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Abstract

Background

Although dialysis patients are at a high risk of death, it is difficult for medical practitioners to

simultaneously evaluate many inter-related risk factors. In this study, we evaluated the char-

acteristics of hemodialysis patients using machine learning model, and its usefulness for

screening hemodialysis patients at a high risk of one-year death using the nation-wide data-

base of the Japanese Society for Dialysis Therapy.

Materials and methods

The patients were separated into two datasets (n = 39,930, 39,930, respectively). We cate-

gorized hemodialysis patients in Japan into new clusters generated by the K-means cluster-

ing method using the development dataset. The association between a cluster and the risk

of death was evaluated using multivariate Cox proportional hazards models. Then, we

developed an ensemble model composed of the clusters and support vector machine mod-

els in the model development phase, and compared the accuracy of the prediction of mortal-

ity between the machine learning models in the model validation phase.

Results

Average age of the subjects was 65.7±12.2 years; 32.7% had diabetes mellitus. The five

clusters clearly distinguished the groups on the basis of their characteristics: Cluster 1,

young male, and chronic glomerulonephritis; Cluster 2, female, and chronic glomerulone-

phritis; Cluster 3, diabetes mellitus; Cluster 4, elderly and nephrosclerosis; Cluster 5, elderly
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and protein energy wasting. These clusters were associated with the risk of death; Cluster 5

compared with Cluster 1, hazard ratio 8.86 (95% CI 7.68, 10.21). The accuracy of the ensem-

ble model for the prediction of 1-year death was 0.948 and higher than those of logistic regres-

sion model (0.938), support vector machine model (0.937), and deep learning model (0.936).

Conclusions

The clusters clearly categorized patient on their characteristics, and reflected their progno-

sis. Our real-world-data-based machine learning system is applicable to identifying high-risk

hemodialysis patients in clinical settings, and has a strong potential to guide treatments and

improve their prognosis.

Introduction

The mortality rates of dialysis patients are very high and the number of prevalent end-stage-

kidney disease (ESKD) patients has been increasing in the USA and Japan [1, 2]. To improve

their prognosis, early identification of patients at a high risk of death, and interventional treat-

ments of their conditions are necessary.

Various risk factors for death in dialysis patients have been identified [3–5]. These risk fac-

tors are associated with each other forming a complex network which should be simulta-

neously taken into account and controlled [6–8]. The Dialysis Outcomes and Practice Patterns

Study (DOPPS) has defined a survival index to predict the hemodialysis patients’ risk of death

using logistic regression models [6]. We also have developed a nutritional risk index (NRI) for

hemodialysis patients using Cox proportional hazards models [8]. However, these indices

make some statistical assumptions which limit their application; they also take time to calcu-

late, which is inconvenient when dealing with many patients in clinical settings. The develop-

ment of a new automatic system is needed to help manage various risk factors simultaneously,

and to improve the prognosis of a large number of patients.

Artificial intelligence (AI) methods hold great promise for decision-making in complex sys-

tems including those used in medicine for diagnosis and prediction [9, 10]. Although AI is use-

ful to accurately diagnose patients at a high risk of death, only a few studies on the prediction

of ESKD patients’ prognosis have been carried out [11–13]. Difficulties constructing AI algo-

rithms for clinical use have been pointed out, such as the scarce availability of reliable and

large data sets for AI algorithm construction, the lack of transparency of conventional AI algo-

rithms, the difficult integration of AI algorithms into complex existing clinical work flow, and

the cumbersome compliance with regulatory medical frameworks [14]. Overcoming some or

all of these difficulties is required to create a new AI-based system for ESKD patients.

Therefore, in this study, we aim to establish an implementable AI system for screening

hemodialysis patients at a high risk of death and for predicting their prognosis on the basis of

real-world data from the Japanese Society for Dialysis Therapy (JSDT) Renal Data Registry

(JRDR). JRDR is a nationwide-data registry and includes 98.8% of ESKD patients in Japan [1].

To provide transparency and accuracy of AI predictions, an ensemble model composed of the

K-means method and a support vector machine (SVM) was developed. Then, the performance

of the proposed model was compared with that of a SVM-alone model, a deep learning model,

and a multivariate logistic regression model. Moreover, considering their usage and applicabil-

ity to clinical settings, we developed a new total-care system for treating hemodialysis patients

at a high risk of death.
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Materials and methods

Dataset

This is a prospective cohort study of maintenance hemodialysis patients using JRDR data.

JSDT has been conducting annual surveys of dialysis facilities in Japan since 1968. The JRDR

data from 2008 to 2013 were used in this study. This study was approved by the ethics commit-

tee of JSDT and was exempt from the need to obtain informed consent from participants

(JSDT No. 33). The data were analyzed anonymously. The study was performed in accordance

with the relevant guidelines and the Declaration of Helsinki of 1975 as revised in 1983.

The subjects of this study were the 275,553 patients (Fig 1). The exclusion criteria were as

follows: patients younger than twenty years; patients on hemodiafiltration, hemofiltration, or

peritoneal dialysis; patients with missing values or outlier values of laboratory data; patients

who had a limb amputated; and patients with a hemodialysis vintage of less than one year.

Thus, 79,860 patients were included in the analysis. The included subjects were randomly clas-

sified into two groups to obtain a dataset for the development of the machine learning algo-

rithms (development dataset, 39,930) and a dataset for the validation of the algorithms

(validation dataset, 39,930).

The endpoints were all-cause death within one and five years. The data of the baseline char-

acteristics were as follows: age; gender; diabetes mellitus (DM), chronic glomerulonephritis

(CGN), or nephrosclerosis as a cause of ESKD; history of cardiovascular disease (CVD); body

mass index (BMI); serum albumin, sodium, potassium, calcium, phosphorus, creatinine, total

cholesterol, and C-reactive protein (CRP) levels; hemoglobin level; normalized protein cata-

bolic rate (nPCR); vintage; Kt/V; and ultrafiltration ratio. The laboratory data were measured

before hemodialysis, and BMI was calculated using the weight measured after hemodialysis.

Nutritional status was evaluated using NRI for hemodialysis patients [8]. NRI is a nutritional

screening index used to predict hemodialysis patients’ prognosis, and was developed by JSDT.

Fig 1. Randomization of study population and datasets.

https://doi.org/10.1371/journal.pone.0233491.g001
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It is calculated as follows:

Risk score ¼ low BMIþ low serum albumin levelþ abnormal serum total cholesterol level
þ low serum creatinine levelð1Þ

where the above parameters are defined as followed: low BMI (<20kg/m2), yes = 3, no = 0; low

serum albumin level (age <65, <3.7g/dL; age�65, <3.5g/dL), yes = 4, no = 0; abnormal

serum total cholesterol level, low(<130mg/dL) = 1, high (�220mg/dL) = 2, no = 0; low serum

creatinine level (age <65, male <11.6, female <9.7mg/dL; age�65, male <9.6, female

<8.0mg/dL), yes = 4, no = 0. Risk of 1-year death: low risk, risk score = 0 to 7; medium risk,

score = 8 to 10; high risk, score = 11 and higher.

Statistical analyses

Normally distributed variables are presented as mean±standard deviation; otherwise, the

median and interquartile ranges are presented. Highly skewed variables were transformed

with the natural logarithm function prior to use in models [ln(vintage), ln(CRP)]. Intergroup

comparisons of parameters were performed using the chi-square test, t-test, Mann-Whitney U

test, one-way analysis of variance, and the Kruskal-Wallis test as appropriate. These analyses

were conducted using SAS version 9.4 (SAS, Inc., NC, USA), R version 3.4.1 (R project for Sta-

tistical Computing, Vienna, Austria), and Python version 3.7.4 (Python Software Foundation,

DE, USA). Statistical significance was defined as p< 0.05.

Development of machine learning models

The variables of the baseline characteristics were Z-score-normalized and used for the follow-

ing modeling.

K-means method model. Step 1: Patients were grouped into clusters from 2 to 10 on the

basis of their baseline characteristics by the K-means method using the basis of the develop-

ment dataset. Patients with similar characteristics were grouped in one cluster, and the patients

in other clusters showed dissimilar characteristics. First, patients were randomly selected as

initial cluster centers. Next, each patient was assigned to one cluster on the basis of the close-

ness of their characteristics to the cluster center. The mean of samples in a cluster was calcu-

lated as the new cluster center, μ. These steps were repeated until the final stable clustering

results were obtained. The similarity between a patient x and a center μ in a cluster was evalu-

ated using the Euclidean distance in an m-dimensional space, dist(x,μ):

distðx; mÞ2 ¼
Pm

j¼1
ðxj � mjÞ

2
¼ kx � mk2

ð2Þ

where j is the j th variable of the baseline characteristics, m is the number of variables of the

baseline characteristics; in this study, m = 20.

Step 2: To evaluate the clustering, the within-cluster sum of squared errors (SSEs), namely,

distortion J, was measured:

J ¼
Pn

i¼1

Pk
j¼1
rijkxi � mjk

2
ð3Þ

where μj is the center for cluster j, if xi is in cluster j, rij = 1, else rij = 0, k is the number of clus-

ters, and n is the number of patients.

To use a gradient-based optimizer for J, Eq (3) is partially differentiated by μj to obtain:

@J
@mj
¼ 2
Pn

i¼1
rijðxi � mjÞ ¼ 0 ð4Þ
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mj ¼

P
rijxi

P
rij

ð5Þ

The elbow method was used to identify the number of clusters where the within-cluster SSE

decreased rapidly.

Next, to evaluate whether the clusters could discriminate the patients on the basis of their

risks of the endpoints, the survival probabilities of the clusters were evaluated using Kaplan-

Meier survival curves. The clusters were indicated by numbers on the basis of the risks, and

Cox proportional hazards models were evaluated to compare the risk of an endpoint between

clusters. The Cox proportional hazards models were developed including only the cluster used

as a categorical variable because the K-means method can be considered as a function which

was composed of variables of the baseline characteristics:

Cluster i ¼ f ðx1; x2; . . . ; xmÞ ð6Þ

Hazard ratio results (HRs) with 95% confidence interval (CI) are presented here.

Step 3: The patients in the validation dataset were grouped into clusters using the K-means

method trained using the development dataset. Then, the relationship between the clusters

and the risk of the endpoints were evaluated using Kaplan-Meier survival curves, and Cox pro-

portional hazards models. Considering the results, the optimal number of clusters, k, was

determined, and the differences in characteristics between the clusters were statistically

evaluated.

Multivariate logistic regression model. To predict the probabilities of the endpoints,

multivariate logistic regression models (LRMs) including all variables of the baseline charac-

teristics were developed using the development dataset as follows:

log
p

1 � p

� �

¼ aþ
Pm

i¼1
bixi ð7Þ

p ¼
1

1þ expð�
Pm

i¼1
bixiÞ

ð8Þ

where xi is the ith variable of the baseline characteristics, and βi is the parameter estimate for

the same variable.

When p was estimated to be more than 0.5, a patient’s death was predicted. Then, using the

validation dataset, we evaluated the accuracy of the prediction using the LRMs.

Support vector machine models. SVM models were used to predict the endpoints. SVM

models with a Gaussian radial basis function kernel included all of the variables of the baseline

characteristics. In the development of each SVM model, classification was examined on the

basis of the three-fold cross validation method, and the accuracy of the prediction was esti-

mated by taking the three results. Then, the final SVM models were developed. Using the vali-

dation dataset, we evaluated the accuracy of the prediction of the endpoints using the SVM

models developed.

Ensemble model. Using the development dataset, we grouped the patients into the k clus-

ters previously determined by the K-means method (Fig 2). Each SVM model including all of

the variables of the baseline characteristics for each cluster was trained to predict the risk of
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the endpoints. And k SVM models, F(Cluster i), were developed.

FðxÞ ¼ ðφðCluster 1Þ;φðCluster 2Þ; . . . ;φðCluster kÞÞ ð9Þ

where φ(Cluster i) is a SMV model for Cluster i.

Then, the patients in the validation dataset were grouped into k clusters, and the trained

SVM models were applied to the corresponding clusters. The results of the prediction of end-

points were unified.

Deep learning models. Deep learning models were developed to predict death at 1-year

and 5-years of dialysis (1-year and 5-year deaths, respectively). The numbers of layers and

hyperparameters were optimized on the basis of the accuracy to predict the endpoints and to

prevent overfitting (Figs 3 and 4). In the development of each deep learning model, two-thirds

of the development dataset was used as the training dataset and the remaining one-third was

used as the test dataset. Then, using the validation dataset, we evaluated the accuracy of the

prediction of the endpoints using the deep learning models.

Evaluation of model performance. The performance of the models developed for the

binary diagnosis decision (death or no death) in terms of accuracy, sensitivity, and specificity

was evaluated using the validation dataset. Accuracy is calculated as follows:

accuracy ¼ sensitivity � risk of deathþ specif icity � ð1 � risk of deathÞ ð10Þ

Fig 2. Structure of ensemble model. The patients were grouped into five clusters using the K-means method. Each cluster was analyzed using each SVM model. The

results of analysis using SVM models were unified. Abbreviation: SVM, support vector machine.

https://doi.org/10.1371/journal.pone.0233491.g002
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risk of death ¼
number of death

total number of the patients
ð11Þ

Because of this method chosen to calculate accuracy, the value of accuracy changes depend-

ing on the number of endpoints (the risk of death). Here, given that sensitivity and specificity

were constant, we simulated accuracy at various risks of death from 0.05 to 0.65, and compared

the accuracies of the models.

Results

Baseline characteristics

The baseline characteristics including biochemical data are shown in Table 1. No statistically

significant differences in the baseline characteristics between the development and validation

datasets were observed. Machine learning models were constructed (Fig 5).

Fig 3. Deep learning model for prediction of 1-year death. The models for the prediction of 1-year and 5-year deaths were composed of

multiple layers: 1 input layer; 2 or 4 hidden layers, respectively; and 1 output layer. Data of a patient were treated as 1 vector of 20 dimensions.

Through the hidden layers, the patient’s characteristics were extracted. The dropout rate of each hidden layer was determined appropriately.

Adam was used as a learning rate optimization algorithm. ReLUs were used as the activation function of hidden layers, and the logistic activation

function was used in the output layer. The performance of a deep learning model was evaluated in terms of accuracy and loss function. The

trained model was applied to the validation dataset.

https://doi.org/10.1371/journal.pone.0233491.g003

PLOS ONE Explainable artificial intelligence for hemodialysis patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0233491 May 29, 2020 7 / 23

https://doi.org/10.1371/journal.pone.0233491.g003
https://doi.org/10.1371/journal.pone.0233491


K-means method models

The K-means method was conducted, and the models with 2 to 10 clusters were developed.

The elbow method showed decreasing in within-cluster SSE with increasing numbers of clus-

ters (Fig 6). Five and six clusters were chosen as candidate numbers of clusters.

The Kaplan-Meier survival curves showed the relationship between the numbers of clusters

and the risk of death (Figs 7 and 8). The five-cluster model clearly distinguished the patients

on the basis of the risk of 1-year and 5-year deaths both in the development and validation

datasets (Figs 7A, 7B, 8A and 8B); (Tables 2A and 3A). Cluster 5 showed the highest risks of

1-year and 5-year deaths.

In contrast, the six-cluster model showed that the rank of the clusters based on the risk of

1-year death in the development dataset was different from the rank in the validation dataset

(Table 2B). Although the risk of 1-year death of Cluster 2 (HR, 1.87) was lower than that of

Cluster 3 (HR, 2.55) in the development dataset, the risk of Cluster 2 (HR, 1.58) was higher

than that of Cluster 3 (HR, 1.51). Moreover, Cluster 6 showed the highest risk of 5-year death

in the development dataset (Table 3B). However, in the validation dataset, the risk of Cluster 5

was very close to that of Cluster 6 (Table 3B); (Fig 8C and 8D), which suggests that the six-clus-

ter model might be unreliable in reflecting the patients’ prognosis depending on the patient

data. Therefore, considering the stability of the accuracy of the five-cluster model in reflecting

the patients’ prognosis, k = 5 was considered appropriate for the model, and the five-cluster

model was hereafter adopted.

Fig 4. Deep learning model for prediction of 5-year death. The deep learning model for the prediction of 5-year death was developed similarly to the model for 1-year

death. The trained model was applied to the validation dataset.

https://doi.org/10.1371/journal.pone.0233491.g004
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Difference in the characteristics among five clusters

The five-cluster model could cluster the patients on the basis of their characteristics (Table 4).

The mean ages of Clusters 4 and 5 were older than those of other groups. A gender difference

was observed; most of the patients in Cluster 1 were males (94.2%), and those in Cluster 2

were females (92.3%). There were also significant differences in the causes of ESKD between

the groups as follows: Clusters 1 and 2, CGN (74.6%, and 60.3%, respectively); Cluster 3, DM

(93.3%); Cluster 4, nephrosclerosis (100%). In Cluster 5, the numbers of patients with DM and

CGN were almost the same as the mean numbers in the study population (Tables 1 and 4).

Moreover, the numbers of patients who had a history of CVD were larger in Clusters 3 to 5

than in Clusters 1 and 2.

There were significant differences in the laboratory data among the clusters. Serum albumin

and potassium levels gradually decreased with increasing in clusters number. The serum phos-

phorus, and creatinine levels; and nPCR in Cluster 5 were lower than those in the other groups.

The number of patients with high and medium risk of NRIs were larger in Clusters 4 and 5 than

in the other clusters. The CRP levels in Clusters 4 and 5 were higher than those in other groups.

The risk of all-cause death in Cluster 5 was higher than those in the other groups (Table 5).

The trends similar to all-cause death were observed in the risks of CVD- and infection-caused

deaths. The details of 5-year death were as follows. The proportions of CVD-caused death in

Table 1. Baseline characteristics.

All Development dataset Validation dataset p
N 79,860 39,930 39,930

Age (years) 65.7 ± 12.2 65.7 ± 12.2 65.6 ± 12.2 0.28

Male (%) 49084 (61.5) 24537 (61.5) 24547 (61.5) 0.95

DM (%) 26154 (32.7) 13200 (33.1) 12954 (32.4) 0.065

CGN (%) 31758 (39.8) 15829 (39.6) 15935 (39.9) 0.45

Nephrosclerosis (%) 5343 (6.7) 2673 (6.7) 2670 (6.7) 0.98

CVD (%) 14998 (18.8) 7530 (18.9) 7468 (18.7) 0.58

BMI (kg/m2) 21.2 ± 3.4 21.2 ± 3.4 21.2 ± 3.4 0.24

Albumin (g/dL) 3.7 ± 0.4 3.7 ± 0.4 3.7 ± 0.4 0.99

Sodium (mEq/L) 138.9 ± 3.2 138.9 ± 3.2 138.9 ± 3.2 0.44

Potassium (mEq/L) 5 ± 0.8 5 ± 0.8 5 ± 0.8 0.78

Calcium (mg/dL) 9.3 ± 0.8 9.3 ± 0.8 9.3 ± 0.8 0.65

Phosphorus (mg/dL) 5.3 ± 1.4 5.3 ± 1.4 5.3 ± 1.4 0.88

Creatinine (mg/dL) 10.7 ± 2.8 10.7 ± 2.8 10.7 ± 2.8 0.79

Total cholesterol (mg/dL) 153.7 ± 34.5 153.4 ± 34.4 154 ± 34.6 0.052

CRP (mg/dL) 0.49 ± 1.42 0.11 (0.05, 0.34) 0.5 ± 1.41 0.11 (0.05, 0.34) 0.49 ± 1.43 0.11 (0.05, 0.34) 0.41

Hemoglobin (g/dL) 10.4 ± 1.2 10.4 ± 1.2 10.4 ± 1.2 0.92

nPCR (g/kg/day) 0.88 ± 0.17 0.88 ± 0.17 0.88 ± 0.17 0.91

Vintage (years) 8.3 ± 6.7 6.2 (3.3, 11.1) 8.2 ± 6.7 6.2 (3.3, 11.1) 8.3 ± 6.7 6.3 (3.3, 11.1) 0.13

Kt/V 1.4 ± 0.3 1.4 ± 0.3 1.4 ± 0.3 0.68

Ultrafiltration (%) 4.4 ± 1.8 4.4 ± 1.8 4.4 ± 1.8 0.062

1-year death (%) 5234 (6.6) 2649 (6.7) 2585 (6.5) 0.37

5-year death (%) 25410 (31.8) 12709 (31.8) 12701 (31.8) 0.96

Variables are expressed as mean±standard deviation. Vintage and CRP are also shown as median and interquartile range. Intergroup comparisons of parameters were

performed using the chi-square test, t-test, and the Mann-Whitney U test as appropriate.

Abbreviations: DM, diabetes mellitus as a cause of end-stage renal disease; CGN, chronic glomerulonephritis; CVD, cardiovascular disease; BMI, body mass index; CRP,

C-reactive protein; nPCR, normalized protein catabolic rate.

https://doi.org/10.1371/journal.pone.0233491.t001
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5-year death were Cluster 1, 27.3%; Cluster 2, 27.4%; Cluster 3, 26.5%; Cluster 4, 27.4%; and

Cluster 5 29.8% (p<0.0001). And those of infection-caused death were Cluster 1, 5.3%; Cluster

2, 4.6%; Cluster 3, 3.9%; Cluster 4, 6.6%; and Cluster 5, 8.0% (p<0.0001).

Performance of models to predict death

The five-cluster model had four cutoff points. The accuracies of predicting death on the basis

of these cutoff points were compared with those of the LRM, SVM model, ensemble model,

deep learning model, and the high-risk group of NRI (Fig 9). The accuracies of predicting

1-year and 5-year deaths using LRM (0.938, 0.759), SVM model (0.937, 0.758), ensemble

Fig 5. Development of machine learning models and comparison of their performance. This study consisted of the model development phase and model validation

phase. In the model development phase, the K-means method model, SVM model, ensemble model, DL model, and LRM were developed. In the model validation

phase, the performances of the models and NRI were compared. Abbreviations: SVM, support vector machine; DL, deep learning; LRM, logistic regression model; NRI,

nutritional risk index.

https://doi.org/10.1371/journal.pone.0233491.g005
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model (0.948, 0.755), and deep learning model (0.936, 0.756) were higher than those using the

five-cluster model with Clusters 4 as the cutoff point (0.809, 0.716). The ensemble model

showed the highest accuracy to predict 1-year death. The accuracies of predicting 5-year death

using LRM, SVM model, ensemble model, and deep learning model were almost the same,

and were higher than those using the five-cluster models and NRI.

The estimated accuracies of the models decreased with increasing risks of 1-year and 5-year

deaths (Fig 10). The lines of the accuracies of predicting the risk of 1-year death crossed at 0.3

of the risk of 1-year death (Fig 10A). The accuracies for the risk of 1-year death using the LRM,

SVM model, ensemble model, and deep learning model showed similar patterns, and were

more than 0.9 at 0.1 of the risk of 1-year death, which was higher than those using the five-

cluster model. Moreover, for the prediction of 5-year death, the accuracies of the LRM, SVM

model, ensemble model, and deep learning model were higher than that of the five-cluster

model (Fig 10B). The accuracies of the deep learning model, LRM, SVM, and ensemble model

were almost the same, more than 0.7, at which the interval of 5-year death was about 0.4.

The sensitivities and specificities of the models showed a negative relationship at different

cutoff points for clusters (Fig 11). To predict both 1- and 5-year deaths, the five-cluster model

Fig 6. Elbow method. Elbow method shows the relationship between within-cluster SSE and number of clusters.

Abbreviation: within-cluster SSE, within-cluster sum of squared errors.

https://doi.org/10.1371/journal.pone.0233491.g006
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with Cluster 1 as the cutoff point showed higher sensitivities (0.915, 0.860) than the other mod-

els. The sensitivities of the LRM, SVM model, ensemble model, deep learning model, and NRI

were low. On the other hand, the specificities of the five-cluster model with Cluster 4 as the

cutoff point were high (1-year death, 0.829; 5-year death, 0.884), but lower than those of other

models (LRM, 0.996, 0.890; SVM model, 0.999, 0.919; ensemble model, 0.999, 0.910; deep

learning model, 0.998, 0.855; NRI, 0.937, 0.961, for 1- and 5-year deaths, respectively).

Total-care system for hemodialysis patients

Considering the characteristics of the machine learning models, for our system, we adopted an

ensemble model with the K-means method and SVM for use in clinical settings. Our recom-

mended system is as follows (Fig 12): After clustering, the patients in clusters 1 to 3 are followed

Fig 7. Association between number of clusters and 1-year mortality. A. Five clusters in the development dataset. B. Five clusters in the validation dataset. C. Six

clusters in the development dataset. D. Six clusters in the validation dataset. The Kaplan-Meier survival curves show that the low-risk group had the highest survival

probability in both datasets.

https://doi.org/10.1371/journal.pone.0233491.g007
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up periodically, because some of them may be classified in Cluster 4 or 5 in the future. Then, the

patients in Clusters 4 and 5 are examined using the SVM models. If they are diagnosed to be at a

high risk, they undergo detailed medical examinations. If diseases or aggravation of comorbid

conditions are diagnosed, intervention and therapy are provided. If not, they are followed up as

high-risk patients more frequently and thoroughly than the patients in Clusters 1 to 3.

Discussion

There are various types of machine learning, whose mechanisms cannot be fully understood

by humans, and are called black boxes. Thus, an explainable machine learning model has been

studied. Among the types of machine learning, K-means is based on the least square method,

Fig 8. Association between number of clusters and 5-year mortality. A. Five clusters in the development dataset. B. Five clusters in the validation dataset. C. Six

clusters in the development dataset. D. Six clusters in the validation dataset. Kaplan-Meier survival curves show that the low-risk group had the highest survival

probability for the both datasets.

https://doi.org/10.1371/journal.pone.0233491.g008
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and is more understandable than other models. Moreover, SVM can be used to predict

patients’ prognosis. In this work, we developed an explainable ensemble model for the predic-

tion of patients’ prognosis, which was composed of K-means and SVM. Hemodialysis patients

were categorized into five clusters by the K-means method on their basis of baseline character-

istics, which reflected the risk of death. Then, we developed machine learning and statistical

Table 2. Clusters and risk of 1-year death.

A

Cluster number Development dataset Validation dataset

1 Reference Reference

2 1.36 (1.16, 1.6) 1.58 (1.33, 1.88)

3 1.83 (1.58, 2.13) 2.22 (1.9, 2.61)

4 3.51 (2.95, 4.18) 4.36 (3.64, 5.24)

5 7.14 (6.27, 8.14) 8.86 (7.68, 10.21)

B

Cluster number Development dataset Validation dataset

1 Reference Reference

2 1.87 (1.53, 2.28) 1.58 (1.32, 1.87)

3 2.55 (2.12, 3.08) 1.51 (1.08, 2.11)

4 2.89 (2.39, 3.5) 2.22 (1.89, 2.6)

5 4.62 (3.75, 5.69) 7.2 (5.95, 8.71)

6 12.76 (10.72, 15.18) 8.79 (7.62, 10.13)

A. Five clusters.

B. Six clusters.

Values are HRs with 95% CIs of Clusters 2 to 5 compared with Cluster 1.

Abbreviations: HR, hazard ratio; CI, confidence interval.

https://doi.org/10.1371/journal.pone.0233491.t002

Table 3. Clusters and risk of 5-year death.

A

Cluster number Development dataset Validation dataset

1 Reference Reference

2 1.36 (1.27, 1.45) 1.34 (1.25, 1.42)

3 1.98 (1.87, 2.1) 2.04 (1.92, 2.16)

4 2.79 (2.59, 3.01) 2.8 (2.59, 3.01)

5 5.05 (4.78, 5.33) 4.9 (4.64, 5.18)

B

Cluster number Development dataset Validation dataset

1 Reference Reference

2 1.92 (1.77, 2.08) 1.34 (1.25, 1.42)

3 2.91 (2.7, 3.13) 1.57 (1.4, 1.77)

4 3.11 (2.88, 3.35) 2.03 (1.92, 2.15)

5 3.92 (3.59, 4.28) 4.28 (3.94, 4.66)

6 8.82 (8.2, 9.49) 4.9 (4.63, 5.17)

A. Five clusters.

B. Six clusters.

Values are HRs with 95% CIs of Clusters 2 to 5 compared with the cluster 1.

Abbreviations: HR, hazard ratio; CI, confidence interval.

https://doi.org/10.1371/journal.pone.0233491.t003
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models, and compared their performances. The ensemble model of the K-means method and

SVM showed the highest accuracy of the prediction of death. Although some studies showed a

high accuracy of the prediction of dialysis patients’ death using machine learning models, the

Table 4. Baseline characteristics of clusters in validation dataset.

1 2 3 4 5 p
N 10358 (25.9) 8935 (22.4) 10266 (25.7) 2660 (6.7) 7711 (19.3)

Age (years) 59.4 ± 12.2 64.6 ± 11.6 64.7 ± 10.5 72.8 ± 11.3 74 ± 9 <0.0001

Male (%) 9755 (94.2) 692 (7.7) 7675 (74.8) 1708 (64.2) 4717 (61.2) <0.0001

DM (%) 29 (0.3) 696 (7.8) 9579 (93.3) 0 (0) 2680 (34.8) <0.0001

CGN (%) 7723 (74.6) 5391 (60.3) 28 (0.3) 0 (0) 2793 (36.2) <0.0001

Nephrosclerosis (%) 1 (0) 0 (0) 0 (0) 2660 (100) 9 (0.1) <0.0001

CVD (%) 1201 (11.6) 936 (10.5) 2247 (21.9) 622 (23.4) 2462 (31.9) <0.0001

BMI (kg/m2) 21.8 ± 3.1 19.7 ± 2.8 22.8 ± 3.5 21.1 ± 3.4 20 ± 3.1 <0.0001

Albumin (g/dL) 3.9 ± 0.3 3.8 ± 0.3 3.8 ± 0.3 3.7 ± 0.4 3.3 ± 0.4 <0.0001

Sodium (mEq/L) 139.4 ± 2.9 139.4 ± 3.0 138.6 ± 3.1 139 ± 3.2 138.2 ± 3.8 <0.0001

Potassium (mEq/L) 5.3 ± 0.7 5.2 ± 0.7 5.1 ± 0.8 4.9 ± 0.8 4.4 ± 0.7 <0.0001

Calcium (mg/dL) 9.4 ± 0.8 9.4 ± 0.8 9.1 ± 0.7 9.3 ± 0.8 9.4 ± 0.8 <0.0001

Phosphorus (mg/dL) 5.8 ± 1.3 5.3 ± 1.3 5.5 ± 1.3 5.1 ± 1.3 4.3 ± 1.1 <0.0001

Creatinine (mg/dL) 13.2 ± 2.3 10.2 ± 1.8 10.6 ± 2.3 10 ± 2.8 8.1 ± 2.2 <0.0001

Total cholesterol (mg/dL) 146.5 ± 30.5 171 ± 34.6 152 ± 33.9 155.5 ± 34.2 146.4 ± 34.1 <0.0001

CRP (mg/dL) 0.3 ± 0.9 0.1 (0.1, 0.3) 0.3 ± 0.9 0.1 (0, 0.2) 0.3 ± 1.0 0.1 (0.1, 0.3) 0.6 ± 1.5 0.1 (0.1, 0.4) 1.2 ± 2.5 0.3 (0.1, 1.1) <0.0001

Hemoglobin (g/dL) 10.8 ± 1.2 10.4 ± 1.1 10.6 ± 1.1 10.4 ± 1.2 9.9 ± 1.3 <0.0001

nPCR (g/kg/day) 0.9 ± 0.2 1 ± 0.2 0.9 ± 0.2 0.9 ± 0.2 0.7 ± 0.1 <0.0001

Vintage (years) 10.8 ± 7.3 9 (5.1, 14.8) 11.2 ± 7.6 9.4 (5.3, 15.6) 4.9 ± 3.3 4.1 (2.4, 6.7) 5.5 ± 4.1 4.3 (2.6, 7.2) 7.1 ± 6.2 5.1 (2.8, 9.3) <0.0001

Kt/V 1.4 ± 0.2 1.7 ± 0.3 1.3 ± 0.2 1.4 ± 0.3 1.4 ± 0.3 <0.0001

Ultrafiltration (%) 4.5 ± 1.5 4.9 ± 1.7 4.4 ± 1.6 4.2 ± 1.8 3.6 ± 2.2 <0.0001

NRI <0.0001

Low risk (%) 9220 (89.0) 6531 (73.1) 8321 (81.1) 1812 (68.1) 2820 (36.6)

Medium risk (%) 1003 (9.7) 1927 (21.6) 1713 (16.7) 597 (22.4) 2839 (36.8)

High risk (%) 135 (1.3) 477 (5.3) 232 (2.3) 251 (9.4) 2052 (26.6)

Variables are expressed as mean±standard deviation. Vintage and CRP are also shown as median and interquartile range. Intergroup comparisons of parameters were

performed using the chi-square test, t-test, and the Mann-Whitney U test as appropriate.

Abbreviations: DM, diabetes mellitus as a cause of end-stage renal disease; CGN, chronic glomerulonephritis; CVD, cardiovascular disease; BMI, body mass index; CRP,

C-reactive protein; nPCR, normalized protein catabolic rate; NRI, nutritional risk index.

https://doi.org/10.1371/journal.pone.0233491.t004

Table 5. Number of endpoints in validation dataset.

1 2 3 4 5 p
N 10358 8935 10266 2660 7711

1-year death (%) 221 (2.1) 299 (3.3) 482 (4.7) 240 (9) 1343 (17.4) <0.0001

5-year death (%) 1784 (17.2) 1993 (22.3) 3299 (32.1) 1084 (40.8) 4541 (58.9) <0.0001

Cause of 5-year death

CVD caused death (%) 487 (4.7) 547 (6.1) 875 (8.5) 297 (11.2) 1354 (17.6) <0.0001

Infection-caused death (%) 94 (0.9) 91 (1.0) 130 (1.3) 72 (2.7) 362 (4.7) <0.0001

Other-cause death (%) 1203 (11.6) 1355 (15.2) 2294 (22.3) 715 (26.9) 2825 (36.6) <0.0001

The values are number of deaths (%).

Abbreviations: CVD, cardiovascular disease.

https://doi.org/10.1371/journal.pone.0233491.t005
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internal structures of the models were difficult to understand [11–13]. There is a tradeoff rela-

tionship between the accuracy of prediction and the transparency of algorithms [14]. We

attempted to achieve a balance by developing a blended system, which we found useful for

identifying patients at a high risk of death, and which was easily applicable to clinical settings.

The International Society of Renal Nutrition and Metabolism proposed an algorithm for

the nutritional management and support of chronic kidney disease patients [15]. In the algo-

rithm, multiple nutritional examinations, such as measurement of dietary nutritional intakes,

subjective global assessment, and anthropometrics, are recommended [15]. However, it is dif-

ficult for all of these nutritional examination results to be digitized and evaluated by machine

learning models. Moreover, a systematic review of the studies of the data-driven population

segmentation analysis pointed out that a perfect diagnosis is not always guaranteed; and the

Fig 9. Accuracies of predicting 1-year and 5-year deaths. A. 1-year death. B. 5-year death. The accuracies of the models were evaluated using the validation dataset.

Abbreviations: 5 Cls 1, the cutoff point was the first cluster of Cluster 5; LRM, multivariate logistic regression model; SVM, support vector machine; Ensemble, ensemble

model of K-means method and SVM models; DL, deep learning model; NRI, nutritional risk index.

https://doi.org/10.1371/journal.pone.0233491.g009
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review suggested the importance of assessing the segmentation outcome with a combination

of statistical reasoning, clinical judgement, and policy implication [16]. Therefore, we did not

leave the entire diagnosis to be performed by a machine learning system, and instead devel-

oped the ensemble model as part of the medical system. The ensemble model and detailed

medical examinations can complement each other, which enhances the robustness of this

system.

According to the JSDT annual report in 2015, the mean age of Japanese dialysis patients

was 67.86 years, 64.3% were male, and the causes of ESKD were DM (38.4%), CGN (29.8%),

nephrosclerosis (9.5%) [1]. Considering these basic statistics, our system could divide the

patients into the five clusters reflecting their baseline characteristics (Table 6). These character-

istics were risk factors for death in their prognosis [3, 4, 6]. For example, the risks of all-cause

death, CVD- and infection-caused deaths in Cluster 5 were higher than those in other clusters.

Fig 10. Accuracies and risk of 1-year and 5-year deaths. A. 1-year death. B. 5-year death. The accuracies of the model were calculated at 1year and 5-year death.

Abbreviations: 5 Cls, the cutoff point was the fourth cluster of clusters; LRM, multivariate logistic regression model; SVM, support vector machine; ensemble,

ensemble model of K-means method and SVM models; DL, deep learning model; NRI, nutritional risk index.

https://doi.org/10.1371/journal.pone.0233491.g010
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And Cluster 5 showed lower serum albumin and creatinine levels and lower nPCR, which are

nutritional factors, than the other clusters, and included a large number of patients with high

and medium risks of NRI of 26.6% and 36.8%, respectively. Moreover, a high serum CRP level,

which indicates inflammation, was also observed in Cluster 5. Inflammation is often observed

in ESKD patients with malnutrition, and this complex state of malnutrition and inflammation

is called protein energy wasting (PEW) [5]. PEW causes CVD which is a risk factor for death

[5, 8]. The classification of an elderly patient with PEW into Cluster 5 indicates that the treat-

ment of PEW should be of the highest priority.

Our system could clearly distinguish patients with DM (Cluster 3) or nephrosclerosis (Clus-

ter 4) from those with other conditions. The patients in Cluster 4 showed a higher risk of death

than those in Cluster 3. What factor made this difference? Both DM and aging are the main

causes of CVD in hemodialysis patients [17]. According to a systematic review, they are risk

Fig 11. Sensitivities and specificities of models to predict risks of 1-year and 5-year deaths. A. 1-year death. B. 5-year death. Abbreviations: 5 Cls 1, the cutoff

point was the first cluster of five clusters; LRM, multivariate logistic regression model; SVM, support vector machine; ensemble, ensemble model of K-means

method and SVM models; DL, deep learning model; NRI, nutritional risk index.

https://doi.org/10.1371/journal.pone.0233491.g011
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factors for all-cause and CVD-caused deaths [18]. In our study, no clear differences were

observed in the other risk factors reported in the systematic review, such as history of CVD,

Fig 12. Diagnostic system using ensemble model. Our system is as follows: a. Extract high-risk patients (Clusters 4 and 5) on the basis of sensitivity,

specificity, and characteristics of the clusters. b. Examine in detail patients in Clusters 4 and 5 using SVM models, and routinely follow up depending on

their risk of death. The blue part can be examined using the ensemble model. Abbreviation: SVM, support vector machine models.

https://doi.org/10.1371/journal.pone.0233491.g012
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BMI, hemoglobin level, serum albumin, and CRP levels, between Clusters 3 and 4 [18]. The

only factors different between these clusters were the causes of ESKD and age; patients in Clus-

ter 4 were about 8 years older than those in Cluster 3. DOPPS showed no statistically signifi-

cant difference in mortality rate between patients with DM and hypertension [19]. It is

possible that age itself might have caused the survival difference. DM has been the leading

cause of ESKD in Japan, and the number of dialysis patients with DM has been stable over the

past few years [1]. In contrast, nephrosclerosis is caused by aging and hypertension, and the

number of patients with nephrosclerosis has been increasing with the aging of the population

in Japan [1]. Elderly patients with nephrosclerosis should be paid more attention, because they

are at a high risk of death, and will be a majority among dialysis patients in the near future.

Similar to our study, a cohort study of the health care system in Singapore showed a rela-

tionship among K-means clusters, healthcare utilization pattern, and mortality [20]. Why do

the clusters obtained by the K-means method reflect the patients’ prognosis in the Singapore

study and our study? The cluster centers were obtained using Eq (5). μj is a vector equal to the

mean of all data of patients in Cluster j. That is, patients in Cluster j are distributed in an m-

dimensional sphere with the center at μj. In this study, the number of clusters was determined

by the links with the risk of death as an important true endpoint, which showed that μj was

strongly associated with risk of death. On the basis of these theoretical backgrounds, each clus-

ter had specific characteristics of risk factors for death, such as gender, causes of ESKD, and

PEW (Table 6). In the risk prediction models using standard statistics, the variables are often

arbitrarily selected, whereas in machine learning, patients’ features are extracted from their

numerical data, even though a human does not provide sufficient information. There is a pos-

sibility that this feature extraction can clarify the new pathophysiological characteristics of dis-

eases. For example, the five clusters in this study, which had different numerical features, may

have different courses of change in their body condition after dialysis initiation. Thus, new

unknown research seeds will be mined by machine learning.

The performance of machine learning is often evaluated by the accuracy of classification.

When using the validation data, the ensemble model showed a higher accuracy of the predic-

tion of death than other models. The analysis of machine learning models, e.g., SVM and deep

learning models, is a black box [21]. Because our ensemble model was composed of the K-

means method and SVM model, this combined system of classification and prediction made

the results interpretable with high accuracy, and closely matched the clinical decision-making

process. The practical applications of this kind of machine learning model have never been

reported.

Because accuracy is determined by the incident number of events, it changes with the com-

position of the sample population. Thus, we evaluated the changes in the accuracies of the

models with the changes in the risk of death. The risks of 1-year death in Japan and USA are

Table 6. Specific characteristics of clusters.

Cluster number Specific characteristics

1 Young, male, CGN

2 Female, CGN

3 DM

4 Elderly, nephrosclerosis

5 Elderly, CVD, malnutrition, inflammation

Abbreviations: CGN, chronic glomerulonephritis as a cause of end-stage renal disease; DM, diabetes mellitus as a

cause of end-stage renal disease; CVD, cardiovascular disease.

https://doi.org/10.1371/journal.pone.0233491.t006
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9.6% and 13.4%, and those of 5-year death in Japan, Italy, and USA are 39.5%, 44.4%, and

58%, respectively [1, 2, 22, 23]. In the simulation using these populations, the machine learning

models could show high accuracies, and effectively predicted the prognosis of ESKD patients.

The classification performance of diagnostic tests is commonly evaluated in terms of sensi-

tivity and specificity. The machine learning models in this study showed their high specificity

to predict 1-year and 5-year deaths. High specificity means that the models have a small num-

ber of false-positive patients. That is, when a patient is diagnosed to be positive for a risk by the

models, the possibility of the presence of a disease is high. Therefore, it could be said that the

diagnosis obtained using the models with high specificities is useful to confirm the diagnosis.

On the other hand, because the sensitivities of SVM and deep learning models were low, they

were not appropriate for screening high-risk patients. The sensitivities of the K-means method

using clusters were higher than those of the other models. The clusters might be useful for

identifying the high-risk patients.

Our system is applicable to clinical settings in the context of its limitations. First, in this

study, JRDR data were used. This data were obtained from 98.8% of dialysis patients in Japan,

reflecting the real-world of dialysis patients in Japan. Because our system was developed using

these data, its accuracy for Japanese or Asian patients is high, but the results using data from

other countries might be biased by the sampling of patients. Second, we did not include

patients with missing data in this study, which might cause a selection bias. Third, the JRDR

data did not include sufficient data for assessing malnutrition, blood pressure, comorbid con-

ditions, and medications. And, we were unable to evaluate the effects of the differences in the

baseline characteristics such as dietary intake; comorbid conditions such as DM and hyperten-

sion; and medications such as hypoglycemic and antihypertensive medicines on the clustering.

Further studies are needed to evaluate the relationship between these factors and clustering.

Thus, such data would improve the accuracy of the models.

Conclusions

We developed a novel system using machine learning algorithms that analyzes hemodialysis

patients’ data, categorizes the patients on the basis of their characteristics, and identifies

patients at a high risk of death. The new approach has a strong potential to guide treatments

and improve hemodialysis patients’ prognosis.
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