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Abstract: D-amino acids have distinct roles from their L-enantiomer. In particular, some D-amino
acids function as agonists or antagonists of neuronal receptors and are involved in higher brain
functions. Thus, it is important to precisely measure the levels of these amino acid enantiomers in
cells and tissues. Various quantification methods have been developed for measurements of chiral
amino acids. However, each method has advantages and disadvantages. Additionally, measuring
the amino acid enantiomers in crude biological samples requires a higher selectivity. In this study,
we developed a quantification method for amino acid enantiomers using derivatization with Nα-
(5-Fluoro-2,4-dinitrophenyl)-L-leucinamide (L-FDLA) followed by liquid chromatography–tandem
mass spectrometry (LC/MS/MS) with a conventional reversed-phase column. We simultaneously
identified 10 chiral amino acids. Furthermore, we applied this method to investigate murine tissue
samples and examined the effect of aging on the amino acid levels in aged brain regions. We found
that aging decreased the levels of both D-serine and D-aspartate in the hippocampus. In addition,
D-Phenylalanine in the thalamus significantly increased with age. In conclusion, our method is
suitable for the quantification of the D-amino acids in crude biological samples and may contribute
to elucidating the biological roles of chiral amino acids.

Keywords: D-amino acid; LC/MS/MS; L-FDLA; aging; brain

1. Introduction

Amino acids are pivotal nutrients which serve as energy sources and building blocks
for organisms. Twenty amino acids make up the mammalian proteins. They all (except
glycine) have one or two chiral centers where four different functional groups or atoms
are attached to the same carbon [1]. Therefore, each amino acid has two enantiomeric
forms, denoted L- and D-amino acids. In mammals, although L-amino acids predominate,
the D-enantiomers also exist and have biological functions in certain tissues such as the
brain [2]. In particular, D-serine (D-Ser) and D-aspartate (D-Asp) are relatively abundant
in the brain and have distinct roles from their L-enantiomers [3–5]. D-Asps were the first
free D-amino acids identified in mammals, including humans, and are a precursor for
N-methyl-D-aspartate (NMDA) [4,6–8]. D-Asp is abundant in the neonatal phase and its
amount decreases after birth as the expression of D-aspartate oxidase increases [8–10].
D-Ser is another major free D-amino acid produced from L-Ser by serine racemase and is a
co-agonist of the NMDA receptor that regulates neural functions [5]. Additionally, D-amino
acids act on endocrine systems, thus might be important to maintain homeostasis [4,11].
D-Asp stimulates the production of several hormones in the pituitary and hypothalamus,
and also promotes the production of testosterone in the testis [12–14]. Accordingly, the
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functions of D-amino acids have been increasingly investigated, and quantification methods
have been developed to investigate their biological roles.

D-amino acid quantification methods require high sensitivity and selectivity because
the abundance of D-amino acids in crude biological samples is low relative to L-amino acids.
Numerous L- and D-amino acid quantification strategies have been reported. One of the
approaches to detect D-amino acids is to employ enzymes that process D-amino acids but
not L-amino acids [15]. D-amino acid oxidase (DAO) is often used for enzymatic detection
of D-amino acids [15–17]. It converts basic and neutral D-amino acids to α-keto acids in
the presence of flavin adenine dinucleotide. Although enzymatic methods using DAO are
relatively easy and cheap, it is difficult to distinguish each D-amino acid in crude biological
samples. Thus, quantifying D-amino acids in crude biological samples requires analytical
separation techniques. To achieve a chiral resolution of amino acid enantiomers, high-
performance liquid chromatography (HPLC) is frequently employed [18–20]. However,
conventional octadecylsilane (ODS) columns cannot separate free D- and L-amino acids
because their retention times are identical [21]. Thus, chiral columns have been used for
this purpose. They are packed with a chiral stationary phase that can separate the amino
acid enantiomers [22,23]. However, these chiral columns have restrictions regarding mobile
phase solvents and their durability is lower than that of conventional ODS columns [24].
Additionally, the detection of low amounts of D-amino acids requires baseline separation.
Thus, liquid chromatography–mass spectrometry (LC/MS) is often employed, however
several chiral columns are incompatible with LC/MS due to solvent restriction.

Another method for the indirect chiral resolution of amino acid enantiomers is
chemical derivatization. Chemical derivatization allows separation on conventional
ODS columns [25]. It also allows taking advantage of increased signals and low back-
ground noise to detect low amounts of D-amino acids. Several chiral derivatizing reagents
have been developed. In 1984, Marfey developed the Nα-(5-Fluoro-2,4-dinitrophenyl)-L-
alaninamide (L-FDAA, also named Marfey’s reagent) enabling the indirect chiral resolution
of amino acid enantiomers and successfully separated the diastereomeric L- and D-amino
acids by HPLC [26]. This Marfey’s reagent is also compatible with LC/MS analysis [27].
Fujii et al. reported an advanced Marfey’s reagent, Nα-(5-Fluoro-2,4-dinitrophenyl)-L-
leucinamide (L-FDLA) [28]. They showed that L-FDLA exhibited a higher sensitivity and
separation for derivatized chiral amino acids compared with L-FDAA.

In this study, we used L-FDLA derivatization combined with LC/MS/MS to simultane-
ously quantify L- and D-amino acids in crude biological samples. Furthermore, we applied
this method to examine the effect of aging on the amino acid levels in aged brain regions.
We found that aging decreased the levels of both D-Ser and D-Asp in the hippocampus. In
addition, D-Phenylalanine (D-Phe) in the aged thalamus significantly increased.

2. Results
2.1. Optimization of the Multiple Reaction Monitoring (MRM) Settings of LC/MS/MS for
L-FDLA Derivatized Amino Acids

For this study, we prepared 10 commercially available D- and L-amino acids, including
alanine (Ala), asparagine (Asn), aspartate (Asp), leucine (Leu), methionine (Met), proline
(Pro), serine (Ser), glutamine (Gln), glutamate (Glu), and phenylalanine (Phe). Standard
L-amino acids were derivatized with L-FDLA as described in the method section. The
derivatization added approximately 294 Da to the molecular weight of the L-amino acid
(Figure 1). We performed mass spectrometry in electrospray ionization (ESI) positive
ion mode and determined the MRM settings using the direct infusion method. For all
metabolites, we selected [M+H]+ as the precursor ion and confirmed the intensity using
the selected ion monitoring (SIM) mode. We chose the N2 gas collision-induced fragment
ion based on the criteria that it had the highest intensity. We optimized the fragmentor
voltage and collision energy to achieve maximum MS intensity. We also confirmed the
MRM settings for derivatized D-amino acid compounds, but all parameters were similar to
L-amino acids derivatized with L-FDLA.
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Figure 1. Scheme of derivatization for amino acid enantiomers by Nα-(5-Fluoro-2,4-dinitrophenyl)-L-leucinamide (L-
FDLA). L-FDLA-derivatized amino acids become diastereomeric and can be separated by a conventional reversed-phase
high-performance liquid chromatography (HPLC) column.

2.2. Detection of Derivatized Standard Compounds by LC/MS/MS

Conventional reversed-phase HPLC columns cannot separate underivatized amino
acid enantiomers. Thus, chiral or enantioselective derivatization is essential for the sepa-
ration of D- and L-amino acid enantiomers. Besides, it is crucial to accurately identify D-
and L-amino acids in crude biological samples. However, the molecular weight difference
between Gln and Glu, or Asn and Asp, is approximately 1 Da, and the mass accuracy of a
typical tandem mass spectrometer is around 0.5 Da. Thus, they are difficult to distinguish
using a typical tandem mass spectrometer without performing HPLC column separation
due to the detectable decimal mass limit, and the presence of natural isotopes, such as
13C. For the separation, we employed an MG3 column, a conventional reversed-phase
ODS column, and performed chromatographic analysis using gradient elution with 5 mM
ammonium formate in water as mobile phase A and 100% of methanol as mobile phase B.
The gradient elution went from 80% to 20% of mobile phase A. Using this analytical setting,
we could distinguish the L- and D-enantiomers of all amino acids we tested (Figure 2). In
all cases, L-enantiomers were eluted earlier than D-enantiomers. The retention time (RT)
of L- and D-enantiomers differed by more than 0.6 min. The RT of L-Glu and D-Glu were
approximately 15.2 and 16.0 min, respectively. Those of L-Gln and D-Gln were approxi-
mately 16.7 and 17.3 min, respectively (Table 1 and Figure 2). Furthermore, we separated
and distinguished Asp and Asn enantiomers (Table 1 and Figure 2). Using this method, we
chromatographically separated most of the amino acid enantiomers.

Table 1. Multiple reaction monitoring (MRM) settings and retention time for the derivatized L- and D-amino acids. Standard
L- and D-amino acids (AA) were derivatized with L-FDLA and measured by LC/MS/MS with positive ESI mode. The
monoisotopic mass of standard amino acids before and after the derivatization (Da), precursor ion (m/z), product ion (m/z),
collision energy (eV), and retention time (min) were shown.

Monoisotopic Mass Retention Time

Before
Derivatization

After
Derivatization

Precursor
Ion (m/z)

Product Ion
(m/z)

Collision
Energy (eV)

L-AA
(min)

D-AA
(min)

Ala 89.0477 383.1441 384 339 6 17.0 18.9
Asn 132.0535 426.1499 427 382 8 16.0 17.0
Asp 133.0375 427.1339 428 383 6 14.0 14.9
Gln 146.0691 440.1656 441 334 10 16.7 17.3
Glu 147.0532 441.1496 442 397 8 15.2 16.0
Leu 131.0946 425.1910 426 380 4 17.9 22.4
Met 149.0510 443.1475 444 354 8 17.4 20.2
Phe 165.0790 459.1754 460 415 8 17.7 21.0
Pro 115.0633 409.1597 410 365 10 16.8 18.5
Ser 105.0426 399.1390 400 355 6 16.4 17.1
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Figure 2. Chromatograms of standard compounds of derivatized L- and D-amino acids. Standard
L- and D-amino acids were derivatized with L-FDLA and analyzed by LC/MS/MS. Representative
MRM chromatograms of derivatized L- and D-amino acids are presented as merged to confirm the
drift of retention time. In each panel, relative ion abundance (MS counts) versus retention time (min)
are shown.

2.3. Detection of Amino Acid Enantiomers in Biological Samples

Compared with the pure standard compounds, crude biological samples, such as cell
lysate and tissue homogenate, exhibit complex chromatograms. Some D-amino acids act
as neurotransmitters and are abundant in brain tissues [29,30]. Thus, we attempted to
detect amino acid enantiomers in murine brain cortex samples to validate our method.
After euthanization, C57BL/6N mice brains were immediately collected and the cortex was
separated. In these samples, we detected all the L-amino acids, but L-Leu had a bimodal
peak at the expected retention time (Figure 3). In the brain, D-Ser is reportedly the D-amino
acid with the highest concentration [7,31,32]. Accordingly, we found a prominent peak
corresponding to D-Ser (Figure 4). We also observed peaks for D-Asn, D-Asp, D-Phe, D-Ala,
and D-Pro. Although the peak of L-Glu was evident, that of D-Glu was difficult to detect.
Similarly, D-Gln, D-Leu, and D-Met were impossible to detect.
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Figure 3. Chromatograms of derivatized L-amino acids in the murine cortex samples. Tissue samples were extracted from
the cortices of 3-month-old mice. Representative MRM chromatograms of derivatized L-amino acids are shown. In each
panel, relative ion abundance (MS counts) versus retention time (min) are shown. Integrated MS count (green) represents
the amount of target molecules.
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Figure 4. Chromatograms of derivatized D-amino acids in the murine cortex samples. Tissue samples
were extracted from the cortices of 3-month-old mice. Representative MRM chromatograms of deriva-
tized D-amino acids are shown. In each panel, relative ion abundance (MS counts) versus retention
time (min) are shown. Integrated MS count (green) represents the amount of target molecules.

2.4. Validation of the Absolute Quantification of Amino Acid Enantiomers

To quantify the levels of D- and L-Asp, Asn, Ser, and Phe absolutely, we measured
various concentrations of standard compounds using our method. We confirmed that
the plots were linear within the concentrations that were tested (Figure 5). All tested
compounds had R2 values > 0.98. The equation coefficient in D-enantiomer is higher in
Asn, Asp, and Ser, but lower in Phe. Although the sensitivity of LC/MS/MS was slightly
lower for D-enantiomers, our method is suitable for the absolute quantification of both
D- and L-enantiomers.
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Figure 5. Standard curves of derivatized L- and D-amino acids. Trends of MS count to amino acid
concentrations were calculated by measuring the several standard solutions. The X-axis represents
concentrations of amino acids before being derivatized, and the Y-axis represents the integrated sum
of the peak area from each chromatogram. The equations and R2 values of each plot are shown.

2.5. Changes of Amino Acid Enantiomers in Aged Brains

D-Ser is an endogenous ligand of the NMDA receptor and its decline is associated
with synaptic plasticity and memory deficits in normal aging [33–35]. Indeed, it has been
reported D-Ser levels decline with age in the hippocampus [33]. However, it is still unclear
whether levels of other D-amino acid enantiomers decrease similarly. Here we applied our
method to compare the levels of enantiomers of Asp, Asn, Ser, and Phe in the cerebellum,
cortex, hippocampus, and thalamus of young and old animals. As previously reported, the
levels of D-Ser decreased in the hippocampus with age (Table 2).

However, we observed no changes in the cerebellum, cortex, and thalamus. Addi-
tionally, the levels of D-Asp significantly declined in the aged hippocampus. Regarding
L-enantiomers, L-Asn, L-Asp, and L-Ser also declined in the hippocampus with age. In the
cerebellum and cortex, the levels of all of amino acid enantiomers were the same between
young and aged mice. Interestingly, D-Phe, but not L-Phe, significantly increased with age
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in the thalamus. Thus, we established that our method was applicable to quantify amino
acid enantiomers in crude biological samples.

Table 2. Absolute quantification of L- and D-amino acids in various brain regions from young and old mice. Metabolites
were extracted from the cerebellum, cortex, hippocampus, and thalamus in young (3-month-old) and old (24-month-old)
mice. After the derivatization with F-FDLA, the levels of L- and D-Asp, Asn, Ser, and Phe were absolutely quantified by
LC/MS/MS. Amounts of L- and D-amino acids were calculated by using the standard curves obtained in Figure 5. The data
is represented as means ± SD from young (n = 5) and old (n = 8) animals.

Young Old

L-Asn
(µmol/g tissue)

Cerebellum 0.107 ± 0.018 0.105 ± 0.024 n.s.

Cortex 0.135 ± 0.038 0.131 ± 0.016 n.s.

Hippocampus 0.150 ± 0.015 0.113 ± 0.019 p < 0.05

Thalamus 0.130 ± 0.025 0.122 ± 0.022 n.s.

D-Asn
(µmol/g tissue)

Cerebellum 0.000725 ± 0.000111 0.00100 ± 0.00047 n.s.

Cortex 0.000859 ± 0.000246 0.00103 ± 0.00024 n.s.

Hippocampus 0.00107 ± 0.00006 0.000893 ± 0.000230 n.s.

Thalamus 0.000625 ± 0.000136 0.000620 ± 0.000222 n.s.

L-Asp
(µmol/g tissue)

Cerebellum 11.3 ± 2.3 9.39 ± 2.28 n.s.

Cortex 7.02 ± 2.04 7.79 ± 0.44 n.s.

Hippocampus 9.54 ± 1.04 7.37 ± 1.24 p < 0.05

Thalamus 7.88 ± 0.74 6.73 ± 1.51 n.s.

D-Asp
(µmol/g tissue)

Cerebellum 0.0126 ± 0.0053 0.0147 ± 0.0043 n.s.

Cortex 0.0675 ± 0.0253 0.0608 ± 0.0062 n.s.

Hippocampus 0.0825 ± 0.0130 0.0560 ± 0.0121 p < 0.05

Thalamus 0.0422 ± 0.0195 0.0311 ± 0.0060 n.s.

L-Phe
(µmol/g tissue)

Cerebellum 0.107 ± 0.009 0.119 ± 0.034 n.s.

Cortex 0.0996 ± 0.0231 0.112 ± 0.019 n.s.

Hippocampus 0.129 ± 0.012 0.127 ± 0.026 n.s.

Thalamus 0.0966 ± 0.0212 0.101 ± 0.032 n.s.

D-Phe
(µmol/g tissue)

Cerebellum 0.287 ± 0.096 0.221 ± 0.041 n.s.

Cortex 0.246 ± 0.059 0.201 ± 0.057 n.s.

Hippocampus 0.207 ± 0.069 0.209 ± 0.057 n.s.

Thalamus 0.211 ± 0.015 0.241 ± 0.015 p < 0.05

L-Ser
(µmol/g tissue)

Cerebellum 0.983 ± 0.114 1.06 ± 0.29 n.s.

Cortex 1.31 ± 0.34 1.30 ± 0.07 n.s.

Hippocampus 1.56 ± 0.09 1.32 ± 0.18 p < 0.05

Thalamus 0.896 ± 0.235 0.819 ± 0.139 n.s.

D-Ser
(µmol/g tissue)

Cerebellum 0.0285 ± 0.0158 0.0211 ± 0.0080 n.s.

Cortex 0.609 ± 0.156 0.580 ± 0.048 n.s.

Hippocampus 0.646 ± 0.041 0.526 ± 0.060 p < 0.01

Thalamus 0.313 ± 0.109 0.279 ± 0.036 n.s.

n.s.: not significant.
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3. Discussion

In this study, we have developed a new absolute quantification method for amino
acid enantiomers and validated its application to murine tissue samples. Many analytical
methods have been reported for measurements of L-and D-amino acids. Separation before
detection is essential for the accurate identification of chiral amino acids. Previously, liquid
chromatographic methods using pre-column derivatization with chiral reagents have been
developed for the indirect enantioseparation of D- and L-amino acids. These methods
combined HPLC separation with diastereomerization using reagents such as L-FDAA [26],
1-(9-Fluorenyl)ethyl chloroformate [36], S-flunoxaprofen [37], or 1-(9-anthryl)-2-propyl
chloroformate [38]. Additionally, o-phthaldialdehyde has been used in combination with
N-acetyl-L-cysteine or N-tert-butyloxycarbonyl-L-cysteine [39,40]. Most of these methods
used UV absorbance or fluorescence for the detection. However, these detection methods
are less selective than MS detection. Therefore, derivatizing reagents compatible with MS
are required for amino acid metabolomics. L-FDLA is a derivative of L-FDAA and gives
more robust signals than L-FDAA in LC/MS [28]. However, we did not directly compare
the detection sensitivity between L-FDAA- and L-FDLA-derivatized amino acids in this
study, and further investigation is necessary to confirm the superiority of our method.

We applied our method to 10 pairs of amino acids. Our method worked for all the
amino acids tested in this study when we measured each standard compound. On the
other hand, detectable D-amino acids were limited in biological samples. We could not
detect D-Gln, D-Glu, D-Leu, and D-Met, while we observed all the L-amino acids in the
murine cortex. In particular, we could detect relatively prominent peaks of L-Glu and L-Gln
in the cortex sample but failed to detect their D-enantiomers. Previous study also indicated
that the ratio of L- and D-Glu and Gln is relatively large compared to other amino acids [41].
Previously, another group tried to map the regional distribution of D-amino acids in the
brain, but they also failed to detect D-Asp, D-Ala, and D-Leu in the cerebrum, hypothalamus,
and cerebellum in the 6-week-old rats [32]. Therefore, our method is more sensitive and
applicable to the biological samples, at least for D-Asp and D-Ala. Regarding D-Ser, they
also could determine its concentration in the cerebellum and hippocampus and reported
their levels as 0.210 and 0.231 µmol/g tissue, respectively. In this study, we determined
the levels of D-Ser in the hippocampus as 0.646 µmol/g tissue using 3-month-old mice.
Thus, the sensitivity is almost comparable for D-Ser. Meanwhile, Inoue et al. successfully
measured D-Leu in some brain regions including the cerebrum by combining 2D-HPLC
with 4-Fluoro-7-nitrobenzofurazan derivatization [42]. Our fault in D-Leu detection may
be attributed to ion suppression. Moreover, we got two peaks in L-Leu MRM possibly due
to the incomplete separation of Leu and Ile. Therefore, the separation of these amino acids
needs to be optimized by trying other columns and/or solvents.

Elucidating the distributions of D-amino acids in various tissues helps to clarify the
physiological functions of D-amino acids. In the present study, we applied our method to
determine the D-amino acid levels in various brain regions because of the importance of
D-Ser and D-Asp in neuronal functions. We confirmed that the levels of both D-Ser and
D-Asp decreased in the hippocampus with age. Besides, D-Phe significantly increased with
age in the thalamus. In the brain, L-Phe is a competitive antagonist of the NMDA and
AMPA receptors [43,44]. D-Phe is also an agonist of the niacin receptor 2 (NIACR2) [45].
However, the biological role of D-Phe is unknown. Thus, investigating the role of D-Phe
and NIACR2 in the aged thalamus would of interest. Additionally, D-amino acids also exist
in the heart, lungs, kidney, liver, thyroid, pancreas, adrenal gland, testes, and ovaries, but
little is known about their importance in these tissues [14,16,46–49]. Interestingly, levels
of D-amino acids have been reported as potential biomarkers of kidney function, aging,
and diabetes [50]. Therefore, it is also important to test the applicability of our method in
other tissues.
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4. Materials and Methods
4.1. Reagents

The standard compounds of L-Ala, L-Asn, L-Asp, L-Leu, L-Met, L-Pro, L-Ser, D-Asp,
and D-Ser were purchased from Nacalai Tesque (Kyoto, Japan). L-Gln, L-Glu, L-Phe, D-
Ala, D-Gln, D-Glu, D-Leu, D-Met, D-Phe, D-Pro, and L-FDLA were purchased from Tokyo
Chemical Industry Co. Ltd. (Tokyo, Japan). D-Asn, LC/MS-grade ultrapure water and
methanol, and ammonium formate were purchased from Wako Pure Chemical Industries
Ltd. (Osaka, Japan).

4.2. Animals

Male C57BL/6N mice were obtained from Japan SLC Inc. (Hamamatsu, Japan) and
were kept under a controlled temperature and standard light conditions (a 12:12 h light–
dark cycle). They were fed a standard chow diet (CLEA Japan Inc., Tokyo, Japan) with
free access to water for 3 or 24 months. All the animal experiments were approved by the
Animal Experiment Committee of University of Toyama (Approval number A2017MED-11)
and were performed in accordance with the Guidelines for the Care and Use of Laboratory
Animals at the University of Toyama, which are based on international policies.

4.3. Metabolite Extraction from Animal Tissues

Metabolite extraction was described elsewhere [51]. Briefly, cerebellum, cortex, hip-
pocampus, and thalamus were excised from 3- and 24-month-old mice. The tissues were
immediately frozen in liquid nitrogen and kept at −80 ◦C until use. Wet tissues weighing
30 mg were ground in 1 mL of ice-cold 50% methanol—50% water by using a multibeads
shocker (Yasui Kikai, Osaka, Japan) under optimal conditions. The lysate was centrifuged,
and the supernatant was collected into a new tube. Then, the same volume of chloroform
was added to the supernatant. The mixture was centrifuged at 13,000× g for 10 min at 4 ◦C.
The separated upper aqueous phase was transferred into a new tube and the same proce-
dure was repeated one more time. Finally, the aqueous phase was dried and reconstituted
in LC/MS-grade water.

4.4. Derivatization of Amino Acids

Standard amino acid compounds were derivatized by L-FDLA before the separation
by HPLC. To derivatize amino acid compounds, 50 µL of the standard solution were mixed
with 10 µL of 200 mM sodium bicarbonate and 10 µL of 1% L-FDLA in acetone. The
mixture was incubated at 40 ◦C for 1 h. After returning to room temperature, 930 µL of 50%
methanol—50% water was added to the mixture. Subsequently, 10 µL of the solution was
mixed with 490 µL of water followed by filtration using a 0.45 µm Milex filter unit (Merck
Millipore, Burlington, VT, USA). To derivatize tissue samples, 50 µL of the reconstituted
tissue samples mentioned above were processed as same as standard compounds. During
these procedures, we keep samples in dark conditions.

4.5. LC/MS/MS Condition

Chromatographic analysis was performed by using an Agilent 6460 Triple Quad
mass spectrometer that was coupled with an Agilent 1290 HPLC system. The detection of
metabolites was conducted using positive ESI and multiple reaction monitoring (MRM)
mode. The mass spectrometer settings were described previously [52]. To optimize MRM
settings, standard compounds were prepared at a concentration of 1 µM and 10 µL of the
solution was isocratically injected into the mass spectrometer having 50% of the mobile
phase A (5 mM ammonium formate in water) and 50% of the mobile phase B (100%
methanol) at a flow rate of 150 µL/min. [M+H]+ ion was selected as a precursor ion for all
amino acids. The collision energy to produce product ions was selected by checking the
maximum intensity for each amino acid. The optimized MRM settings for the derivatized
amino acids are listed in Table 1. The HPLC separation of the amino acids was performed
by using an MG3 column (2.0 × 150 mm, particle size of 3 µm, Osaka Soda, Osaka, Japan),
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having a gradient of mobile phase A (5 mM ammonium formate in water) and mobile
phase B (100% of methanol) at a flow rate of 150 µL/min. The programmed mobile phase
gradient was as follows: 0–10 min, 20–80% B; 10–15 min, 80% B; 15–15.01 min, 80–20% B.
The column was equilibrated prior to sample injection, and the temperature of column
oven was set at 40 ◦C.

4.6. Quantification of Amino Acids

To generate a standard curve of L- and D-amino acids, the standard compounds were
diluted in water at concentrations adjusted for tissue contents. After derivatization, 10 µL of
the standard solution or tissue solution was separated and detected using the LC/MS/MS
system. Each chromatographic area was integrated to calculate the amount of the com-
pounds using the Mass Hunter Quantitative analysis software (Agilent Technologies, Santa
Clara, CA, USA).

4.7. Statistical Analysis

The differences between the young and old tissues were analyzed by using an unpaired
Student’s t-test.

5. Conclusions

In conclusion, the absolute quantification of D-amino acid levels using LC/MS/MS
combined with L-FDLA pre-derivatization is a useful and easy method for crude biological
samples. Using this method, we found an alteration in levels of several D-amino acids
during aging. Our method is more sensitive, at lease for several D-amino acids, compared
with the methods previously reported. It is important to improve the sensitivity and to
detect very low concentration D-amino acids in various tissues.
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