notably, combination of 17-AAG and SAHA with PFT-m
particularly revealed cytotoxic effects. As synergistic effects
might be caused by upregulation of HSP70 secondary to drug
exposure, HSP70 expression was determined by intracellular
fluorescence-activated cell sorting analysis in NALM-6 cells
after 18 h incubation. Treatment with 10 mM 17-AAG and
treatment with 5mM SAHA resulted in a significant upregulation
of HSP70 protein (Figure 5). No impact of cytarabine or
sorafenib on intracellular HSP70 concentration was seen (data

not shown). Thus, the high antileukemic potential of PFT-m in
combination with 17-AAG or SAHA might be explained by the
functional abrogation of HSP70 upregulation in response to
these specific drugs.

Discussion

HSP70 provides a promising target for antileukemic therapy due
to its aberrant expression, and its antiapoptotic and tumor-
promoting effects in leukemic cells. Here, we describe for the

Figure 4 Antileukemic effect of combination of PFT-m with 17-AAG, cytarabine, SAHA or sorafenib. Cells were co-incubated for 48 h and
viability was measured by WST-1 assay. Means of at least four replicates plus standard errors of representative experiments are shown. The
statistical significance between combination treatment and both single agents was calculated by the Mann–WhitneyU-test. *Po0.05. (a) Viability
after incubation with PFT-m and 17-AAG (NALM-6: 2mM PFT-m, 2 mM 17-AAG; TOM-1: 3 mM PFT-m, 1 mM 17-AAG; KG-1a: 10mM PFT-m, 5 mM 17-
AAG). (b) Viability after incubation with PFT-m and cytarabine (NALM-6: 2mM PFT-m, 9 nM cytarabine; TOM-1: 3 mM PFT-m, 40 nM cytarabine; KG-
1a: 10mM PFT-m, 100 nM cytarabine). (c) Viability after incubation with PFT-m and SAHA (NALM-6: 2 mM PFT-m, 0.6mM SAHA; TOM-1: 3 mM PFT-m,
0.4mM SAHA (given 24 h prior to PFT-m); KG-1a: 25 mM PFT-m, 0.4 mM SAHA (given 24 h prior to PFT-m). (d) Viability after incubation with PFT-m
and sorafenib (NALM-6: 2 mM PFT-m, 3mM sorafenib; TOM-1: 3 mM PFT-m, 4 mM sorafenib; KG-1a: 7 mM PFT-m, 1 mM sorafenib).

Figure 5 Induction of HSP70 by 17-AAG and SAHA in NALM-6
cells. NALM-6 cells were incubated with 10mM 17-AAG or 5 mM SAHA
for 18 h, and HSP70 levels were measured with intracellular staining
and fluorescence-activated cell sorting analysis. A representative
figure is shown. Grey line indicates dimethyl sulfoxide control, black
thick line indicates sample treated with SAHA, black thin line
indicates sample treated with 17-AAG. Y-axis values of overlay
histograms are normalized to % of maximum.
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first time the potent in vitro effects of the HSP70 inhibitor PFT-m
in acute leukemias.

As we have shown, PFT-m substantially inhibited cell viability
already at low micromolar concentrations in a broad range of
AML, T-ALL and B-precursor ALL cell lines (including BCR-ABL
positive ALL). PFT-m was also active in cytarabine-resistant K562
cells at only slightly higher IC50 values than in the cytarabine-
sensitive parental cell line. Importantly, PFT-m was highly
effective in primary AML blasts with a median IC50 comparable
with IC50 values of the cell lines tested. No significant
association between patients’ clinical and genetic character-
istics and IC50 values of PFT-m was seen in this small set of
patient samples.

Normal hematopoietic cells and stromal cells revealed a
markedly higher resistance to PFT-m, as compared with primary
leukemic blasts. Median IC50 value in BMSC was about fourfold
higher, compared with leukemic blasts, with one BMSC sample
not even reaching 50% inhibition of viability with 100mM PFT-m.
In PB MNC and CD34-positive cells, median IC50 values for
PFT-m were about twofold higher, in comparison with primary
AML blasts. These results suggest a limited BM toxicity of PFT-m
and underline the selective action of the inhibitor against
neoplastic cells as described by Leu et al.31 for solid tumors.

In leukemia cells, PFT-m led to a remarkable loss of viability
within a very narrow concentration range, unlike the shallow
slope inhibition curve of classic cytostatic drugs. This phenom-
enon has previously been described for HSP90 inhibitors34,36

and might be a class-specific effect of HSP inhibitors. The
underlying cellular mechanisms are yet unknown.

We have further shown induction of cell cycle arrest and
apoptosis by PFT-m in acute leukemia cell lines. In both NALM-6
and KG-1a cells, a dose-dependent reduction of S-phase
proliferating cells after PFT-m exposure was demonstrated. The
decrease in S phase was accompanied by a prominent increase
of KG-1a cells in G2 arrest and a shift to both G0/1 and G2/M
phase for NALM-6. Annexin V/7–AAD staining revealed a
significant induction of specific apoptosis by PFT-m in all cell
lines tested; however, the effect was more pronounced in
NALM-6 than in KG-1a cells. Interestingly, NALM-6 showed
activation of caspase-3 after treatment with PFT-m, whereas no
increase in active caspase-3 could be detected in KG-1a.

The impact of HSP70 on control and regulation of caspase
activity has been described before.37 In the study of Leu et al.,31

PFT-m did not activate caspases in U2OS osteosarcoma cells,
whereas another recent publication described caspase-induced
cell death in chronic lymphatic leukemia cells by the
inhibitor.38 Our data further indicate that the individual effects
of PFT-m on cell cycle and caspase activation may be highly
variable between different cancer cell lines, possibly due to a
differential distribution and function of HSP70 isoforms as
described for solid tumors by Powers et al.22

To further analyse the molecular effects of PFT-m, we
performed intracellular fluorescence-activated cell sorting ana-
lyses of the protein kinases AKT and ERK1/2 in NALM-6 cells.
After incubation with PFT-m, a decrease of intracellular AKT and
ERK1/2 levels was detected. The stabilizing effects of HSP70 on
AKT have been reported by Koren et al.39 In their study,
cytotoxic effects of HSP70 inhibition in breast cancer cell lines
were restricted to cells with deregulated AKT function. As
aberrantly activated PI3K/PTEN/AKT/mTOR and Raf/MEK/ERK1/2
pathways are the main promoters of leukemia cell survival,40

degradation of the effector kinases AKT and ERK1/2 may be, in
part, responsible for the antiproliferative and proapoptotic
effects of PFT-m seen in our study. Interestingly, levels of the
phosphorylated proteins p-AKT and p-ERK1/2 were barely

detectable and remained unaffected by PFT-m. Phosphorylated
kinases are stabilized by HSP90, although the selective binding
mechanism is unknown.41 On the basis of our findings,
combination of PFT-m with HSP90 inhibitors could be synergis-
tically effective by targeting both unphosphorylated and
phosphorylated kinases.

To evaluate the cytotoxic effect of PFT-m in combination with
different antineoplastic drugs, we performed co-incubation
proliferation assays with 17-AAG, cytarabine, SAHA and
sorafenib. PFT-m potently increased the inhibition of viability
of all substances tested. However, the most prominent results
were detected in the combinations with 17-AAG or SAHA.
Synergistic effects of concomitant inhibition of HSP70 and
HSP90 have been demonstrated before.22,24,29 This is mainly
attributed to a compensatory upregulation of HSP70 as a result
of HSP90 inhibition. In accordance with previous studies,42,43

we could demonstrate that both 17-AAG and SAHA treatment
led to increased HSP70 levels in NALM-6 cells. Thus, functional
abrogation of the HSP70 response induced by HSP90 and
histone deacetylase inhibitors may explain the remarkable
antiproliferative effects of PFT-m in combination with SAHA
and especially with 17-AAG.

In KG-1a cells, combination of PFT-m and sorafenib was
shown to be highly active. Overexpression of HSP70 has
been associated with resistance to tyrosine kinase inhibitors.28

Moreover, synergistic effects of HSP90 inhibitors with tyrosine
kinase inhibitors have been described, even in early clinical
studies.44,45 Our findings further strengthen the promising
sensitizing effect of HSP70 inhibitors in combination with
sorafenib, which is already in clinical trials in AML.

Only few pharmacological inhibitors of HSP70 have been
identified to date, with most of them lacking specificity or
properties necessary for clinical use.8,46 Just recently, PFT-m has
been described to specifically inhibit the inducible form of
HSP70, without binding of HSP90.31 Given the fact that Leu
et al.31 could show a reduced tumorigenicity in an Em-Myc-
transgenic mouse model treated with PFT-m over several weeks,
the inhibitor seems to be applicable in an in vivo setting.
However, further biochemical analyses have to be done in
future studies to evaluate the exact mechanism of action of
PFT-m, as well as its pharmacological attributes.

In summary, we have demonstrated the potent in vitro effects
of the HSP70 inhibitor PFT-m in acute leukemia cell lines of
lymphoid and myeloid origin, as well as in primary AML blasts.
With respect to the sensitizing effects of PFT-m for classic and
novel cytotoxic agents, we consider the inhibitor an interesting
candidate for further studies in acute leukemia.
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