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Analyzing animal behavior via 
classifying each video frame using 
convolutional neural networks
Ulrich Stern1, Ruo He2 & Chung-Hui Yang2

High-throughput analysis of animal behavior requires software to analyze videos. Such software 
analyzes each frame individually, detecting animals’ body parts. But the image analysis rarely 
attempts to recognize “behavioral states”—e.g., actions or facial expressions—directly from 
the image instead of using the detected body parts. Here, we show that convolutional neural 
networks (CNNs)—a machine learning approach that recently became the leading technique for 
object recognition, human pose estimation, and human action recognition—were able to recognize 
directly from images whether Drosophila were “on” (standing or walking) or “off” (not in physical 
contact with) egg-laying substrates for each frame of our videos. We used multiple nets and 
image transformations to optimize accuracy for our classification task, achieving a surprisingly 
low error rate of just 0.072%. Classifying one of our 8 h videos took less than 3 h using a fast GPU. 
The approach enabled uncovering a novel egg-laying-induced behavior modification in Drosophila. 
Furthermore, it should be readily applicable to other behavior analysis tasks.

Understanding the neural mechanisms that control animal behavior often requires recording animals 
during behavioral tasks and then analyzing the videos. Human analysis of the videos is both highly 
labor-intensive and possibly error-prone, making automation very desirable and often critical to achieve 
acceptable throughput. To address this problem, multiple software systems for analyzing animal behavior 
have been developed, either for a particular model organism such as Drosophila1–5 or mice6,7, or less com-
monly, for multiple species8–10. For a comprehensive and up-to-date review, see Anderson and Perona11. 
Such software systems first—during the tracking phase—analyze each frame of the video individually, 
detecting the main parts of the bodies and possibly the appendages, and then use the detected parts as 
basis for further behavior analysis. But the systems rarely attempt to recognize “behavioral states”—e.g., 
actions or facial expressions—directly from images (“holistically”); instead, the systems recognize behav-
ioral states from the explicitly detected parts.

Convolutional neural networks (CNNs)12, a machine learning approach, are a promising technique 
for recognizing behavioral states directly from images. CNNs are, by a large margin, the most success-
ful technique in object recognition; they won the ImageNet Large Scale Visual Recognition Challenge 
2012 (ILSVRC2012)13,14—where the task was to recognize 1000 different object classes including, e.g., 
mushroom, leopard, and motor scooter—by a decisive margin15, and recent progress has gotten them 
to close-to-human-level performance on ImageNet14. CNNs also recently became the leading technique 
for both 2-dimensional and 3-dimensional human pose estimation, where the goal is to estimate the 
positions of several “key” joints such as shoulders, elbows, and wrists16–20. While CNNs could hence 
likely improve body part detection in traditional tracking systems, our goal was to recognize behavioral 
states directly from images. Lastly and most relevant, CNNs recently became the leading technique for 
human action recognition on the PASCAL VOC2012 action classification challenge21, where the task is to 
recognize ten actions such as jumping, walking, and reading22,23. For action recognition it is often critical 
to recognize differences in pose and in the relationship between the actor and the environment (context); 
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in contrast, in object recognition it is important to learn that different poses and contexts do not change 
the class of the object. Despite CNNs’ potential, however, to our knowledge the latest techniques have 
not been applied to behavior analysis in neuroscience.

Here, we describe how we applied CNNs to recognizing whether Drosophila were “on” egg-laying 
substrates (standing or walking) or “off ” (not in physical contact with the substrate) for each frame of 
our videos. We achieved classification error rates on this 2-class problem of just 0.072% (i.e., 99.93% 
correct classification). The low error rate was surprising to us given, e.g., that the best reported mean 
average precision on the 10-class VOC2012 action classification challenge is 70.5%22; our average pre-
cision is 99.99906%. Classifying one of our 8h  videos, which has 216,000 frames and 2 flies per frame, 
typically took less than 2.5 h using an NVIDIA GTX TITAN GPU. We shed light on the techniques we 
used, ranging from generating labeled (“ground truth”) images for training, the architecture of the nets, 
training them, measuring their performance, and applying them to video analysis. Moreover, applying 
CNNs to our videos uncovered a novel egg-laying-induced behavior modification in Drosophila females 
that was difficult to ascertain with a conventional tracking approach. None of our techniques is spe-
cific to Drosophila egg-laying, and the same approach should be readily applicable to other species and 
behavior analysis tasks. Our data and code, which uses and extends Krizhevsky’s cuda-convnet code 
that won ILSVRC2012 (http://code.google.com/p/cuda-convnet/), is available on Google Code as project 
yanglab-convnet (http://code.google.com/p/yanglab-convnet/).

Results
We use Drosophila egg-laying site selection as model system to study the behavioral and circuit mech-
anisms that underlie simple decision-making processes, taking advantage of the system’s robustness 
and genetic tractability24–30. We previously discovered that Drosophila females prefer to lay their eggs 
on a sucrose-free (plain) substrate over a sucrose-containing one in two-choice chambers we designed 
(Fig. 1a)28,30. To study the decision process in more depth, we wanted to examine how females explore 
the two substrates before they execute each egg-laying decision. Conventional positional tracking can 
determine the (x, y)-position of the female at a given moment and hence whether the female is “over” 
one or the other substrate. But knowing whether the female is “over” the substrate does not allow us 
to distinguish whether it is truly in physical contact with the substrate (“on substrate”) or standing on 
sidewall or lid instead (“off substrate”) (Fig.  1b,c), a critical parameter for assessing females’ substrate 
exploration pattern.

We initially tried to automate the “on”/“off ” substrate classification by using information that Ctrax2, 
the tracking software we used, provides in addition to the (x, y)-position of the fly. Ctrax fits an ellipse 
around the fly, and we used the lengths of the two axes of this ellipse to classify whether flies “over” the 
substrate were “on” or “off ” (details not shown). But this approach did not perform well. First, due to 
(somewhat) differing brightness levels and focal planes in our videos, the classifier thresholds needed 
to be tuned for each video separately to achieve reasonable performance (about 3–5% error rate) on 
that video, hence requiring that humans generate labeled images to tune the classifier for each new 
video. Second, certain mutant flies (TH >  dTrpA1) that we wanted to investigate spread their wings much 
more frequently than wild type, causing poor ellipse fits, which, in turn, not even allowed reasonable 
performance.

Since CNNs had the potential to work much better on our videos and learn to handle their vari-
ance, we tried them and got to about 1% error rate relatively quickly. We hence decided to switch to 
trying to optimize them instead of trying to improve our initial classifier. We were initially hoping to 
optimize the CNNs’ performance until it is comparable to the error rate of about 0.2% exhibited by the 
three Drosophila researchers in our lab who generated labeled images (see discussion why the “true” 
human error rate is lower than this 0.2%), but got to as little as 0.072% using relatively straightforward 
techniques.

Before we describe in detail how we used CNNs to automate the “on”/“off ” substrate classification, 
we give a bird’s-eye view of CNNs. A CNN can operate in two different modes: training and test. In 
training mode, the CNN is presented (repeatedly) with a set of training images along with the correct 
class (label)—“on” or “off ” in our case—for each image (Fig. 1d) and uses this information to learn to 
classify. In test mode, learning is turned off and the CNN’s performance is evaluated on a set of test 
images (Fig. 1e).

An overview of where we used CNNs in our approach to analyzing fly videos is shown in Fig.  1f. 
Note that the behavior analysis relies both on positional information from Ctrax and on classification 
information from our CNN-based classifier. The positional information is also used to extract (crop) the 
small “fly images” (with the fly in the center) (Fig. 1c) from the full frame (Fig. 1a).

CNN architecture. The key feature of the architecture of CNNs is convolution (Fig.  2a). A convo-
lutional layer in a CNN is defined by two properties. First, each of its neurons has a limited (“local”) 
receptive field. Second, the (incoming) weights are shared (have the same values) among its neurons. 
In addition, a convolutional layer typically uses multiple neuron types, with each type having separate 
weights from the other types. For an example, consider the conv1 layer of the actual CNN architecture 
we used (Fig. 2b). The conv1 layer has 16 neurons (types) “above” each of the 56 ×  56 pixels of the image. 
Each neuron has a receptive field of 7 ×  7 pixels. The 7 ×  7 weights for a particular type are shared among 
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all 56 ×  56 neurons of that type and can hence be represented by a single 7 ×  7 matrix. Since there are 
16 types in the conv1 layer, all the weights for the conv1 layer can be represented by 16 7 ×  7 matrices 
(Fig. 2c).

We arrived at the particular CNN architecture—i.e., number of layers, number of types and size of 
receptive fields for each layer, etc.—we chose (Fig.  2b) after some initial experiments (not shown) by 
choosing a middle ground between one of the sample architectures Krizhevsky included in cuda-convnet 
and the architecture he used to win ILSVRC201215. Generally, modifying the architecture can be used 
to optimize CNN performance; we did not experiment with the architecture further since we achieved a 
very low error rate with this architecture.

Figure 1. The problem addressed with neural networks and bird’s-eye view of the methodology.  
(a) Sample frame from one of our videos, showing two chambers with one fly in each chamber (white 
arrows). For the left chamber, the top edge of the chamber sidewall is outlined in yellow, and the two egg-
laying substrates at the bottom of the chamber are outlined in white. The yellow arrow points to one of 
the many eggs laid on the plain substrates. (b) Schematic of the cross section of one chamber. We record 
through the lid with a camera above the chamber. In all three positions (1, 2, 3) shown, the fly would appear 
over the egg-laying substrate in a video, but it is on it only in position 1. (c) Sample fly images where the 
flies appears over the egg-laying substrate, with green and red labels indicating whether they are actually 
“on” or “off ” the substrate. Flies on the sidewall often show a characteristic wing shape (white arrows). 
Flies on the lid are closer to the camera and appear larger and out of focus (yellow arrow). The fly images 
here have lower resolution than (a) since we reduced resolution for tracking and classification. (d) CNN 
in training mode. See text for details. (e) CNN in test mode. For each image the CNN is presented with, it 
calculates P(“on”), the probability the image is “on” substrate. We considered the net to classify an image as 
“on” if and only if P(“on”) ≥ 0.5. (f) Overview of our video analysis, which employs both positional tracking 
by Ctrax and classification by a CNN-based classifier. The classifier uses position information in two ways: 
first, to extract fly images from the full frame and, second (not shown), it needs to classify only if the fly is 
over the substrate (the fly is guaranteed to be “off ” substrate otherwise). In our videos, the flies were over the 
substrate in typically about half of the frames.
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Generating labeled images for training and test. For training and testing the CNNs, we created 
a large number of fly images that were “labeled” with the correct class (“on”/“off ”) by humans (Fig. 3a, 
Supplementary Fig. S1a). The instructions to the humans were to label “on”/“off ” as well as possible 
and tag the image in case they were not sure about the label. To minimize labeling errors, we labeled 
each image independently by three humans and used only images for which all three humans agreed 
and none of them had tagged the image. We generated a total of 27,000 labeled images this way from 
eight videos, and we partitioned the images into three sets: training, validation, and test (Fig.  3b). We 
used the validation set to measure the error rate of the CNNs while we optimized their performance 
(“tuned hyperparameters”), while we used the test set only once we settled on a “best net”. The total time 
required for labeling was only about 10 hours per human. We chose half of the videos for labeling among 
videos of the mutants that spread their wings much more frequently. We also noticed that randomly 
sampling video frames for labeling can lead to highly correlated fly images if flies rest for longer periods 
(Supplementary Fig. S1b), which we addressed by modifying the sampling process to resample until a 
sample is found for which its normalized cross-correlation31 with each of the 6 already chosen samples 
“surrounding” it (in frame order) is smaller than 0.95.

Training and techniques to improve performance. During training, the CNNs were presented a 
set of labeled training images multiple times, and backpropagation32 with stochastic gradient descent was 
used to adjust the weights to enable the nets to learn “on” vs. “off ” substrate. Using each image from the 
training set once during training is called an epoch. Using the GTX TITAN GPU, training one CNN on 
our “1/5 training set” with 5,400 images (Fig. 3b) for 800 epochs (i.e., using the same 5,400 images 800 
times) took about 17.5 minutes. We typically trained 30 different CNNs to be able to calculate statistics of 
their performance. (The nets differed since we used randomized initial weights and data augmentation, 
discussed next.) See Methods section for more details on the training.

A well-known technique to increase the amount of training data—called data augmentation—is to 
transform the data without changing the class it falls into (Fig. 3c,d). E.g., slightly shifting the fly image 
does not change whether the fly image is “on” or “off ” substrate. While this is “obvious” to humans, it is 

Figure 2. Architecture of the net we used. (a) Sample two-layer neural net where layer 2 is convolutional, 
showing the key ideas of convolution. First, the receptive field of each layer 2 neuron (or unit) is limited to  
a local subset of layer 1 neurons. Second, there are multiple types of layer 2 neurons (here round and square; 
the connections for square are not shown). Third, all neurons of the same type in layer 2 share weights; e.g., 
all red connections have the same weight value, and during learning, the weights of the red connections 
are adjusted identically. (b) Schematic of the architecture we used, with three convolutional and two fully-
connected (fc) layers. Like in the architecture that won ILSVRC2012, each convolutional layer was followed 
by a max-pooling layer (not shown) with overlapping pooling, and we used rectified linear units15,42. For  
full details of the architecture, see the layer definition file in project yanglab-convnet on Google code.  
(c) Visualization of the weights learned by one of our CNNs for the conv1 layer. See text for details.
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something the CNN “needs” to learn. Each time a fly image was selected for training from the training 
set, it was first randomly transformed using all four transformations (Fig. 3d and Methods section), so 
many different versions of each training set image would be used when training over, e.g., 800 epochs. 
Note that this “dynamic transformation” approach effectively increased the size of the training set with-
out the need to store a larger, augmented training set. As expected, data augmentation strongly improved 
performance (Fig. 3e,f).

The time required to train a CNN for a certain number of epochs (training time) essentially stayed the 
same with data augmentation. The training time is proportional to the total number of images seen by 
the CNN during training, which equals the size of the training set multiplied by the number of epochs, 
and the image transformations for data augmentation increased the time required per image seen only 
slightly.

Figure 3. How we trained the nets. (a–b) Overview of how we created “on”/“off ” labeled fly images for 
training and testing the CNNs. See text for details. (c) Overview of how we augmented the data. See text 
for details. (d) Sample images for the four image transformations we used to augment the data. (e) Data 
augmentation reduces the error rate. The control has all four image transformations enabled during training 
(“full augmentation”), the other bars show cases with only three of the four transformations enabled (i.e., 
one transformation disabled). All nets were trained for 800 epochs on the 1/5 training set. n =  30 nets per 
bar, bars show mean with SD, also for the following panels. One-way ANOVA followed by Dunnett’s test, 
p <  0.0001. (f) Full augmentation vs. no augmentation. All nets were trained on the 1/5 training set. For full 
augmentation, 800 epochs were used. For no augmentation, 400 epochs were used since the error rate was 
less for 400 epochs (mean 1.677%) than for 800 epochs (mean 1.740%), which is due to earlier overfitting 
(see text for Fig. 3g) for no augmentation. Welch’s t-test, p <  0.0001, two-tailed. (g) Additional training, up 
to a point, reduces the error rate. See text for why this is generally the case. All nets were trained on the 1/5 
training set with full augmentation. One-way ANOVA followed by Šídák’s test, p <  0.0001. (h) Increasing 
the size of the training set reduces the error rate when the number of epochs is constant. The numbers 
of images in the 1/5, 2/5, and 3/5 training sets are 5,400, 2*5,400, and 3*5,400, respectively. All nets were 
trained for 800 epochs with full augmentation. One-way ANOVA followed by Šídák’s test, p <  0.0001. (i) The 
3/5 training set reduced the error rate compared to the 1/5 training set when the total number of images 
seen by the CNN during training was constant. “1/5 2400e” denotes training on the 1/5 training set for 2400 
epochs, etc. All nets were trained with full augmentation. Welch’s t-test, p =  0.026, two-tailed.
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We also experimented with the number of epochs used for training and the size of the training set 
(Fig. 3g–i). Typically, when increasing the number of epochs (and using a training set that is different 
from the validation set on which the error rate is calculated), the error rate initially drops, reaches its 
minimum, and then starts to increase (not shown). The increase is due to overfitting33, where the net 
picks up details on the training set that are not relevant for the task. For the 1/5 training set, we stopped 
increasing the number of epochs at 3200 epochs, where additional training seemed to no longer improve 
performance and the total training time for 30 nets reached 33.8 hours (Fig. 3g). Increasing the size of the 
training set from 1/5 to 3/5 of the total labeled images while training for 800 epochs improved perfor-
mance (Fig. 3h), but this was at least partly due to the fact that for a constant number of epochs, a larger 
training set results in the CNN’s seeing more images during training. When we increased the number 
of epochs for the 1/5 training set to 2400 to match the total number of images seen during training on 
the 3/5 training set for 800 epochs, the latter showed only a small improvement in performance over the 
former (Fig.  3i). But we expect increasing the number of epochs for the 3/5 training set from the 800 
used here would have allowed us to reduce the error rate similar to what we observed for the 1/5 training 
set (Fig. 3g). We did not pursue this since the total training time for 30 nets on the 3/5 training set for 
800 epochs was 25.7 hours and the techniques discussed next strongly lowered error rates to levels good 
enough for our application.

Techniques to improve performance used during testing. We employed two techniques during 
testing that strongly improved performance. First, since we typically trained 30 different nets, we could 
present the image to multiple of the nets and average their “on” probabilities, a simple form of model 
averaging (Fig. 4a). We typically got the best performance presenting the images to all 30 nets (Fig. 4c). 
But using just 5 nets was typically close in error rate to 30 nets, while requiring 6-fold less processing.

The second technique that strongly improved performance was to use data augmentation (Fig.  3d) 
also during testing, by presenting multiple transformed versions of the image to the same net and then 
averaging the “on” probabilities (Fig. 4b). Unlike when we used data augmentation for training, we did 
not randomize the transformations. For example, for brightness change, we presented the net with 4 ver-
sions—original, brighter, darker, and increased contrast (Fig. 3d). See Methods section for more details. 
Combining shift and brightness change strongly reduced the error rate for our task (Fig. 4d).

Our best nets. We then tried to create a well-performing net using what we learned during our 
experiments to optimize training and testing. The resulting “best nets” were trained using full augmen-
tation (i.e., all four image transformations enabled) on the 3/5 training set for 800 epochs and used shift 
and brightness change augmentation during testing. With model averaging of 30 models, the error rate 
was just 0.031% on the validation set (1.66 errors on 5,400 images) and 0.072% on the test set (Fig. 4e).

We examined the three validation set images that were difficult for the best nets (Fig. 4f). Two of the 
cases appear to be easy to explain — one had the fly in uncommon shape that was likely rare during 
training and one was in-between “off ” and “on” and should likely have been tagged by humans as “not 
sure”. We also examined the eight test set images that were difficult for the best nets (not shown) and 
noticed several “sidewall” cases like the one shown in Supplementary Figure S2b (see next subsection). 
“Sidewall” cases can explain the majority of the difference between validation and test error rates.

Applying nets to videos. To apply the nets to videos, we sequentially processed each frame (Fig. 5a,b). 
We used both model averaging and augmentation for “test” to improve performance. Combining both 
techniques resulted in many “on” probability calculations for each fly image. E.g., we used 30 nets and 
presented each with 20 versions (5 shifts ×  4 brightness levels) of each image, resulting in 600 “on” prob-
ability calculations for each image. Nonetheless, we could process about 27 images per second using a 
GTX TITAN GPU, allowing our 8 h videos to be classified in typically less than 2.5 h each. If we had been 
willing to accept higher error rates, we could have processed our videos up to 600 times faster.

Examining the frames before and after a frame to be classified is often helpful for humans. We imple-
mented this idea in a simple majority filter that replaces the “on”/“off ” value of each frame with the 
majority “on”/“off ” vote of the 5 consecutive frames with the current frame in the center (Fig. 5c). Note 
that the majority filter correctly preserves “on”/“off ” transitions like the one in Fig. 5b. But the filter can 
make mistakes, e.g., for visits to the substrate for just two frames (Supplementary Fig. S2a), causing such 
visits to be missed in an analysis based on the output of the filter. Two-frame visits lasted for only about 
0.3 s in our case (our frame rate was 7.5 fps) and for our analysis, missing them seemed acceptable.

We manually checked the performance of the nets in the times before egg-laying events for several 
videos. In the process, we noticed some mistakes, which were almost all false negatives (Supplementary 
Fig. S2b). But the mistakes seemed rare enough that further improvements in classification performance 
seemed not required for our behavior analysis.

Drosophila females show egg-laying-induced increased sucrose attraction. We next used our 
nets to investigate the substrate exploration pattern of females as they laid eggs in our sucrose vs. plain 
decision chambers over 8 hours (Fig. 6a). Each female typically deposited 50 or more eggs in an 8-hour 
recording session and laid one egg at a time (virtually all on the plain substrate) with no fixed inter-
val between consecutive egg-laying events (Fig.  6b). Applying our nets to the videos provided us with 
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complete descriptions of females’ substrate exploration patterns for many 8-hour sessions, which, in turn, 
allowed us to begin scrutinizing how they behave before executing each egg-laying decision (Fig. 6c).

Visual inspection of the full 8-hour substrate exploration suggests that females show more physical 
contact with the sucrose substrate prior to each egg-laying event (Fig. 6c), which, in turn, suggests that 
emergence of egg-laying need may temporarily increase females’ behavioral attraction towards sucrose. 
To test this idea formally, we determined females’ contact with the sucrose substrate in the 20 s intervals 
before they entered the plain substrate to deposit an egg and compared those with 20 s intervals before 
plain visits without egg-laying (Fig. 7a,b). We found that sucrose visits were more common during 20 s 
intervals before plain visits with egg-laying (Fig. 7c) than during 20 s intervals before plain visits without 

Figure 4. Applying the nets to classifying single images. (a) Overview of model averaging using n models 
(CNNs). See text for details. (b) Overview of augmentation for test using m images. See text for details. 
(c) Model averaging (ma) reduces the error rate. “ma n =  5” denotes model averaging using 5 models, etc. 
Each bar is based on the same 30 nets, and the bootstrap43 is used to estimate the mean and variance of 
model averaging by repeatedly (500 times) sampling with replacement the n nets used for model averaging 
from the 30 nets. All nets were trained for 800 epochs on the 1/5 training set with full augmentation. Bars 
show mean with SD, also for the following panels. No statistical tests were run since the bootstrap gives 
only estimates of the error rate distributions. (d) Augmentation for test reduces the error rate. All nets were 
trained for 3200 epochs on the 1/5 training set with full augmentation. Same n =  30 nets for the five bars, 
repeated measures ANOVA with Geisser-Greenhouse correction followed by Šídák’s test, p <  0.0001.  
(e) Validation and test error rates for our “best nets”, both without and with model averaging. The best  
nets were trained using full augmentation on the 3/5 training set for 800 epochs and used shift and 
brightness change augmentation during testing. Same 30 nets for all four bars, model averaging estimated 
using the bootstrap. (f) Validation set images that were difficult for the best nets. Model averaging of 20 nets 
and 500 bootstrap repeats were used to determine difficult images. The images are shown with the 2 prior 
and 2 next frames in the video, which can help humans to assess the cases. See text for a discussion of the 
first two cases. In the last case, it is unclear why the nets tended to make a mistake. It is possible the darker 
area close to the head of the fly (white arrow) was mistaken for the characteristic “sidewall wing” shape, an 
error humans would clearly not make.
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egg-laying (Fig. 7d,f). In contrast, the occurrence of plain visits during 20 s intervals before plain visits 
with and without egg-laying is comparable (Fig.  7f). Moreover, for sucrose visits for which the next 
substrate visit was to plain, the average time from sucrose exit to entering plain was significantly shorter 
for the “egg-laying group” (Supplementary Fig. S3), suggesting sucrose visits that directly precede an 
egg-laying event are different from sucrose visits that do not. Lastly, to rule out the possibility that the 
high occurrence of sucrose visits before plain visits with egg-laying can be explained by a tendency to 
visit the opposite substrate before egg-laying, we investigated how Drosophila behave in case both of the 
two substrates are plain (plain vs. plain assay, where females show no egg-laying preference between the 
two plain sides). For plain vs. plain, visits to the opposite substrate were relatively uncommon during the 
20 s intervals before plain visits with egg-laying (Fig. 7e,f).

Taken together, our inspection and analysis of multiple 8-hour substrate exploration patterns showed 
that when a female is getting ready to deposit an egg on the plain substrate, it will often visit the sucrose 
substrate first. This result suggests that the emergence of egg-laying need can temporarily enhance 
Drosophila females’ attraction for sucrose and demonstrates for the first time that a behavioral state other 
than food deprivation can motivate Drosophila to seek contact with sucrose, perhaps to feed.

Discussion
We described how we used CNNs to classify with very low error rate whether Drosophila are “on” or “off ” 
substrate for each frame of our videos, allowing us to uncover an enhanced attraction for sucrose induced 
by egg-laying need. Using the processing power of a modern GPU helped significantly by speeding up 
both training the nets—and hence our experiments to minimize the nets’ error rate shown in Figs 3 and 
4—and using the nets to process videos frame by frame. We expect our approach to be broadly applicable 
to other behavior analysis tasks for two reasons. First, the task performed by the CNNs and where they 
excel—deciding which one of several classes an image falls into—is a natural task in behavior analysis. 
Sometimes this may not be obvious at first; while we wanted a solution to “whether the flies are on or off 
the substrate in our videos”, we initially did not think of this as an image classification problem. Second, 

Figure 5. Applying the nets to videos. (a) Overview of how we applied the nets to videos. See text for 
details. (b) Fly images sequence from consecutive frames classified by the nets. The fly walks from the 
sidewall onto the substrate in this case. Unlike earlier in the paper, the labels no longer represent human 
classification but now represent the nets’ classification. (c) Fly image sequence where the majority filter fixed 
a mistake of the nets. The same sequence is shown before (top) and after (bottom) the fix, with the new 
(correct) label in yellow. See text for details of the majority filter.
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none of the techniques we used is specific to Drosophila or the behaviors we are interested in—an impor-
tant advantage of a machine learning approach over domain-specific code.

We have so far not addressed the question of how our best nets’ 0.072% error rate on the “on”/“off ” 
substrate task compares to human performance. Human errors on the task fall into two classes—“true 
errors” that humans would make even if they were very careful and had unlimited time for each image 
and errors that are due to “sloppiness”. We found that on this task—which is relatively simple for humans 
and where one needs a large number (thousands) of images to measure performance—the clear majority 
of the human errors is due to sloppiness and measuring the true human error rate is very difficult. We 
do hence not present such measurement. But it is worth to point out that our nets found several errors 
in the labeled images, even though for each such image three researchers with a high level of experience 
with Drosophila and our videos had agreed on the classification and were sure (i.e., had not tagged the 
image to indicate “not sure”) but were wrong if one were to inspect the images that precede and follow 
the image in question or the video (Supplementary Fig. S4). Other researchers have recently reported 

Figure 6. “On”/“off ” classification for one 8 h sucrose vs. plain experiment. (a) Chamber image with egg-
laying substrates outlined. (b) Visualization of the egg-laying events for one 8 h sucrose vs. plain experiment. 
The fly laid 46 eggs, all on the plain substrate, during the 8 hours. (c) “On”/“off ” classification for the same 
8 h sucrose vs. plain experiment.
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achieving human-level performance using neural nets for, e.g., face recognition34 and handwritten digit 
recognition35.

While the nets processed the frames one at a time, one interesting area for future work is better 
exploiting the information from sequences of frames. First, this can lead to better image classification. 
E.g., “before and after” frames were shown in multiple figures in this paper to help humans better under-
stand what class an image falls into (e.g., Fig.  4f, Supplementary Fig. S4). (“Before and after” frames 
are also the basis of the simple majority filter we used.) Second and more importantly, many interest-
ing behaviors require analyzing sequences of frames. One approach to address this is using the nets’ 
frame-by-frame classification as an input feature for a tool like JAABA9, which focusses on detecting 

Figure 7. Drosophila females show increased sucrose contact prior to egg-laying. (a) Chamber image 
with sample trajectory for 20 s interval before visit to plain substrate. For this trajectory, the fly is “off ” 
substrate for all frames, mostly on the sidewall. (b) Sample 20 s interval before plain visit with “on”/“off ” 
classification. The green line at the end of the interval represents the first frame of the plain visit following 
the interval. During this plain visit, the female may or may not lay eggs. (c–d) 20 s intervals before plain 
visits with (c) and without (d) egg-laying for sucrose vs. plain assay. All intervals are from an 8 h video. 
The egg-laying times were manually annotated and are given next to the intervals in (c). The intervals for 
(d) were randomly chosen among the plain visits without egg-laying. (e) 20 s intervals before plain visits 
with egg-laying for plain vs. plain assay. All intervals are from an 8 h video and represent about half of the 
egg-laying events—those laid on one of the two plain sites. About an equal number of eggs was laid on 
the other plain (“opposite plain”) site. The egg-laying times were manually annotated and are given next to 
the intervals. (f) Fractions of 20 s intervals with visit to sucrose, plain, or opposite plain for the three cases 
from (c–e). The 20 s intervals for the four sucrose vs. plain (S-P) bars are from 10 flies, each recorded for 
8 hours, yielding 540 intervals before plain visits with egg-laying and 400 randomly chosen intervals before 
plain visits without egg-laying (40 per fly). The 20 s intervals for the plain vs. plain bar are from 5 flies, each 
recorded for 8 hours, yielding 340 intervals before plain visits with egg-laying. Same n =  10 flies for first four 
bars, n =  5 flies for last bar, repeated measures ANOVA with Geisser-Greenhouse correction followed by 
Šídák’s test, p <  0.0001, and Welch’s t-test, p <  0.0001, two-tailed. Using the Bonferroni correction to adjust 
for the additional comparison (t-test) does not change significance.
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behaviors from sequences of features of frames. With the continuing advances in easily available pro-
cessing power and CNN technology (e.g.,36–39), however, using neural nets to classify not single images 
but sequences of images (parts of videos) is starting to be practical40,41.

Lastly, CNNs have improved our ability to study the behaviors of egg-laying females. CNNs ena-
bled a complete and accurate description of females’ substrate exploration pattern, which allowed us to 
quickly discover that egg-laying demand can temporarily increase Drosophila’s attraction for sucrose. 
To our knowledge, this is the first demonstration that a physiological state other than food deprivation 
can enhance females’ behavioral attraction for sucrose, and we speculate that perhaps consuming sugar 
before an energetically demanding act confers some benefit to the egg-laying females. The clear behavio-
ral readout will allow us to investigate the circuit mechanism by which egg-laying demand modifies the 
sensory processing of sucrose, an important taste stimulus in Drosophila. In addition, it is worth pointing 
out that there might be yet-to-be-discovered “rules” of substrate exploration that Drosophila females 
employ before they execute their egg-laying decisions, and that the availability of many hours worth of 
substrate exploration patterns may permit an unsupervised learning approach to uncover such rules.

Methods
Preparation of flies to be assayed. Flies (w1118) were raised on molasses food and maintained 
with temperature set at 25 °C and humidity set at 60%. To assay flies for their egg-laying decisions, 35–40 
freshly eclosed virgins of the appropriate genotypes and about 25 males of mixed genotypes were col-
lected into a single food vial that was supplied with active wet yeast paste. The flies were left in the vial 
for about 5 days until the food in the vial became very chewed up by the larvae. At this point, females 
were well fed but deprived of egg-laying because the food was too soft and wet for them to lay more eggs 
on. Thus, they were ready to lay eggs when placed into our behavior chambers.

Behavior analysis. To record the females as they explored and laid eggs, we mounted 4 webcams 
(Microsoft LifeCam Cinema) on top of an apparatus containing multiple egg-laying chambers30. Females 
were prepared as described earlier but we recorded behaviors of egg-laying females for 8 hours only. 
We used several software packages: CamUniversal for video acquisition, Avidemux for video conver-
sion, and Ctrax for positional tracking. Individual egg-laying events were determined manually from 
the videos and the output of a custom-written egg-laying detector. “On”/“off ” substrate classification 
was performed using a modified version of Krizhevsky’s cuda-convnet code and custom-written Python 
code (see “Software we developed” below). Custom-written Python code was also used to analyze the 
flies’ behavior based on their egg-laying times and position and classification information for each frame.

Labeled image data. See also “Generating labeled images for training and test” in Results section. 
To be able to use Krizhevsky’s cuda-convnet code, we divided the 21,600 labeled training and valida-
tion images into 36 batches of 600 images each, and used the same data layout. The batches contained 
92 ×  92-pixel grayscale images, which were reduced to 56 ×  56 pixels (matching Fig.  2b) during data 
augmentation. Having “extra size” images in the batches simplified, e.g., the shift image transformation, 
which was implemented simply as a crop from the larger images. All but one of the eight videos we 
used as source for images contributed four batches; e.g., the first video contributed batches 1–4. One 
of the videos—the one we thought to have the highest variance in wing shapes (one of the videos with 
TH >  dTrpA1 flies)—contributed eight batches. Our validation set was batches 4, 8, …, and 36, while our 
1/5 training set, e.g., was batches 1, 5, …, and 33. We generated the 5,400 image test set separately (we 
initially used our validation set for both validation and test) from the eight videos in a similar fashion, 
resulting in 9 test batches.

CNN training protocol. Our training “protocol” was inspired by Krizhevsky’s Methodology page for 
cuda-convnet. When we wanted to train for 800 epochs total, we trained for 400 epochs using weight 
learning rate (epsW) 0.001, 200 epochs using 0.0001, and 200 epochs using 0.00001. We automated the 
protocol using custom code to train (typically) 30 nets without human interaction, which made optimiz-
ing the performance of our nets much less labor-intensive. (Note that often the learning rate is lowered 
manually when the validation error rate stops improving15,38, but such points were not easy to see with 
our very low error rates.) For full details of the learning parameters, see the layer parameter file in project 
yanglab-convnet on Google code.

Data augmentation during training. During training, we dynamically and randomly augmented 
the training set using four image transformations (Fig. 3c,d). For rotation, we randomly selected among 
angles that are multiples of 90°. For brightness change, we first calculated the minimum and maximum 
brightness values over all pixels in a given image. We then randomly selected new minimum and max-
imum values with certain constraints such as that the difference of the values does not decrease (to not 
reduce information) and used the new values to normalize the image. For shift, we randomly shifted in 
x- and y-direction independently by up to 4 pixels, resulting in 81 possibilities.

Data augmentation for test. During testing, we used image transformations in non-randomized 
fashion (Figs  3d and 4d). For brightness change, we presented the net with 4 versions of each 
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image—original, brighter, darker, and increased contrast. For rotation, we used 4 versions—original, 
90°, 180°, and 270°. For shift, we used 5 versions—original, (2, 2), (2, − 2), (− 2, 2), and (− 2, − 2), with 
(., .) denoting the shift for x- and y-axis in pixels. For shift +  brightness change, we used 20 versions—all 
combinations of the 5 shift and 4 brightness change versions.

Software we developed. Here we summarize the software we developed for this research and which 
we made available as project yanglab-convnet on Google code. Our software has two parts. First, we 
extended Krizhevsky’s cuda-convnet with two additional image transformations (rotation and bright-
ness change) for data augmentation. Second, we wrote several Python “scripts” for various aspects of 
the research. onSubstrate.py was used to generate the labeled image data via human labeling. autoCc.py 
automates the training of multiple nets using cuda-convnet and implements model averaging for assess-
ing multiple nets. classify.py was used to classify the fly images in each frame of a fly video. analyze.py 
was used to analyze the flies’ behavior and created, e.g., Figs 6c and 7c–e.

Statistical methods. We used GraphPad Prism 6 to perform statistical tests and significance level 
α  =  0.05. The statistical tests we performed when we optimized CNN performance (Figs  3e–i and 4d) 
helped us decide which techniques were beneficial in our particular application of CNNs for the particu-
lar CNN architecture we chose. The performance improvement a particular technique enables will vary 
depending on the application. Current papers on neural networks typically do not report whether tests 
were used when optimizing the nets’ performance, and when the number of nets trained is reported, it 
is typically smaller than our default of n =  30 nets per group15,38,39.
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