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Simple Summary: Stimulator of interferon genes (STING) is currently recognized as a driver for
anti-tumor immunity against various malignancies and is expected to enhance the anti-tumor effects.
In this review, we summarized recent knowledges gained from epigenetics-mediated skin cancer
development and discussed the clinical application of STING agonists in the treatment of skin cancer.

Abstract: Recent developments in immunotherapy against malignancies overcome the disadvantages
of traditional systemic treatments; however, this immune checkpoint treatment is not perfect and
cannot obtain a satisfactory clinical outcome in all cases. Therefore, an additional therapeutic option
for malignancy is needed in oncology. Stimulator of interferon genes (STING) has recently been
highlighted as a strong type I interferon driver and shows anti-tumor immunity against various
malignancies. STING-targeted anti-tumor immunotherapy is expected to enhance the anti-tumor
effects and clinical outcomes of immunotherapy against malignancies. In this review, we focus on
recent advancements in the knowledge gained from research on STING signaling in skin cancers. In
addition to the limitations of STING-targeted immunotherapy, we also discuss the clinical application
of STING agonists in the treatment of skin cancer.
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1. Introduction

Immune cells circulate in the human body for protection against external stimuli,
such as antigens and microorganisms, by innate immunity and antigen-specific acquired
immune responses [1,2]. Tumor cells are also recognized by host immune cells, and the
importance of anti-tumor immune reactions to eradicate malignancies has been identified
for a long time in the clinical scenario [3]. In particular, acquired immune responses
contribute to anti-tumor immunity against malignancies mediated by cytotoxic reactions
to tumor cells [4,5]. In contrast, immune cells face some difficulty in exerting anti-tumor
immune responses to malignant tumor cells. One of the representative reasons is that
tumor cells establish a clever escape strategy from anti-tumor immunity mediated by the
signaling of PD-1/PD-L1 or CTLA-4 [6,7]. Theoretically, we expect to observe a sufficient
anti-tumor immune response to malignancies by immune checkpoint inhibitor treatment;
however, this treatment is not perfect, and it has been unable to obtain a satisfactory clinical
outcome in all cases [6,7]. Therefore, an additional therapeutic option for malignancy is
currently needed in oncology.

Type I interferon (IFN) is a representative inflammatory cytokine that activates
the acquired immune response mediated by antigen-presenting cells and subsequently
drives cytotoxic cell expansion and activation [8,9]. Type I IFN is currently used to treat
malignancies [10,11]. However, the currently used type I IFN treatment does not yield
sufficient therapeutic outcomes. Therefore, a more potent type I IFN driver might have
a beneficial impact on the treatment of malignancies.

Among various type I IFN-inducible candidates, stimulator of IFN genes (STING)
has been recently recognized as a strong type I IFN driver and it has shown anti-tumor
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immunity against various malignancies [12,13]. STING is activated by external stimuli,
such as viruses, and leads to the enhancement of IFN-β-mediated augmentation of im-
mune responses. Therefore, STING-targeted anti-tumor immunotherapy is highlighted by
clinicians as an enhancer of the anti-tumor effects and clinical outcomes of immunother-
apy against malignancies. However, there are only a limited number of review papers
in dermatology.

In the present review, we focus on recent advancements in the knowledge gained
from research regarding STING signaling in skin cancers. In addition to the limitations of
STING-targeted immunotherapy, we also discuss the clinical application of STING agonists
in skin cancer immunotherapy in the future.

2. The Mechanism of STING Signaling

STING is a crucial positive immune driver that induces the production of type I IFN
by triggering intracellular pathogens, such as viruses [14]. STING-mediated type I IFN
promotes the activation of acquired immune responses mediated by antigen-presenting
cells and enhances downstream cytotoxic immune reactions [9].

As an activation mechanism, cytosolic DNA becomes a trigger for the activation of
cGAS-cGAMP-STING signaling [15–17] (Figure 1). Cytoplasmic DNA is a danger signal
that is released from the nucleus and mitochondria, or by the induction of viruses or
bacteria [14]. These released cytosolic DNAs, such as double-strand DNA (dsDNA) or
single-strand DNA (ssDNA), are detected by a DNA sensor protein, cGAS, which enhances
the synthase of 2′3′-cyclic GMP-AMP (2′3′-cGAMP). cGAMP acts as a second messenger for
STING activation [15–19]. dsDNA acts upstream of STING on cGAS, while bacteria can also
generate CDNs and activate STING independently of cGAS [20–22]. STING consists of four
transmembrane domains located in the endoplasmic reticulum (ER). After cGAMP binds
to STING, STING translocates to the perinuclear site and drives the downstream cascade.
STING positively regulates the downstream pathway and activates the transcription factor
interferon regulatory factor 3 (IRF3) and signal transducer and activator of transcription 6
(STAT6) through TANK-binding kinase 1 (TBK1). STING activates TBK1 to enhance the
phosphorylation of IRF3 or STAT6, which enters the nucleus to promote the transcription of
type I IFN. Type I IFN enhances antigen presentation ability and T-cell proliferation in the
skin [8,9] (Figure 2). To drive anti-tumor acquired immune responses, antigen-presenting
cells, especially dendritic cells, recognize antigens on the surface of skin cancers, and
migrate to draining lymph nodes to present antigens to naïve T-cells for the induction of
antigen-specific reactive T-cells [23,24]. Tumor antigen-specific T-cells drive anti-tumor
immune responses mediated mainly by cytotoxic reactions. Therefore, these signaling
effects are expected to elicit an anti-tumor immune response against skin cancers.

Figure 1. Pathway of STING signaling and anti-tumor immunity. Cytosolic DNA triggers the
activation of cGAS-cGAMP-STING signaling. Cytosolic DNA is detected by a DNA sensor protein,
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cGAS, which enhances the synthase of 2′3′-cyclic GMP-AMP (2′3′-cGAMP). cGAMP plays as a second
messenger for the activation of STING. Bacteria can also generate CDNs and activate STING in-
dependently of cGAS. STING activates transcription factors IRF3 and STAT6 through TBK1 and
promotes the gene transcription of type I IFN. DNA: deoxyribonucleic acid, cGAS: cyclic GMP-AMP
synthase, CDNs: cyclic dinucleotides, STING: Stimulator of IFN genes; TBK1: tank binding kinase 1;
IRF3: interferon regulatory factor 3, NF-kB: nuclear factor-kappa B; IFN: interferon; SOX: SRY-box
transcription factors; NLRX1: NLR Family Member X1.

Figure 2. Cutaneous immune responses against tumor cells. Antigen-presenting cells, especially
dendritic cells, recognize antigens on the surface of skin cancers, and migrate to draining lymph
nodes to present tumor antigens to naïve T-cells for the induction of antigen-specific reactive T-cells.
These tumor antigen-specific T-cells react to tumors to drive an anti-tumor immune response.

In addition, the STING signaling pathway plays an important role in various skin
diseases. Keratinocytes are major constitutive cells in the epidermis and regulate inflamma-
tory responses against external environmental stimuli involved in various inflammatory
skin diseases [25–28]. The characteristics of the keratinocytes located in the outermost
layer of the skin suggest they can be influenced by external organisms to induce inflam-
matory cytokine production. Cytosolic DNA induces weak inflammatory responses in
keratinocytes; however, these effects are synergized with TNF-α and IL-1β [29]. Therefore,
STING signaling may be involved in various inflammatory processes under certain inflam-
matory skin conditions. Indeed, STING signals enhance the degree of inflammation in skin
diseases, such as psoriasis [30], acne [31], and hidradenitis suppurativa [32]. Therefore, the
skin is expected to be influenced by STING signaling.

3. STING-Involved Anti-Tumor Immunity

There are recent updates in the research on STING in skin cancers. In this section,
we refer to skin malignancies in the detailed molecular mechanism of STING-mediated
anti-tumor immunity, such as melanoma, squamous cell carcinoma, Merkel cell carcinoma,
and adult T-cell leukemia/lymphoma.

3.1. Melanoma

Melanoma is a malignancy derived from melanocytes that shows unfavorable clinical
outcomes following current treatment [33]. Recent advancements in immune checkpoint
inhibitor treatment or BRAF-mutation targeted inhibitors dramatically overcome the lim-
itations of current treatments and yield favorable clinical outcomes [34–36]. However,
intractable cases of these novel treatments do exist in patients with melanoma. Therefore,
STING-targeted treatment is currently seen as a possible alternative or additive treatment
for melanoma.
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STING enhances anti-tumor immunity against melanoma mediated by IFN [37–41],
which activates immune cells such as CD11c+ DC, CD8+ cells and NK cells in response to
melanoma cells [42–44]. STING also upregulates MHC class I molecules, thereby enhancing
the recognition or killing effect of cytotoxic T-cells [45]. A STING stimulator, cGAMP,
injection into the tumor leads to the activation of STING, subsequently enhancing CD8+ cell
infiltration into the tumor and suppressing tumor growth [46]. STING also enhances
chemokines, such as CXCL10, CCL5, and IL-33, which also contribute to the infiltration of
NK cells [47]. STING induces the production of TNF-α, which is essential for anti-tumor
immunity [48].

Several studies suggest a potent additional therapeutic effect of STING signaling in
combination with immunotherapy. cGAS-deficient mice showed impaired growth of B16
melanomas in response to PD-L1 antibody treatment [49]. Depletion of CD8+ T-cells or
Mϕ impaired the anti-tumor effects of cGAMP treatment [50]. In addition, CAR-T cell
treatment eradicates tumors more effectively with STING agonists that stimulate immune
responses to eliminate tumor cells [51].

STING is also responsible for the efficacy of chemotherapy in melanoma. 5-fluorouracil
(5-FU) is a representative chemotherapeutic agent, and its responsiveness depends on in-
trinsic STING signaling in tumor cells and subsequent type I IFN production. Consistently,
the deficiency of STING in tumor cells is related to the requirement of a higher dose of
5-FU to exert anti-tumor effects [52].

Radiation is one of the therapeutic options for melanoma treatment, and combination
therapy with an immune checkpoint inhibitor is expected to show abscopal effects against
melanoma [53]. Consistently, inhibition of pattern recognition by STING signaling neg-
atively regulates type 1 IFN production and prevents the regression of abscopal tumors
by treatment with radiation and an immune checkpoint blockade [54]. Since the NF-κB
pathway supports the initiation and progression of tumors, this pathway involves the
mechanisms of radiotherapy resistance of tumor cells. The deficiency of non-canonical
NF-κB activates radiation-induced anti-tumor immunity mediated by the STING sensor-
dependent DNA-sensing pathway, triggering DC activation [55]. Therefore, STING is also
involved in resistance to radiotherapy.

3.2. Cutaneous Squamous Cell Carcinoma

Cutaneous squamous cell carcinoma is a skin cancer derived from epithelial ker-
atinocytes, and its advanced form has an unfavorable clinical course because of the limited
number of therapeutic options in the current treatment [56–58]. In addition, immune check-
point inhibitor treatment is not widely used for treating metastatic cutaneous squamous
cell carcinoma. Therefore, clinicians need novel treatment options for cutaneous squamous
cell carcinoma.

STING has been identified as an intrinsic regulator of squamous cell carcinoma
survival [59,60]. STING positively regulates the generation of reactive oxygen species
(ROS), and STING reduction impairs DNA damage, leading to therapeutic resistance. Con-
sistently, low STING expression in squamous cell carcinoma is associated with unfavorable
clinical behavior. The pharmacological activation of STING enhances anti-tumor effects
by combining DNA-damaging agents [59]. STING induces type 1 IFN and CD8+ T-cell-
mediated anti-tumor immunity [61], and enhances the production of immunosuppressive
cytokines and impairs the infiltration of regulatory T-cells [62].

In contrast, cytosolic DNA triggers chromosomal instability in tumor cells and en-
hances tumor metastasis. This depends on the activation of cGAS-STING signaling by
cytosolic DNA-sensing stimulation [63].

Activated-STING increases IFN production and enhances the expression of PD-1
pathway in vivo [59]. STING is also a positive driver of chemotherapy-induced anti-tumor
immunity. Combination therapy using cisplatin and cGAMP enhances the gene expression
of CXCL9 and CXCL10 in tumor tissues and inhibits tumor growth [64]. STING promotes
the cetuximab-induced activation of NK cells and DCs [65].
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3.3. Merkel Cell Carcinoma

Merkel cell carcinoma is a rare cutaneous malignancy derived from neuroendocrine
cells, and Merkel cells act as mechanoreceptors. Merkel cell carcinoma exhibits aggressive
clinical behavior with a high mortality rate. Elderly and immunocompromised host
conditions contribute to the development of Merkel cell carcinoma. Although there are
a limited number of therapeutic options for Merkel cell carcinoma with distant metastasis
and immune checkpoint inhibitor treatment, avelumab shows favorable clinical outcomes.
Therefore, anti-tumor immunity against Merkel cell carcinoma is needed as an additional
therapeutic option.

The Merkel cell polyoma virus plays an important role in the oncogenesis of Merkel
cell carcinoma, and its replication and/or transcription drive an innate immune response via
cGAS-STING [66]. Furthermore, STING is completely silenced in Merkel cell carcinomas [67].
STING deficiency contributes to the immunosuppressive nature of Merkel cell carcinoma.
STING agonists enhance cell death in Merkel cell carcinoma in addition to DNA released
by the dying cancer cells, which enhances the innate immune response and activates anti-
tumor adaptive responses. Therefore, STING signaling in Merkel cell carcinoma plays
an important role in anti-tumor immunity.

3.4. Adult T-Cell Leukemia/Lymphoma

Adult T-cell leukemia/lymphoma is a malignancy associated with human T-cell
lymphotropic virus type I (HTLV-1)-infected mature CD4+ T-cells [68,69]. Adult T-cell
leukemia/lymphoma is divided into four clinical groups according to Shimoyama’s classifi-
cation based on the severity, number of abnormal lymphocytes, and organ involvement [69].
Skin lesions are observed in approximately 50% of adult T-cell leukemia/lymphoma pa-
tients, and the assessment of skin lesions is helpful in prognosis [70–72]. Although aggres-
sive types, namely the acute and lymphoma types of adult T-cell leukemia/lymphoma,
show an unfavorable clinical course [73–75], the chronic and smoldering types are indolent
and can usually be managed by “watchful waiting” [76].

IFN is a key therapeutic target for the innate immune response to viruses. IFN-α is
a standard therapeutic option for adult T-cell leukemia/lymphoma with a combination of
the nucleoside reverse transcriptase inhibitor zidovudine. Tax expression, which is respon-
sible for the development of adult T-cell leukemia/lymphoma, suppresses the induction of
IFN production by cGAMP synthase plus STING stimulation [77]. STING enhances the
formation of a complex of IRF3-Bax leading to adult T-cell leukemia/lymphoma apop-
tosis, suggesting that STING is responsible for anti-tumor activity against adult T-cell
leukemia/lymphoma [78].

3.5. STING Anti-Tumor Effect Expected Skin Cancers

Although there have been no reports regarding the relationship between STING and its
downstream cytokines, these are involved in the suppression of basal cell
carcinoma [79–81], diffuse large B-cell lymphoma [82], mycosis fungoides [83–90], and
Sézary syndrome [83–85,91–95]. Therefore, these cutaneous malignancies are expected to
have a beneficial effect on STING-mediated anti-tumor effects.

3.5.1. Basal Cell Carcinoma

Basal cell carcinoma is a malignancy arising from the epidermal basal cells [96].
Although basal cell carcinoma shows local invasion, metastasis is a rare event. There are
some drugs, such as a hedgehog signaling pathway inhibitor, but these have not achieved
successful outcomes. Due to the limited number of therapeutic options for metastatic basal
cell carcinoma in such rare cases, a therapeutic candidate for anti-tumor immune responses
against basal cell carcinoma has been required for a long time.

IFN-α injection into the tumor is effective in basal cell carcinoma [79]. IFN-α induces
the expression of Fas in basal cell carcinoma leading to apoptosis of the tumor [80], sug-
gesting that type I IFN plays an important role in the regulation of basal cell carcinoma.
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In addition, a previous study reported that IFN-γ increased in spontaneously regressing
basal cell carcinoma, suggesting that cytotoxic immune reaction-mediated Th1 might play
a pivotal role in the regulation of basal cell carcinoma [81]. STING drives the downstream
immune reaction mediated by CD8+ T-cells, which produce an abundance of IFN-γ, and is
expected to have beneficial therapeutic effects.

3.5.2. Cutaneous Lymphomas

Diffuse large B-cell lymphoma is a malignancy of B-cells and it is a common type
of non-Hodgkin cutaneous lymphoma [97]. Cutaneous diffuse large B-cell lymphoma is
commonly observed in the extremities and clinically appears as solid nodules or tumors
in the skin. In addition to the specific therapeutic approach for diffuse large B-cell lym-
phoma targeting CD20 cell surface markers, immunotherapy is currently highlighted as
an alternative treatment option for clinicians.

Although there have been no reports regarding STING and diffuse large B-cell lym-
phoma, IFNs have been used for treatment. Among IFNs, IFN-β shows more potent direct
suppressive effects on tumor cell growth by inducing apoptotic cell death following DNA
damage, caspase-3 activation, and the annexin V binding effect [82]. Therefore, STING-
mediated IFN is expected to show anti-tumor effects on diffuse large B-cell lymphoma.

Mycosis fungoides are malignant tumors of T lymphocytes with epidermotropism
in the skin [68,98–101]. Mycosis fungoides exhibits an indolent clinical course with
a slow advancement starting from patches to plaques and eventually developing into
nodules/tumors as a more infiltrated form [68]. The prognosis of mycosis fungoides is
closely related to the clinical stage, skin involvement, and systemic organ involvement [68].

Several studies have shown the therapeutic effects of IFN-α on mycosis fungoides [83].
IFN-α enhances anti-tumor effects in combination with chemotherapy, phototherapy, and
anti-CCR4 antibody treatment [84–86]. Topical IFN-β showed therapeutic potential for
mycosis fungoides and showed rapid tumor resolution [87]. Furthermore, intratumoral
IFN-γ administration has a therapeutic effect on mycosis fungoides [88–90].

Sézary syndrome is a T lymphocyte-derived malignancy characterized by erythro-
derma as a clinical manifestation [98,99,102]. Although STING-mediated anti-tumor effects
have not been reported in patients with Sézary syndrome, the downstream of STING signal-
ing IFNs have also been investigated as a therapeutic option for Sézary syndrome. IFN-α
is effective for Sézary syndrome [91] and the combination of IFN-α and chemotherapy or
phototherapy shows more potent therapeutic effects [83–85,92–94]. IFN-γ also enhances
cytotoxic activity against tumor cells in Sézary syndrome [95]. Therefore, these findings
suggest that STING-mediated anti-tumor immune reactions might be beneficial for the
treatment of Sézary syndrome.

Other effects of IFNs are those against tumor and anti-tumor immune responses. IFN-
α/β enhances immunoglobulin production by B-cells. IFN-γ enhances NK cell activity,
suppresses tumor growth, and reduces IL-4 production in patients with mycosis fungoides.
Therefore, STING-targeted treatment is expected to show the effect of these downstream
cytokines on mycosis fungoides.

4. STING Strategy for Skin Cancers

To obtain a more potent anti-tumor effect mediated by the STING signal, some modifi-
cations of the STING stimulator have been investigated. Cationic liposomes with varying
surface polyethylene glycol (PEG) are used to encapsulate cGAMP to facilitate its cy-
tosolic delivery, and antigen-presenting cells improve the cellular uptake of cGAMP and
pro-inflammatory gene induction [103]. Biodegradable poly(beta-amino ester) (PBAE)
nanoparticles to deliver CDNs for STING agonists synergize with checkpoint inhibitors
and have strong potential to enhance cancer immunotherapy [104]. cGAMP encapsulated
in lipid nanoparticles conjugated with mannose (LP-cGAMP) was designed for delivery
to DCs. LP-cGAMP potently drives STING-mediated inflammatory reactions and sub-
sequently enhances CD8+ T-cell infiltration. Consistently, STING activation upregulates
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PD-L1 on tumor cells and has a beneficial impact on the anti-tumor immune response
in B16F10 and BRAF-mutated murine melanoma animal models [105]. Microfabricated
polylactic-co-glycolic acid (PLGA) particles encapsulated a STING agonist that triggers
anti-tumor immune reactions to suppress tumor growth and have a beneficial impact on
their survival. STING agonist-loaded microparticles improve the response to immune
checkpoint blockade therapy [106].

In addition, several novel STING agonists have been developed for melanoma treat-
ment. Manganese potentiates the anti-tumor immune response as a STING agonist [107].
Dimeric aminobenzimidazole (diABZI) is another STING agonist that promotes tumor
cell death in melanoma in combination with BRAF inhibitors [108]. Cytomegalovirus
(CMV) acts as a STING agonist in tumors. CMV-infected tumors in STING-deficient mice
show no additional immune reactions, such as macrophage and CD8+ T-cell infiltration
and decreased inflammatory cytokine and chemokine production [109]. Two highly po-
tent cyclic dinucleotide STING agonists, IACS-8803 and IACS-8779, were developed as
STING agonists and enhanced systemic anti-tumor responses in a B16 murine model of
melanoma [110]. Haspin kinase (HASPIN) is related to the regulation of STING signaling;
therefore, HASPIN inhibition reduces proliferation of the tumor cells by the activation of
the STING pathway and STING-dependent type I IFN and decreased Treg [111]. ADU-S100
is a STING agonist [112] and it has anti-tumor effects in cervical cancer [113], pancreatic
cancer [114], esophageal adenocarcinoma [115], and prostate cancer. Therefore, this analog
is expected to have anti-tumor effects against cutaneous malignancies.

Combination therapy with STING has been proposed for the treatment of melanoma.
The phagocytosis checkpoint of signal regulatory protein α (SIRPα) and STING in anti-
gen presentation cells enhance the anti-tumor immune response [116]. STING signaling
activates antigen-presenting cells to induce the activation of CD8+ cells. In addition,
a nanoparticle combined with TLR9, STING, and RIG-I with a melanoma-specific peptide
enhances the anti-tumor immune response [117].

There are several reports on STING-targeted therapeutic options. SOX2 acts as
a STING inhibitor. SOX2 enhances STING degradation in an autophagy-dependent manner
and subsequently suppresses the production of type I IFN. Consistently, SOX2 supports
squamous cell carcinoma cell growth by suppressing anti-tumor immunity. A combination
of a STING agonist with anti-PD-L1 antibody treatment enhances the tumor-specific cyto-
toxic lymphocyte reaction, thereby improving survival [118]. NLRX1 is a mitochondrial
NOD-like receptor that enhances the NF-κB and JNK pathways through the production
of ROS. NLRX1 promotes HPV16 E7-potentiated STING turnover. Consistently, NLRX1
depletion activates type I IFN-dependent T-cell infiltration profiles and tumor control [119].

5. Epigenetic Modification

Epigenetic changes are chemical modifications of DNA and DNA-binding histones,
which can modulate chromatin structure and gene transcription by exposure to environ-
mental stimuli without changing DNA sequence information [120].

STING signaling is not suitable for melanoma cells in terms of long-term tumor devel-
opment because it triggers anti-tumor immunity. As one of the strategies for melanoma
development, STING is suppressed in melanoma cells by epigenetic silencing of STING
and cyclic GMP-AMP synthase [121], possibly due to suppressed DNA hypermethylation
in melanoma cells. The presence of considerable CpG islands within the STING and cGAS
promoter regions contributes to the epigenetic regulation of STING in melanoma cells.
Indeed, a demethylase, 5AZADC, treated melanoma cells following dsDNA stimulation
and showed recovered IFN-β and CXCL10 production in melanoma cells suggesting that
DNA methylation might play a role in the regulation of STING in melanoma. In addition,
as another mechanism to suppress STING signaling, STING signaling may be commonly
suppressed in a greater variety of tumors due to loss-of-function mutations or epigenetic
silencing of the STING/cGAS promoter regions [122].
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In the STING modification of epigenetic changes in squamous cell carcinoma, KDM4A
inhibition activates immune responses to squamous cell carcinoma and enhances the thera-
peutic potential of anti-PD-1 antibody treatment for squamous cell carcinoma. KDM4A
is a histone demethylase that targets histone H3 lysine 9 trimethylation (H3K9me3) and
is associated with the development of squamous cell carcinoma growth and metastasis.
KDM4A inhibition activates cGAS-STING signaling in tumor cells. Consistently, KDM4A
inhibition with the combination of anti-PD-1 antibody treatment suppresses tumor growth
and metastasis [123], suggesting that epigenetic modification of STING signaling mediated
by KDM4A histone demethylation might positively drive anti-tumor immunity.

6. Limitations and Disadvantages of STING-Mediated Anti-Tumor Immunity

Although STING is anticipated as an additional immunotherapy treatment against
skin cancers, downstream cytokines of IFNs are needed to boost immunotherapy against
cancers. However, IFN-treated patients did not exhibit the dramatic therapeutic potential of
IFN-β during the treatment of skin cancers. Therefore, it seems that STING might not show
satisfactory clinical outcomes in all cases as a driver of the anti-tumor immune reaction to
skin cancers.

The current administration of IFN-β transiently increases its concentration in the
human body. Therefore, sustainable IFN-β production from the host might have more
potent anti-tumor effects against skin cancers. As so, STING agonist administration can
drive IFNs; however, the treatment itself might limit the transient production of IFNs.

Because various cells can react with IFNs, it is important for IFNs to react to anti-tumor
immune cell-specific or tumor sites to obtain the maximum effects of STING. Therefore,
systemic STING agonists might result in the same pitfall as systemic IFN treatment or subcu-
taneous injection of IFNs. A recent study identified that IFN-independent STING signaling
enhances autophagy [124], which can enhance anti-tumor immune responses. In addition,
STING signaling triggers DNA damage response to tumor cells [125,126] and MHC class I
expression in tumor and immune cells [127]. These additive non-IFN-independent effects
of STING might also contribute to the development of anti-tumor responses.

In addition, STING signaling activation might result in the enhancement of autoim-
mune reactions, as seen in immune checkpoint inhibitor treatment. STING activation has
been observed in various autoimmune diseases, such as rheumatoid arthritis [128] and
dermatomyositis [129]. Therefore, clinicians should keep in mind that STING-mediated
anti-tumor therapy might show immune cell-mediated adverse event (irAE) reactions
during treatment [130]. Furthermore, combination therapy with immune checkpoint in-
hibitors will be a therapeutic option for malignancies; however, a more potent risk of severe
irAEs will need to be discussed in the future. As a strategy against STING-triggered irAEs,
corticosteroids might be the first approach to suppress the symptoms of adverse reactions
of STING-mediators. In addition, downstream cytokine suppression might also be a candi-
date for the treatment of STING-mediated irAEs. Anti-IFN antibodies are currently used
for various treatments [131]; therefore, these agents may also be used for STING-mediated
irAE treatment.

7. Conclusions

STING is anticipated as a therapeutic candidate for the treatment of an advanced form
of skin cancer; however, it remains unclear whether STING signaling is involved in the
regulation of tumor development. On the other hand, STING-targeted treatment might
have disadvantages, possibly autoimmune-mediated systemic reactions, indicating that
clinicians might keep in mind this advantage of STING-targeted treatment for skin cancers.
Furthermore, STING-mediated inflammation may also contribute to the development
of another malignancy [132]. Given that there is a large frontier field regarding STING-
mediated anti-tumor function in skin cancers, further investigation is required to clarify
the detailed roles of STING in skin cancer.
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