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Abstract

Diabetes mellitus is a chronic metabolic disorder that significantly affects human health and
well-being. The Solute carrier transporters (SLCs), particularly the Organic anion/cation
transporters (Oats/Octs/Octns), Organic anion transporting polypeptides (Oatps) and Oligo-
peptide transporters (Pepts) are essential membrane proteins responsible for cellular up-
take of many endogenous and exogenous substances such as clinically important drugs.
They are widely expressed in mammalian key organs especially the kidney and liver, in
which they facilitate the influx of various drug molecules, thereby determining their distribu-
tion and elimination in body. The altered expression of SLCs in diabetes mellitus could have
a profound and clinically significant influence on drug therapies. In this study, we extensive-
ly investigated the renal and hepatic expression of twenty essential SLCs in the type 1 dia-
betic Ins2”%"@ murine model that develops both hyperglycemia and diabetes-related
complications using real-time PCR and immunoblotting analysis. We found that the renal
expression of mOatp1al, mOatp1a6, mOat1, mOat3, mOat5, mOct2 and mPept2 was de-
creased; while that of mPept1 was increased at the mRNA level in the diabetic mice com-
pared with non-diabetic controls. We found up-regulated mRNA expression of mOatp1a4,
mOatp1c1, mOctn2, mOct3 and mPept1 as well as down-regulation of mOatp1a1 in the liv-
ers of diabetic mice. We confirmed the altered protein expression of several SLCs in diabet-
ic mice, especially the decreased renal and hepatic expression of mOatpial. We also
found down-regulated protein expression of mOat3 and mOctn1 in the kidneys as well as in-
creased protein expression of mOatp1a4 and mOct3 in the livers of diabetic mice. Our find-
ings contribute to better understanding the modulation of SLC transporters in type 1
diabetes mellitus, which is likely to affect the pharmacokinetic performance of drugs that are
transported by these transporters and therefore, forms the basis of future therapeutic optimi-
zation of regimens in patients with type 1 diabetes mellitus.
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Introduction

Diabetes mellitus is a chronic metabolic disorder, which not only impacts on human health
and well-being, but also results in significant social and economic consequences. As to the fact
sheets of the World Health Organization, diabetes mellitus is among the top 10 causes of death
and there are 347 million people suffering from this disease world-widely (data collected in
Nov. 2014). This disease is caused by under-production or ineffective usage of insulin in body,
which then lead to the deregulation of blood glucose. Hyperglycemia (high blood glucose level)
over a period of time can damage the blood vessels and nerves as well as many other body sys-
tems, which consequently cause life threatening complications such as impairment of immune
system, retinopathy, nephropathy and cardiovascular diseases [1].

Due to different pathogenesis, diabetes mellitus can be classified into several subtypes with
Type 1 diabetes mellitus (T1DM) and Type 2 diabetes mellitus (T2DM) representing more
than 90% of cases. TIDM is non-preventable and insulin dependent, which is often diagnosed
in childhood. Patients with T1DM require invasive daily administration of insulin. T2DM is
insulin independent and primarily adult-onset. Although T2DM influences a larger population
than T1DM, it is preventable with healthy life styles. Both subtypes have common symptoms;
however, those of T1IDM are often more severe [2, 3]. In all types of diabetes mellitus, gene ex-
pression changes have been widely observed, which not only contribute to disease progression
but also impact on clinical outcomes of pharmaceutical therapies [4-6].

Solute carrier transporters (SLCs) are a superfamily of membrane proteins responsible for cel-
lular uptake of a diverse range of substances including hormones, steroids, toxins and many clin-
ically important drugs [7]. Among all the SLC members, the Organic anion transporting
polypeptides (Oatps), Organic anion/cation transporters (Oats/Octs) and Oligopeptide trans-
porters (PepTs) represent the most important SLC subfamilies involved in drug performance
[7-9]. These transporters are widely expressed in mammalian key organs especially the liver and
kidney [10, 11], in which tissues they are responsible for uptake of drug molecules into cells and
therefore, greatly impact on drug distribution and elimination [12]. The function and expression
of SLC transporters in specific tissues profoundly influence therapeutic outcomes and toxicities.

Literature has reported the altered expression of SLC transporters under disease status in-
cluding diabetes mellitus and obesity [13, 14]. In the study of Grover et al., renal expression of
rOctl and rOct2 was found to be decreased together with the disease progression in the strep-
tozotocin-induced diabetic rats [15]. In the later study investigating the renal and hepatic ex-
pression of rOats/rOcts in a diet- and streptozotocin-injected T2DM model, Nowicki et al.
revealed the decreased expression of rOct2 in the kidneys of diabetic animals together with the
elevated expression of rOat2 [14]. Recently, the renal expression of rOat3 was found to be sub-
ject to the molecular regulation of insulin in the streptozotocin-induced diabetic rats [16, 17].
The report of Cheng et al. demonstrated the down-regulated renal expression of mQOatplal
and mOat2 in a murine model of obesity and T2DM [18]. Observation made by More et al.
also showed the impaired expression of mOatplal and mOatp1b2 in the livers and kidneys of
the severe T2DM mice [19]. In addition, elevated abundance of rPeptl was identified in the in-
testine of streptozotocin-induced rats, which finding may have nutritional and pharmacologi-
cal implications due to the role of Peptl played in transporting dietary di- or tri-peptides as
well as many clinical drugs [20, 21]. However, no expressional changes of rPeptl and rPept2
were identified in the kidneys of streptozotocin-induced diabetic rats [22]. Upon from the
studies mentioned above, the expressional profile of SLC transporters in diseases, particularly
in T1DM remains largely unknown.

In this study, the renal and hepatic expression of twenty essential SLC transporters was in-
vestigated in the non-obese, insulin-deficient Ins2Akita murine model at both mRNA and
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Table 1. Primary antibody information.

Transporters

mOat1*
mOat2**
mOat3*
mOat5
mOctn1
mOctn2*
mOct2*
mOct3**
mOatpial
mOatpiad*
mOatpici**
mPepti
mPept2

Company
Bioss
Abcam
Bioss
Santa Cruz
Santa Cruz
Alpha Diagnostic
Bioss
Abcam
Santa Cruz
Santa Cruz
Abcam
Santa Cruz
Santa Cruz

protein levels. As mentioned above, streptozotocin-injected animals have been widely used pre-
viously; however, studies in these invasively induced diabetic animals provided evidence for
differential susceptibility to the development of kidney injury among genetically distinct
mouse lines [23-25]. In addition, streptozotocin has been found to be toxic to various other tis-
sues, which may complicate the interpretation of results [25]. In contrast, Ins2Akita mouse
with a dominant point mutation in the Insulin 2 gene on chromosome 7 leading to pancreatic
B-cell apoptosis and hyperglycemia appears to be a more preferable diabetic murine model,
specifically in representing T1DM. Ins2Akita mouse develops diabetes at approximately 4
weeks after birth with almost 100% penetrance. This murine model possesses proper renal phe-
notype and favorable hyperglycemia characteristics [25-28]. Moreover, complications com-
monly related with diabetes in human such as hypertension, heart failure and cardiac
hypertrophy have been found in this murine model [25]. Overall, Ins2Akita mouse model
gives more advantages over chemical-induced rodent models, which is a more similar-to-
human experimental platform in diabetic studies.

Materials and Methods
Materials

The resource for specific antibodies against each SLC transporter is listed in Table 1. The
horseradish peroxidase-conjugated donkey anti-goat IgG was obtained from Sapphire Biosci-
ences (Waterloo, NSW, Australia). The horseradish peroxidase-conjugated goat anti-rabbit
IgG was purchased from Sigma-Aldrich (Castle Hill, NSW, Australia). Unless otherwise stated,
all other chemicals and biochemicals were purchased from Sigma-Aldrich (Castle Hill, NSW,
Australia).

Primary Antibody Resource Primary Antibody Dilution

Catalogue Number Specification

bs-0607R Rabbit/Polyclonal 1:1000
ab191018 Rabbit/Polyclonal 1:1000
bs-0609R Rabbit/Polyclonal 1:1000
Sc-109029 Goat/ Polyclonal 1:200

Sc- 19819 Goat/ Polyclonal 1:1000
Octn21-A Rabbit/Polyclonal 1:1000
bs-1077R Rabbit/Polyclonal 1:1000
ab191446 Rabbit/Polyclonal 1:1000
Sc- 47265 Goat/ Polyclonal 1:1000
Sc- 18436 Goat/ Polyclonal 1:1000
ab 83972 Rabbit/Polyclonal 1:1000
Sc-20653 Rabbit/Polyclonal 1:200

Sc- 19920 Goat/ Polyclonal 1:200

Secondary: Horseradish peroxidase-conjugated goat anti-rabbit IgG (1:10,000; Sigma-Aldrich, Castle Hill, NSW, Australia, Cat. No: A0545) and Donkey
anti-goat IgG-HRP (1:10,000; Sapphire Biosciences, Waterloo, NSW, Australia, Cat. No: Sc-2020)

*: Antibodies have been used in the previous studies [29, 30].

**: Antibodies have been validated by manufacturers.

doi:10.1371/journal.pone.0120760.t001
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Animals

Our animal studies were conducted in accordance with the New South Wales Animals Act
(1985) with the approval from The University of Sydney Animal Ethics Committee (Permit
number: K17/1-2013/3/5884). All surgery was performed under sodium pentobarbital anes-
thesia and all efforts were made to minimize suffering.

As mentioned previously [31], the Ins2Akita mice were obtained from The Jackson Labora-
tory (Bar Harbor, ME, USA). Because female mice develop diabetes more slowly and less stably,
male mice were preferably used in the current study [27]. The male Ins2Akita mice heterozy-
gous for the Ins2Akita allele are the diabetic group (n = 7); while those homozygous for the
wild type Ins2 allele were used as control (n = 7). Genotyping was conducted to determine the
Ins2Akita allele or the wild type Ins2 gene [28, 31]. Mice with blood glucose level consis-
tently>13.8 mmol/l were considered as fully developed diabetes [32]. Changes of body weight
and blood glucose levels (using Accu-Chek Performa, Roche, Germany) were monitored all the
time. No supplemental insulin was given to all the mice. After euthanizing mice (age = 12
weeks) with CO2, the kidneys and livers were removed, snap-frozen in liquid nitrogen and
stored in -80°C freezer for further studies.

RNA Extraction and Quantification

Total RNA from the livers and kidneys was isolated by phenol-chloroform extraction using
Trizol Reagent (Invitrogen, Mount Waverley, Victoria, Australia) according to the manufac-
turer’s protocol. The RNA was quantified by measuring its absorbance at 280nm in a UV-
visible spectrophotometer (NanoDrop ND 1000; Thermo Fisher Scientific, Scoresby, VIC, Aus-
tralia). Agarose gel electrophoresis was also used to check RNA integrity.

Real time reverse transcription polymerase chain reaction (RT-PCR)

First-strand cDNA was synthesized using the high capacity cDNA reverse transcription kit
(Life Technologies, Mulgrave, VIC, Australia). Expression of mRNAs corresponding to each
SLC transporter gene was assessed by SYBR green quantitative PCR with the ABI 7500 se-
quence detection system (Invitrogen, Mount Waverley, VIC, Australia). The gene-specific
primers targeting the SLC genes and B-actin are listed in the Table 2. After each PCR, a melting
curve analysis was performed to confirm product specificity. Transporter mRNA levels were
normalized to B-actin and the relative expression was determined using the 2-AACT method
comparing to that of mOatplal [31, 33, 34]. Data analysis was performed using the Relative
Expression Software Tool.

Electrophoresis and immunoblotting

Tissue sample was homogenized and lysed with lysis buffer (10 mM Tris, 150 mM NaCl, 1 mM
EDTA, 0.1% sodium dodecyl sulfate, 1% Triton X-100, that contained the protease inhibitors
phenylmethylsulfonyl fluoride, 200 mg/mL, and leupeptin, 3 mg/mL, pH 7.4). After centrifuga-
tion at 4°C for 10 minutes, supernatants were transferred into tubes. Bradford assay was used
to measure protein concentration. Equivalent quantities of protein lysates from each sample
were denatured at 55°C for 30 min in Lammli reducing buffer as described before [35-40]. Pro-
tein samples were loaded onto 7.5% polyacrylamide mini gels and electrophoresed (Bio-Rad,
Gladesville, New South Wales, Australia). Proteins were transferred to polyvinylidene fluoride
membrane in an electroelution cell (Bio-Rad, Gladesville, New South Wales, Australia). The
membrane was blocked for 1 hour with 5% bovine serum albumin in PBS-Tween (137 mM
NacCl, 2.7 mM KClI, 4.3 mM Na2HPO4, 1.4 mM KH2PO4 and 0.05% Tween 20, pH 7.4). The
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Table 2. SLC gene specific real-time PCR primers used in this study.

Transporter

mOat1
mOat2
mOat3
mOat5
mOctn1
mOctn2
mOctn3
mOct1
mOCt2
mOct3
mOatpiail
mOatp1b2
mOatpla4d
mOatpi1a5
mOatp1a6
mOatp2b1
mOatp4a1
mOatpici
mPept1
mPept2
B-actin

doi:10.1371/journal.pone.0120760.t002

Forward Primer 5' to 3’

CTGATGGCTTCCCACAACAC
CAACTGCGGAATCTGGTGCT
ATGACCTTCTCCGAGATTCTGG
AAATGCAGATCCTGCGTGTATT
TGGTATGTCAGTCGTGTTCCT
ACTGTGCCAGGGGTGCTAT
CGTGGGTGTGCTCTTAGGC
GACGCCTGGAAAGTGGACC
CCAGTGCATGAGGTATGAGGT
CAGCCCGACTACTATTGGTGT
GTGCATACCTAGCCAAATCACT

Reverse Primer 5’ to 3’

GTCCTTGCTTGTCCAGGGG
ATCAGGCAGGGCACAATGATG
GTGGTTGGCTATTCCGAGGAT
CCTAAAGCAGTTGCCCTGATTA
AGCCCCATCGCAGAGAAGT
GCAACTGAGGCTTCGTAGAAT
TTGTATGAAGCTGAATCCGGTG
GCAACATGGATGTATAGTCTGG
CTGAAACAGGTCCAGCATCCA
TGAGCTGGTATTAGTGGCTTCC
CCAGGCCCATAACCACACATC

GGGAACATGCTTCGTGGGATA GGAGTTATGCGGACACTTCTC
GCTTTTCCAAGATCAAGGCATTT CGTGGGGATACCGAATTGTCT
CATGCTTCTCATCCTGACAAGT GAGGACGACCTCTGAAGTGG
ACAGGGTCAGGTGCTTTGC ATCACCAAAAGGTTACCCATCTC
CTCAGGACTCACATCAGGATGC CTCTTGAGGTAGCCAGAGATCA
GCGATGGGGGACACACATTT CTGTCTGGCTACTCCGCTTC
GGGCCATCCTTTACAGTCGG CCTTCTCTCTATCTGAGTCACGG
CCGGCACACCCTTCTAGTG TGGCGTTGTGACTGGTGAC
AAAGCGACAACATTGGCTAGA AAATCCCAAATCGCCATCCAT
TTCTTTGCAGCTCCTTCGTT ATGGAGGGGAATACAGCCC

blot was then washed with PBS-Tween thoroughly and incubated overnight with primary anti-
body at 4°C. On the next day, the membrane was washed with PBS-Tween, incubated with sec-
ondary antibody for one hour at room temperature. The membrane was washed with
PBS-Tween and then incubated with the Immobilon Western Chemiluminescent HRP Sub-
strate (Merck; Kilsyth, VIC, Australia). In all experiments, membranes were re-probed for -
actin (1:1,000; Cat. No: 4967; Genesearch, Arundel, Qld, Australia). The dilutions of primary
and secondary antibodies used in this study are listed in the Table 1.

Statistics

Data are presented throughout as mean + S.E. The unpaired t-test was used to evaluate differ-
ences between two sets of normally distributed data.

Results

Altered mRNA expression of SLC transporters in the kidneys and livers
of diabetic mice

We assessed the mRNA expression of twenty SLC genes including mOatl, mOat2, mOat3,
mOat5, mOatplal, mOatpla4, mOatpla5, mOatpla6, mOatp4al, mOatplb2, mOatp2bl,
mOatplcl, mOctl, mOct2, mOct3, mOctnl, mOctn2, mOctn3, mPeptl and mPept2 in the
kidneys and livers of diabetic and control mice, which range widely cover the most studied
Oatps, Oats/Octs/Octns and Pepts so far. Our initial RT-PCR analysis (data processed through
the web-based RefFinder software: http://www.leonxie.com/referencegene.php?type=
reference) showed that B-actin is the most conserved gene in both groups compared to the
other five commonly used housekeeping genes including Gapdh, 18sRNA, f2-microglobulin,
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glucuronidase B, heat-shock protein 90a (data not shown); therefore, the relative gene expres-
sion of SLC transporters in the kidneys and livers was then normalized to that of -actin
(Table 3 and 4). The basal expression of SLCs in the control mice was indicated as relative to
that of mOatplal, because mOatplal has relatively high expression in both the kidney and
liver. The changes of SLC expression in the diabetic group were expressed as their folds to
those in control. Unpaired t-test was applied to calculate the statistical significance of gene ex-
pressions between these two groups.

Among the eight mOatps assessed in this study, the expression of mOatplal and mOatpla6
in the diabetic group was decreased to ~0.34 and ~0.56 fold of control, respectively (Table 3).
All four members of mOats demonstrated significantly down-regulated expression in diabetic
mice (ranged from ~0.34 to ~0.70 fold of control). In addition, mOct2 mRNA expression was
decreased to ~0.60 fold of control and that of mOctnl was moderately decreased in diabetic
mice. Noteworthy, mPept1 expression in the kidneys of diabetic mice was increased to ~1.54
folds of control; while that of mPept2 was significantly decreased to ~0.58 fold of control.

Pronounced reduction of mOatplal expression was observed in the livers of diabetic mice;
however, that of mOatpla4 and mOatplcl in the diabetic group was increased to ~2.51 and
~1.97 folds of control, respectively (Table 4). In addition, the expression of mOctn2, mOct3
and mPeptl was markedly up-regulated in the livers of diabetic mice (Table 4).

Table 3. The mRNA expression of SLC transporters in the kidneys of diabetic and control mice.

Transporter

mOatpiail
mOatplad
mOatpia5
mOaptia6
mOatp4a1
mOatp1b2
mOatp2b1
mOatpici
mOat1
mOat2
mOat3
mOat5
mOcin1
mOctn2
mOctn3
mOct1
mOct2
mOct3
mPepti
mPept2

*: P<0.05
** P<0.01

*¥** P<0.001

Relatively gene expression in the control mice SLC gene expression in the diabetic P-value

1.00
1.95x1073
3.05x10°®
1.25x10™
3.91x10°
4.88x10™
3.13x102
1.57x102
2.00

0.50

1.00

6.25x102
7.81x103
0.50

9.17x10™*
0.50

0.50

1.22x10
1.95x10°3
6.25x102

doi:10.1371/journal.pone.0120760.t003

mice (fold of control)

Expression Standard Error

0.34 0.21-0.57 0.001***
0.75 0.51-1.14 0.100
0.75 0.06-5.96 0.735
0.56 0.43-0.72 0.000***
1.10 0.66-1.98 0.773
0.76 0.24-2.54 0.612
0.97 0.78-1.24 0.786
0.99 0.59-1.41 0.984
0.70 0.58-0.81 0.000***
0.34 0.21-0.51 0.004**
0.53 0.37-0.74 0.001***
0.58 0.44-0.80 0.001***
0.64 0.38-1.02 0.048*
0.84 0.65-1.06 0.090
0.94 0.77-1.15 0.427
0.76 0.50-1.06 0.093
0.60 0.49-0.76 0.000***
0.99 0.28-3.10 0.987
1.54 1.15-1.94 0.002*
0.58 0.43-0.79 0.001***
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Table 4. The mRNA expression of SLC transporters in the livers of diabetic and control mice.

Transporter Relatively gene expression in the control mice SLC gene expression in the diabetic P-value
mice (fold of control)

Expression Standard Error
mOatpial 1.00 0.15 0.09-0.58 0.000%**
mOatpia4 3.13x102 2.51 1.14-5.30 0.007**
mQOatpia5 7.63x10® 0.50 0.20-1.32 0.072
mOaptia6 - - - -
mOatp4al 6.10x10° 0.83 0.34-1.85 0.627
mOatp1b2 2.00 0.62 0.25-1.24 0.158
mOatp2b1 0.25 0.97 0.73-1.25 0.753
mOatpici 1.22x10™ 1.97 1.12-3.21 0.019*
mOat1 - - - -
mOat?2 6.25x102 0.93 0.47-1.73 0.794
mOat3 1.53x10°® 0.47 0.12-1.90 0.221
mOat5 - - - -
mOctn1 2.44x10* 1.18 0.76-1.85 0.394
mOctn2 3.13x102 4.30 2.38-7.57 0.000%**
mOctn3 6.10x10° 1.02 0.75-1.35 0.886
mOct1 - - - -
mOct2 - - - -
mOct3 9.77x10™* 5.09 3.01-11.19 0.000***
mPept1 1.53x10° 6.19 3.47-12.17 0.003**
mPept2 1.95x10° 0.56 0.18-1.60 0.202

- Undetermined
*: P<0.05

** P<0.01
*¥** P<0.001

doi:10.1371/journal.pone.0120760.t004

Modulated protein expression of SLC transporters in the kidneys and
livers of diabetic mice

An altered gene expression is not necessarily associated with a modulated protein expression.
We further assessed the protein expression of the SLC transporters with altered mRNA levels
in the kidneys and livers of diabetic mice and compared to that of control. The relative expres-
sion of transporters (normalized against B-actin) in both groups was analyzed with unpaired t-
test program of Graphpad Prism 5.0 software. Due to the unavailability of antibodies against
mOatpla6 and mOatp2bl, we were unable to include these two transporters in this part of
the study.

In the kidneys of diabetic mice, the protein expression of mOatplal, mOat3 and mOctnl
was significantly reduced compared with that of control; while the protein expression of all
the other six SLC transporters assessed remained unchanged (Fig. 1 and Table 5). Similarly,
the protein expression of mOatplal in the livers of diabetic mice was decreased pronounced-
ly; in contrast, that of mOatpla4 and mOct3 was up-regulated significantly (Fig. 2 and
Table 6). The changes of mOatplcl, mOctn2 and mPept1 levels were not
statistically significant.
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Control Diabetic Control Diabetic
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mOat1 = — — — — — E————— <—~75kDa
B-actin — - ————

moat2 —— — —— s s - —_— s «<—~65kDa
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mOat3 - — - — — — - - w <—~65kDa
B-actin | — — — — | — o —

mOat5 —— — —— -— -, - .- — — | " W <—-65kDa

B'GCtin — — — et |t —

mOctn1 - = <—~70kDa
B-actin —
MOCLE2 (W s s s | w— — — <— ~65kDa

B-aClin — ——— ——  — ——

MPept] — —— <« ~75kDa
B-actin e s -

MPept2 mmme e - S s sah T W S | s s s <—~75kDa

Fig 1. The protein expression of the SLC transporters with altered mRNA expression in the kidneys of diabetic mice compared to that of control.
As described in Methods, kidney tissue samples of both control and diabetic mice were lysed. Protein samples were denatured and preceded to
electrophoresis. The immunoblots were then probed with specific antibodies of SLC transporters. The same blots were also probed with anti-B-actin
antibody. The expression of $-actin was used as normalization control in all the experiments. Each experiment was repeated three times with the
representative blot shown in the figure. Diabetic group (n = 7 mice); control group (n = 7 mice).

doi:10.1371/journal.pone.0120760.g001

Discussion

It is well known that diabetes mellitus is a major health concern world widely, which results in
a range of short- and long-term health complications that are the major causes of associated
morbidity and mortality in people [1]. Liver and kidney diseases often occur as consequent
complications of diabetes mellitus. Responses to drug therapies often differ between diabetic
and non-diabetic populations due to impaired kidney and liver functions under disease status
[41-46]. It is plausible that such therapeutic variation could be a consequence of altered func-
tion and expression of drug metabolism enzymes as well as membrane transporters in the kid-
ney and liver [47, 48].

Solute carrier transporters, particularly Oatps, Oats/Octs/Octns and Pepts are important
membrane influx transporters responsible for the cellular uptake of many endogenous sub-
stances as well as clinically important drugs. Their functions profoundly impact on the absorp-
tion, distribution and elimination of molecules especially pharmaceutical agents [49].
Previously, altered expression of SLC transporters have been reported in diseases such as obesi-
ty and diabetes mellitus [13-22]. However, due to the limitations of chemical-induced diabetic
animal models used in these studies, the interpretation of results might be compromised. As
described in the introduction, the genetically modified Ins2Akita mouse model possesses
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Table 5. The densitometry analysis of the protein expression of SLC transporters in the kidneys of diabetic and control mice.

Transporter Relatively protein expression in the control Relatively protein expression in the diabetic Expressional P-value
mice mice change

mOatpial 1.86 £ 0.22 0.90£0.13 down regulation 0.003 **
mOat1 1.18 £ 0.09 0.24 £ 0.15 unchanged 0.149
mOat2 0.40 £ 0.11 0.50 £ 0.07 unchanged 0.452
mOat3 1.32+0.27 0.47 £0.14 down regulation 0.016 *
mOat5 0.80+0.17 0.69+0.16 unchanged 0.628
mOctn1 0.74 £ 0.07 0.33 £ 0.11 down regulation 0.010 *
mOct2 0.73 £ 0.06 0.64 + 0.08 unchanged 0.420
mPept1 1.31£0.17 1.41 £0.23 unchanged 0.724
mPept2 0.29 £ 0.05 0.29 £ 0.08 unchanged 0.976

The relative density of the bands of each SLC transporter was normalized to that of B-actin and analysed with unpaired t-test program of Graphpad Prism
5.0 software. The pooled data of all the experimental repeats was included in the analysis. Diabetic group (n = 7 mice); control group (n = 7 mice).

*: P<0.05

** P<0.01

*** P<0.001

doi:10.1371/journal.pone.0120760.t005
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Fig 2. The protein expression of the SLC transporters with altered mRNA expression in the livers of diabetic mice compared to that of control. As
described in Methods, liver tissue samples of both control and diabetic mice were lysed. Protein samples were denatured and preceded to electrophoresis.
The immunoblots were then probed with specific antibodies of SLC transporters. The same blots were also probed with anti-B-actin antibody. The expression
of B-actin was used as normalization control in all the experiments. Each experiment was repeated three times with the representative blot shown in the
figure. Diabetic group (n = 7 mice); control group (n = 7 mice).

doi:10.1371/journal.pone.0120760.9002
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Table 6. The densitometry analysis of the protein expression of SLC transporters in the livers of diabetic and control mice.

Transporter Relatively protein expression in the control Relatively protein expression in the diabetic Expressional P-value
mice mice change

mOatpial 0.80 + 0.07 0.44 £ 0.05 down regulation 0.001 **
mOatp1a4 0.98 + 0.29 2.71+£0.23 up regulation 0.001 **
mOatpici 0.94 +0.07 0.99+0.13 unchanged 0.741
mOctn2 2.52+0.16 2.72+0.13 unchanged 0.361
mOct3 0.22 +0.03 0.39 +0.06 up regulation 0.031 *
mPepti 0.44 £ 0.03 0.52 £ 0.03 unchanged 0.068

The relative density of the bands of each SLC transporter was normalized to that of B-actin and analysed with unpaired t-test program of Graphpad Prism
5.0 software. The pooled data of all the experimental repeats was included in the analysis. Diabetic group (n = 7 mice); control group (n = 7 mice).

*: P<0.05

** P<0.01

*** P<0.001

doi:10.1371/journal.pone.0120760.t006

proper renal phenotype and favorable hyperglycemia characteristics together with many com-
monly occurred diabetic complications; therefore, it is more preferred to be used in diabetic
studies, particularly in representing the pathological conditions of TIDM. And a number of
studies have already been conducted using the Ins2Akita mouse model to investigate the dis-
ease management of T1IDM [50-52].

Our study extensively evaluated the gene and protein expression of twenty essential SLC
transporters in the control and diabetic Ins2 Akita mice. Our data revealed significantly down-
regulated expression of mOatplal in both the livers and kidneys as well as the up-regulated ex-
pression of mQOatpla4 in the livers of diabetic mice (Table 3-6, Fig. 1-2), which observation
agrees with the previous report [19]. The suggested deficit of mOatplal and mOatpla4 in dia-
betic mice may have profound influence on pharmaceutical treatment in diabetic patients,
since these transporters have been shown to greatly influence the pharmacokinetic perfor-
mance of many clinically important drugs such as doxorubicin [53], rosuvastatin [54, 55], pac-
litaxel [56], methotrexate [56] and bosentan [57]. It is plausible that the impaired expression
and function of Oatps in diabetes might lead to unsatisfied efficacy and/or unexpected toxicity
of these drugs. In addition, the research trend in screening the potential anti-diabetic candidate
molecules often favors the recognitions of Oatps [58, 59]. Thus, the altered expression and
function of these transporters should be considerably included in the drug screening strategy
targeting at diabetes. Furthermore, an increased susceptibility to cholestatic liver injury has
also been demonstrated in mice with mOatplal dysfunction [60]; therefore, the deregulated
mOatplal observed in our study might potentially contribute to elucidate the pathogenesis of
liver diseases associated with diabetes.

The previous studies in the streptozotocin-induced diabetic rats demonstrated the decreased
expression and function of rOAT3 [16, 17], which regulation was likely mediated through im-
paired insulin signaling involving PKC activities [16, 61]. Consistently, our study also observed
the decreased renal expression of mOat3 in the diabetic Ins2 Akita mice compared to that of
control (Table 3, Fig. 1 and Table 5), which finding confirms that the regulation of Oat3 is insu-
lin dependent. Noteworthy, the altered Oat3 expression and function may potentially impact
on anti-diabetic therapies. For example, DA-9801, the herbal preparation currently being eval-
uated for diabetic peripheral neuropathy in phase II clinical trials, is largely involved with
drug-herb interactions. It has been shown to interact with Oat3 and impact on the
Oat3-involved cimetidine pharmacokinetic performance [62].
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A specific human OCTNI genetic polymorphism L503F (rs1050152) has been implicated to
be correlated with diabetes [63]. However, little evidence has been obtained so far, to show the
association between OCTNI1 and diabetes. Our study is the first to demonstrate the down-
regulated renal expression of mOctnl in diabetes (Table 3, Fig. 1 and Table 5). Future studies
should be warranted to investigate the clinical consequence of such modulation in
pathological conditions.

The altered renal expression of rOctl and rOct2 was reported in the previous study con-
ducted using the streptozotocin-induced diabetic rats [15]. The protein expression of both
mOct1 and mOct2 was unchanged in the current study, although the mRNA expression of
mOct2 was reduced (Table 3). Such discrepancy might be due to the different characteristics of
the invasive streptozotocin-induced rodent model and the Ins2Akita mice model as described
above. Interestingly, we found the mRNA and protein expression of mOct3 was increased in
the livers of diabetic mice (Table 4, Fig. 2 and Table 6), which transporter has been shown to be
closely related to the pharmacokinetic performance and pharmacological effect of the front-
line anti-diabetic agent metformin [64, 65]. Therefore, the modulated expression of mOct3 in
diabetes should be taken into consideration when administrating metformin and other agents
that are specific substrates of this transporter.

Our study also revealed that the renal and hepatic expression of mPeptl and mPept2 was
unchanged in diabetic mice compared to that of control, which finding aligns well with the pre-
vious report [22].

In summary, taking advantage of the Ins2Akita murine model, our study extensively investi-
gated the mRNA and protein expression of twenty essential SLC transporters in the kidneys
and livers of control and diabetic mice. Altered expression of several SLC transporters was ob-
served in diabetic mice compared to that of control. The information gathered in this study
could greatly enhance our understanding of the modulation of SLC transporters in pathological
conditions, which is likely to impact on the pharmacokinetic performance of drugs that are
transported by these transporters and therefore, forms the basis of future therapeutic optimiza-
tion of regimens in the patients with type 1 diabetes mellitus.
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