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Changing Polygenic Penetrance 
on Phenotypes in the 20th Century 
Among Adults in the US Population
Dalton Conley1, Thomas M. Laidley2, Jason D. Boardman3 & Benjamin W. Domingue4

This study evaluates changes in genetic penetrance—defined as the association between an additive 
polygenic score and its associated phenotype—across birth cohorts. Situating our analysis within recent 
historical trends in the U.S., we show that, while height and BMI show increasing genotypic penetrance 
over the course of 20th Century, education and heart disease show declining genotypic effects. 
Meanwhile, we find genotypic penetrance to be historically stable with respect to depression. Our 
findings help inform our understanding of how the genetic and environmental landscape of American 
society has changed over the past century, and have implications for research which models gene-
environment (GxE) interactions, as well as polygenic score calculations in consortia studies that include 
multiple birth cohorts.

This study evaluates changes in polygenic penetrance—defined as the association between a polygenic score 
(PGS) and its associated phenotype—across recent birth cohorts in the United States. The answer to this question 
informs our understanding of how the genetic and environmental landscape of American society has changed 
over the past century, and offers suggestive evidence for the selective influence of environment on genetic expres-
sion. Our findings also have important implications for PGS calculations in consortia studies that include multi-
ple birth cohorts. This inquiry would not have been possible even a decade ago, before the development of PGS 
techniques to predict complex phenotypes1. The approach is not without its limitations; however, the scalar var-
iables provided by PGS construction are unique in that they allow researchers to ask a number of questions that 
were not possible with latent heritability models. This allows for fresh opportunities to explore a range of issues, 
from polygenicity of traits to gene-environment (GxE) interactions.

In the present paper, we exploit this opportunity by asking whether the associations between PGS and several 
phenotypes have changed over the course of the 20th century in the U.S. Because the economic, social, and phys-
ical environments underwent dramatic changes during this period, it is likely that the association between a PGS 
and its related phenotype has also evolved as a consequence2. We examine five important phenotypes—height, 
body mass index (BMI), education, depression, and heart disease—chosen due to their key associations with 
health and mortality, the different age ranges at which they are salient3–5, and the fact that GWAS results (for all 
SNPs and not just top hits) are available for all five6–10. We find that while height and BMI show increasing PGS 
penetrance over the course of the 20th century birth cohorts, education and heart disease exhibit the opposite 
trend. In contrast, the association between depression and its underlying genetic architecture remained stable 
over the same period.

Additive heritability (for which PGS penetrance is a proxy), independently of how it is measured, is contingent 
on the social structure. Indeed, heritability is not a fixed parameter across time and place but is always a ‘local 
perturbation analysis'11. Supposing a phenotype to be the product of a complex process involving both genetics, 
environment, and perhaps their interactions (that is, yi =  f(Gi, Ei) +  εi), a complete analysis would require that 
we first know the partial derivatives of the unknown function f(G, E). Absent a specified model of f(G, E), many 
scholars, particularly in the social sciences, have attempted to inductively model gene-environment correlations 
(rGE) and interactions (GxE). Starting with the seminal paper in this area of scholarship12, most of these studies 
rely on endogenous measures of environment and/or fail to adequately control for population structure, thereby 
producing under-identified results that may reflect rGE, GxE, ExE or GxG13.
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A few exceptions to this trend include studies that deploy nationally-representative, genome-wide data with 
controls for principle components in order to address population stratification on the genetic side while econo-
metrically exploiting natural experiments on the environmental side to assure exogeneity of environment14. A 
promising avenue in this regard has been scholarship that takes advantage of data spanning a wide range of birth 
cohorts to assess how heritability may be changing over the shifting (if unmeasured) environment across decades. 
For instance, recent research has shown that a PGS for physiological predisposition to tobacco use has exhibited 
more robust correlations over time with phenotypic measures of smoking in the U.S. population15. Studies which 
employ sibling and twin comparisons and candidate gene studies show the same pattern of increasing genetic 
penetrance with respect to tobacco use among recent cohorts16,17. These results suggest that as the dangers of 
tobacco use were publicized in the latter half of the 20th century, the underlying genotype signifying a greater 
propensity to smoke exerted a more pronounced influence on behavior.

Other research shows a similar historical shift in genomic influence on physical characteristics, with increas-
ing associations between genetic architecture and BMI in recent decades for US adults18,19. Likewise, twin-based 
models of the heritability of education appear to show an increasing effect of genotype over a similar time 
period20. We expand on this literature by focusing on a wider breadth of phenotypes and employ polygenic scores 
based on millions of SNPs rather than individual markers in identifying historical shifts in genetic expression.

Some have argued that these changes reflect the relative increase of genetic over social factors as determinants 
of complex behavioral traits like smoking, rather than a true increase in the causal association between genetic 
polymorphisms and phenotypes. This distinction is important because it emphasizes genetic penetrance rather 
than expression, per se. That is, the social and historical context can, at times, mask small genetic associations 
because the environment may be ‘pushing’ the phenotype, which limits our ability to observe penetrance16. The 
social environment can also serve as a trigger (or, alternatively, as a controlling influence) in which differential 
rates of expression (or methylation) in response to specific environmental signals denotes a biological mecha-
nism, through which the environment causes genes to function in a particular manner21.

Results
We used data from the Health and Retirement Study (HRS). Details about inclusion in the sample and selective 
attrition can be found in the Supplementary Information notes. Our data are from the 2012 wave of the HRS, and 
allowed us to observe the consistency of PGS-phenotype correlations across birth cohorts in the mid-20th century 
among U.S. adults. Respondents were born between 1919 and 1955 and, on average, went on to complete over 13 
years of education. Nearly 40% of the respondents self-reported heart disease. Baseline associations between the 
five traits and their respective polygenic scores (Supplemental Table S2) are significant at conventional alpha lev-
els. The polygenic score for BMI is the best predictor of its associated outcome, followed by education and height.

We interacted the PGS for each trait with birth year to predict the corresponding phenotypes in Fig. 1 (model 
also included main effects for both birth year and phenotype; see Equation 2 in Methods). We find that, while 
there is tendency for those in later birth cohorts to accrue more education, the predictive power of genotype for 
education is declining over time. This finding is contrary to some twin-based evidence that the genetic penetrance 
for education has risen20; this could be due to a number of dynamics including the inherent differences between 
twin methods and the PGS approach, differences in the birth cohorts studied or changing gender dynamics. (We 
discuss potential difference sand explanations in depth in the SI on pages 10–11). Similarly, declines in heart 
disease are matched by declines in the predictive natures of the heart disease PGS. Meanwhile, the predictive 
power of height and BMI polygenic scores have increased significantly, while depression appears flat. Our results 
showing an increased PGS penetrance of BMI in particular among more recent cohorts of Americans are broadly 
consistent with recent researchbased on a more limited polygenic score and other forms of genetic analysis18,19.

One potential explanation for these trends in PGS penetrance could be due to changes in the genetic variation 
in the population that could result from differential fertility and/or genetic assortative mating22–24. To assess this 
latter possibility, we calculated the variance for each of the five PGSs across birth cohorts. These are reported in 
the Supplemental Information Fig. S5, Panel B. For all the scores, variances are unchanged across birth cohorts, 
supporting the understanding that changes in PGS predictive power reflect GxE effects that result from a shifting 
environmental landscape. Namely, if the variance component for G is unchanged, any change in additive herita-
bility or SNP-based PGS prediction is likely due to a shift in the variance component for the environmental por-
tion. We also perform other sensitivity checks related to mortality and sample ascertainment (presented in detail 
in the Supplementary Information), and find that our results broadly reflect a changing influence in environ-
mental conditions, and do not appear to be driven by biases introduced by the data (see SI, Page 5–10). Likewise, 
our results become stronger when measurement error for each PGS is taken into consideration through SIMEX 
analysis (Table S3) and are robust to Huber-White adjustments for clustering by household (Table S4). That said, 
our power to detect the interaction term is limited for some phenotypes (particularly depression—see Table S2 
and SI notes for discussion), so replication of our results will be important.

Discussion
The twentieth century witnessed massive shifts in the social and nutritional environment of the United States. 
The change from an agrarian society to an industrial and post-industrial one has well documented effects on 
population health25 and is also associated with the expansion of schooling26, medical improvements27, increased 
longevity28, and caloric abundance29. Any or all of these changes may influence not only relationships between 
important phenotypes but between those phenotypes and their underlying genotypes as well. Under this 
multi-dimensionally shifting environmental regime, the genotypic effects of height and BMI PGSs evince trends 
of increasing predictive power, while education PGS shows a declining association with years of schooling, per-
haps due to policy and structural changes in society that has reduced variation in the phenotype (see Panel B of 
SI Fig. S4).
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As nutritional deprivation receded as a restraining force on genetic expression, height and weight could more 
“accurately” reflect underlying genetic potential as measured by common SNPs. Meanwhile, educational “abun-
dance” had the opposite effect: with the steady expansion of schooling we find that rather than constraints on the 
full extent of ability being lifted to reveal increasing genetic penetrance, we observed declining genetic prediction 
among more recent cohorts. During this time, secondary schooling became nearly universal and post-secondary 
education more common, yet the genetic signal was weakened. Thus, in some cases—like height and BMI— 
environmental barriers can act to suppress genetic effects, while in others (such as education) such obstacles can 
act to accentuate genetic associations. This may be a useful dichotomous classification scheme to apply to cohort 
analysis of genetic influence on other phenotypes going forward.

Materials and Methods
Phenotypes were computed based on RAND Fat Files, version N (which covers data collection up until 2012). 
We examined:

•	 Education: Total years of educational attainment.
•	 BMI: Mean BMI over all available waves.
•	 Height: Max height over all available waves.
•	 Heart Disease: Whether a respondent ever reports heart problems (rXheart).
•	 Depression: Mean CESD score over all available waves. This variable had a skewed distribution, so it was 

transformed via the logarithm (after adding one to everyone’s mean).

Sample descriptives are shown in Table S1.

Methods
Polygenic Scores (PGSs) were first suggested in 2007 as flexible tools for quantifying the genetic contribu-
tion to a phenotype30. Polygenic scores have several attractive features. First, unlike candidate genes, they are 
“hypothesis-free” measures—i.e. ex ante knowledge about the biological processes involved is not needed to 

Figure 1. Predicted standardized values of selected phenotypes by polygenic score (+1 or −1 standard 
deviations), across birth cohorts among genotyped respondents in the Health and Retirement Study 
(N = 8,865). Height (p <  0.05) and BMI (p <  0.001) polygenic scores become more predictive in later birth 
cohorts while education (p <  0.05) and heart disease (p <  0.05) PGSs become less predictive. Depression does 
not show a significant trend. The lines show fitted values for those at 1 SD above (gray) and below (black) the 
mean. Points are based on binned means for two groups of respondents (standardized value below 0, black; 
standardized value above 0, dark gray). For each group, the distribution of birth years is divided into 20 
subgroups with approximately equal numbers. Plotted points are the mean birth year and response for these 
subgroups.
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estimate a score for a particular phenotype. Rather, a polygenic scores casts a wide net across an individual’s 
entire genome to yield a single quantitative measure of genetic risk, or genetic risk score (GRS)31–34, allowing 
researchers to explore how genes operate within environments where the biological mechanisms are not yet fully 
understood35.

PGSs were constructed based on publicly available data from recent GWAS (additional details on the genetic 
data and the construction of polygenic scores are available in the SI)6–10. The same approach was conducted with 
each set of GWAS results. Briefly, SNPs in the HRS genetic database were matched to SNPs with reported results 
in a GWAS. Since the risk allele is not always readily identifiable, we removed all ambiguous SNPs. For each of 
these SNPs, a loading was calculated as the number of phenotypically associated reference alleles multiplied by 
the effect-size estimated in the original GWAS as shown in Equation 1, below. Thus, a polygenic score (PS) for 
individual i is a weighted average across the number of SNPs (n) of the number of reference alleles x (0, 1 or 2) at 
that SNP multiplied by the score for that SNP (βj):

∑ β=
=

PS x n( )/
(1)

i
j

n

j ij
1

where SNPs with relatively large p-values will have small effects (and thus be down weighted in creating the com-
posite), so we do not impose a p-value threshold. Loadings were summed across the SNP set to calculate the poly-
genic score. The score was then standardized to have a mean of 0 and SD of 1 for ease of interpretation (though 
analysis of raw scores does not change results). Genetic analyses were done using the second-generation PLINK 
software36. Finally, scores were residualized on the top 10 principal components computed from the non-Hispanic 
whites in HRS to ensure that none of the reported results are due to changes in population stratification (though 
results without residualization on PCs do not change, see Fig. S3 of SI). To examine changes in PGS penetrance, 
we estimated Equation 2:

= + + + ⋅ + .b b b b ephenotype person birthyear ps birthyear (2)i i i i i i0 1 2 3

Huber-White correction for the non-independence of spousal pairs does not change results (see Supplementary 
Information Table S4).
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