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Abstract.  The success of implantation is an interactive process between the blastocyst and the uterus. Synchronized 
development of embryos with uterine differentiation to a receptive state is necessary to complete pregnancy. The period of 
uterine receptivity for implantation is limited and referred to as the “implantation window”, which is regulated by ovarian 
steroid hormones. Implantation process is complicated due to the many signaling molecules in the hierarchical mechanisms 
with the embryo-uterine dialogue. The mouse is widely used in animal research, and is uniquely suited for reproductive 
studies, i.e., having a large litter size and brief estrous cycles. This review first describes why the mouse is the preferred 
model for implantation studies, focusing on uterine morphology and physiological traits, and then highlights the knowledge 
on uterine receptivity and the hormonal regulation of blastocyst implantation in mice. Our recent study revealed that selective 
proteolysis in the activated blastocyst is associated with the completion of blastocyst implantation after embryo transfer. 
Furthermore, in the context of blastocyst implantation in the mouse, this review discusses the window of uterine receptivity, 
hormonal regulation, uterine vascular permeability and angiogenesis, the delayed-implantation mouse model, morphogens, 
adhesion molecules, crosslinker proteins, extracellular matrix, and matricellular proteins. A better understanding of uterine 
and blastocyst biology during the peri-implantation period should facilitate further development of reproductive technology.
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In mammalian reproduction, crosstalk between the blastocyst and 
the uterine luminal epithelium is essential for the implantation 

process [1, 2]. The synchronization of embryonic development 
with uterine differentiation into a receptive state is essential for a 
successful pregnancy [1–13]. Uterine receptivity for implantation 
that supports blastocyst growth, attachment, and the subsequent 
events of implantation is time-limited. Implantation is a complex 
process involving spatiotemporally regulated endocrine, paracrine, 
autocrine, and juxtacrine modulators that mediate cell-cell and 
cell-matrix interactions [1–13]. The embryo is also an active unit 
with its own molecular program of cell growth and differentiation. 
The trophectoderm (TE) of implantation-competent blastocysts alters 
the embryo’s functional programming via changes in cell surface 
molecules. The invasive trophoblasts of mouse blastocysts adhere, 
spread, and migrate on extracellular matrix (ECM) substrates [14–17] 
and penetrate three-dimensional ECM structures [18]. The prolifera-
tion and differentiation of uterine endometrial cells are also crucial 
steps during peri-implantation. Many molecules are involved in this 
process, including ECM, adhesion molecules, lipid mediators, and 
transcription factors. Successful embryo implantation is dependent 

on the cellular and molecular crosstalk between the uterus and the 
embryo; however, elucidation of the underlying molecular pathways 
has been hindered by their intricacy. The present review focuses on 
the molecular and cellular events during blastocyst implantation in 
the receptive uterus in a mouse model. This review first describes why 
the mouse is the preferred model organism for implantation studies, 
focusing on uterine morphology and physiological traits (Fig. 1), and 
then highlights knowledge regarding steroid hormonal regulation 
for blastocyst implantation and uterine receptivity (Fig. 2A). This 
review also describes the determinants of blastocyst competency and 
postimplantation development, i.e., selective proteolysis, adhesion 
molecules, crosslinker proteins, ECM, and matricellular proteins 
(Fig. 2B). Furthermore, this review describes the determinants of 
uterine receptivity and postimplantation uterine function, including 
morphogens, prostaglandins, and angiogenic factors (Fig. 2C).

Mouse as the Preferred Model  
for Implantation Studies

The mouse, Mus musculus, is widely used in animal research 
because of its small size, resistance to infection, relatively rapid 
generation time, and large litter size [19]. Furthermore, it is uniquely 
suited for reproductive studies, i.e., the sexual maturity of female 
mice begins around 6 weeks of age and vaginal cytology shows 
estrous cycles of 4–5 days [19].

The morphology of the female reproductive tract organs is mark-
edly different among mammalian species, i.e., the mouse has a long 
duplex uterus with a dual cervix [20–23]. The duplex uterus in the 
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mouse does not permit transuterine migration of embryos from one 
horn to the other, and this difference allows for maintenance of 
pregnancy in one uterine horn while the other horn does not contain 
embryos [20–22]. This trait is favorable for the study of the embryonic 
potential of transferred embryos during the peri-implantation period 
[24, 25], e.g., in the same recipient mouse, the untreated control or 
treated blastocysts are transferred into one or the other uterine horn, 
respectively, followed by comparison of the implantation rates (Fig. 
1A)[24]. These physiological traits and experiment methodology 
allow the concurrent obtainment of both the implantation rate of the 
embryos and the pregnancy rate of the recipient mice.

In mice, blastocyst attachment stimulates the uterine stroma to 
form a spongy mass of cells known as decidual tissue. The process is 
known as the decidual reaction, and the mass of decidual cells around 
a single embryo can be referred as the deciduum or decidua [19]. 
The decidual reaction involves a rapid increase in the permeability 
of local capillaries, causing the uterine stroma to become swollen 
and edematous. The attachment reaction coincides with a localized 
increase in stromal vascular permeability at the site of the blastocyst, 
as can be demonstrated by intravenous injection of a macromolecular 
blue dye (the uterine blue reaction) (Fig. 1A) [26]. The first sign 
of the attachment reaction in the process of implantation (i.e., the 
apposition stage) occurs in the mouse towards the end of day 4 of 
the pregnancy (vaginal plug = day 1) [26, 27].

The decidual reaction only occurs in a uterus appropriately primed 
with progesterone and estrogen. Blastocysts are the normal induc-
ers of these events, while various nonspecific stimuli, such as the 
intraluminal infusion of oil, air, and mechanical stimuli, can also 
initiate certain aspects of the decidual cell reaction (deciduoma) in 

pseudopregnant or steroid hormonally prepared uteri (Fig. 1B) [28]. 
Therefore, the induction of uterine decidualization by stimulus is used 
experimentally as a tool to examine the effect of gene deficiencies on 
uterine function [1, 2, 29, 30] and the potential for steroidogenesis 
in ovarian tissues transplanted into ovariectomized mice [31, 32].

Ovarian Steroid Hormones Regulate Blastocyst 
Implantation and the “Window” of Uterine 

Receptivity

For successful pregnancy in mice, uterine receptivity for implanta-
tion lasts for a limited time (Fig. 2A) [1, 4, 33, 34]. The duration of 
the receptive stage is also called the “implantation window”. At this 
stage, the uterine environment is able to support blastocyst growth, 
attachment, and the subsequent implantation events. The ovarian 
steroids, progesterone (P4) and 17β-estradiol (E2), are crucial for 
implantation in mice (Fig. 2A) [35, 36]. The coordinated actions 
of P4 and E2, which regulate proliferation and/or differentiation of 
uterine cells in a spatiotemporal manner, establish the implantation 
window, i.e., on the first day of pregnancy in mice (as indicated by a 
vaginal plug); preovulatory E2 secretion induces the proliferation of 
uterine epithelial cells, and the increase in P4 levels secreted from the 
freshly formed corpora lutea initiates stromal cell proliferation from 
day 3 onward. [37]. The pre-receptive uterus on day 3 of pregnancy 
becomes receptive on day 4 due to rising P4 levels and a small 
elevation in ovarian E2 secretion (Fig. 2A) [36]. While E2 stimulates 
stromal cell proliferation, the coordinated effects of P4 and E2 halt 
uterine epithelial cell proliferation and initiate differentiation [37]. 
An active blastocyst in the uterus stimulates implantation during a 

Fig. 1. The mouse uterus traits and the research paradigm for embryonic development and decidualization of uterine cells. (A) Implantation sites of 
transferred embryos and the uterine blue reaction 2 days after transference of blastocysts on day 6 of pregnancy (vaginal plug = day 1). Untreated 
control or treated blastocysts were transferred into one (left) or the other uterine horn (right) respectively. Mice have a long duplex uterus and 
it does not permit transuterine migration of embryos from one horn to the other. This trait allows the study of embryonic potential during the 
peri-implantation period for embryos transferred to the same recipient. Blue arrowheads and green arrowheads indicate the implantation sites 
of untreated control and treated embryos respectively. (B) Induced decidualization by artificial stimulus. Infusion of oil resulted in the decidual 
cell reaction (deciduoma). Pseudopregnant mice were given an intraluminal oil infusion (25 µl) into one uterine horn (right) on day 4 to induce 
decidualization, followed by estimation on day 8. The induction of uterine decidualization by artificial stimulus is useful to examine the effect of 
gene deficiency on uterine function and the steroidogenesis potential of transplanted ovarian tissues in ovariectomized mice. Scale bars represent 
5 mm.
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normal pregnancy. The first attachment reaction between the blastocyst 
TE and the uterine luminal epithelium occurs at the end of day 4 
of pregnancy in the mouse. After attachment is initiated on day 4 
at 2400 h, the stromal cells surrounding the implanting blastocyst 
begin to proliferate extensively and differentiate into decidual cells 
(decidualization) [1, 4, 9].

E2 is a Critical Determinant of the Duration of Uterine 
Receptivity for Implantation

It has been demonstrated that within a very narrow range, the 

levels of E2 determine the duration of the uterine receptivity window 
for embryo transfer [38]. Although E2 at different physiological 
concentrations can initiate implantation, the window of uterine 
receptivity remains open for an extended period at lower E2 levels, 
but rapidly closes at higher levels [38]. The uterine refractoriness 
that follows the receptive state at high E2 levels is accompanied by 
the aberrant expression of implantation-related genes. Therefore, 
the careful regulation of E2 levels is an important factor for the 
improvement of female fertility in in vitro fertilization (IVF) and 
embryo transfer programs.

In contrast, these results suggest that the poor potential of ovar-

Fig. 2. Regulation of blastocyst implantation, uterine receptivity, and post-implantation development. (A) Regulation of the window for uterine receptivity 
is achieved by the actions of P4 and E2 in the mouse. Uterine sensitivity to implantation is categorized as pre-receptive, receptive, or refractory 
(nonreceptive) phases. The uterus is pre-receptive on days 1–3 of pregnancy or pseudopregnancy, it is receptive on day 4, and by the afternoon of 
day 5, it becomes refractory to implantation. The pre-receptive uterus on day 3 of pregnancy becomes receptive on day 4 due to rising P4 levels 
and a small elevation in ovarian E2 secretion. (B) Determinants of blastocyst competency and post-implantation development. This review also 
describes selective proteolysis, adhesion molecules, crosslinker proteins, extracellular matrix, and matricellular protein. (C) Determinants of 
uterine receptivity and post-implantation uterine function. This review also describes morphogens, prostaglandins, and angiogenic factors.
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ian steroidogenesis extends the “implantation window”. As such,   
vitrified-warmed ovarian tissue autotransplantation (VOAT) into 
estrus cycle-ceased ovariectomized mice restored fertility and led 
to full-term fetal development for the transferred embryos, although 
steroidogenesis and blood vessel formation in the corpus luteum were 
less than those in intact mice [31]. Indeed, the rate of live births was 
similar between VOAT mice that received an embryo transfer on 
pseudopregnancy day 4 and those that received the transfer on day 5, 
whereas intact mice that received an embryo transfer on day 5 failed 
to support pregnancy [32]. For embryo transfer on pseudopregnancy 
day 5, oocyte warming and IVF can be performed on the day after 
mating a female with a vasectomized male. If a plug positive female is 
not obtained, oocyte warming and IVF can be postponed. Therefore, 
embryo transfer on day 5 could be a useful method for mice with 
poor ovarian potential for the improvement of female fertility within 
IVF and embryo transfer programs [32].

Determinants of Blastocyst Competency Using the 
Delayed-implantation Mouse Model

Delayed implantation is a process in which implantation is 
postponed for a period of time. This causes the uterus to remain 
quiescent and an embryo in the blastocyst stage to become dormant. 
In mice, an ovariectomy early on day 4 (vaginal plug = day 1) prior 
to pre-implantation E2 secretion prevents implantation and initiates 
blastocyst dormancy within the uterine lumen [39]. The delayed 
implantation can be maintained by continuous P4 treatment, but 
can be terminated upon E2 injection leading to blastocyst activation 
and subsequent implantation in the uterus approximately 24 h later. 

For successful implantation in the receptive uterus, the blastocyst 
must also attain implantation competency, where the activity of the 
blastocyst determines the window of implantation in the receptive 
uterus [36, 38]. The delayed implantation model is a powerful tool 
for defining the molecular signaling components that direct blastocyst 
activation or dormancy.

An analysis of global gene expression in the delayed implantation 
model demonstrated that these two different blastocyst physiologi-
cal states can be distinguished at the molecular level, and that the 
genes involved control the cell cycle, cell signaling, and energy 
metabolism (Fig. 2B) [40]. The study also revealed an upregulation 
of Hbegf expression, which encodes heparin-binding EGF-like 
growth factor (HBEGF), and the HBEGF receptors ERBB1 and 
ERBB4 in blastocysts [40–42]. Catecholoestrogens produced from 
primary estrogens in the uterus activate blastocysts [43]. Another 
lipid-signaling molecule that targets blastocysts is the endocan-
nabinoid anandamide, where endocannabinoid signaling is crucial 
for implantation in mice [44–46]. Levels of uterine anandamide and 
blastocyst CB1 are coordinately downregulated with the attainment 
of uterine receptivity and blastocyst activation respectively, but 
are elevated in the nonreceptive uterus and dormant blastocyst 
[46–48]. Anandamide regulates blastocyst functions by differentially 
modulating mitogen-activated protein kinase (MAPK) signaling and 
Ca2+ channel activity via CB1 [48]. This is consistent with findings 
that the MAPK and phosphatidylinositol 3-kinase/Ca2+ signaling 
cascades are crucial to blastocyst development and activation [49–52].

Fig. 3. A schematic diagram of blastocyst implantation competency. Protein expression (green, yellow, and red) is upregulated in implantation-induced 
(activated) blastocysts. The downregulation of specific proteins (red) in the activated blastocyst is critical for successful implantation. For 
example, the degradation of ERα is required for blastocyst implantation. Expressed proteins in activated blastocysts are categorized into three 
groups, i.e., essential (green), expressed but unnecessary (yellow), and obligatorily downregulated (red) to complete blastocyst implantation.
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Degradation of Estrogen Receptor α in Activated 
Blastocysts is Associated with Implantation

Although estrogen receptor α (ERα, Esr1) protein is expressed 
in blastocysts, its targeted disruption does not affect embryonic 
development or implantation [53, 54]. Therefore, the expression of 
ERα in blastocysts is considered unnecessary for the peri-implantation 
period. In contrast, ERα overexpression results in a decreased number 
of implantation sites and litter size [55]. These results suggest the 
possibility of an optimum level of ERα downregulation in blastocyst 
implantation during the peri-implantation period. Indeed, increased 
expression of ERα protein in implantation-induced (activated) blas-
tocysts was decreased within 6 h in culture, whereas the expression 
of other proteins such as breast cancer 1 (BRCA1) was maintained 
in the blastocysts during culture (Fig. 3) [24]. The selective deg-
radation of ERα expression in activated blastocysts is regulated 
by the ubiquitin-proteasome pathway (Fig. 2B, 3). Furthermore, 
downregulation of ERα in the activated blastocyst is associated with 
the completion of blastocyst implantation [24]. Although the reason 
for selective proteolysis immediately after expression in activated 
blastocysts is unclear, elimination of transcription factors to avoid 
inadequate protein expression could be associated with implantation 
competent blastocysts.

Adhesion Molecules and Crosslinker Proteins

For the attachment phase of implantation, adhesive signaling 
systems are required, e.g., numerous glycoproteins and carbohydrate 
ligands and their receptors are expressed in the TE and luminal 
epithelium around the time of implantation (Fig. 2B) [56, 57]. CD44 
is likely involved in peri-implantation interactions. It recognizes 
polyanionic glycans including hyaluronan and chondroitin sulfate 
[58]. Furthermore, CD44 integral membrane proteins crosslink 
with actin filaments via ezrin/radixin/moesin (ERM) proteins in 
the organization of cortical actin-based cytoskeletons, including 
microvilli formation [59]. Radixin (also known as RDX) and ezrin 
(also known as EZR) are involved in the cellular organization of the 
TE during blastocyst activation prior to implantation in the delayed 
implantation mouse model, and radixin is particularly involved in 
preparing the mural TE for implantation, the presumptive site of 
attachment with the luminal epithelium (Fig. 2B) [60]. In contrast, 
the ERM-associated adhesive molecules, CD44, CD43 (also known 
as SPN), ICAM1 and ICAM2, are present in the TE of dormant 
blastocysts. These findings suggest that in dormant blastocysts prior 
to activation, adhesive molecules associated with ERM proteins are 
already positioned in a cell-specific manner to interact with radixin 
and ezrin in activated blastocysts [60]. Thus, ERM proteins expressed 
on TE cell surfaces of implantation-induced blastocysts may act as 
crosslinkers between actin and adhesive molecules and change the 
cell polarization and/or differentiation for adhesion and attachment 
with the luminal epithelium.

ECM and Matricellular Protein TINAGL1

The blastocyst is composed of distinct cell types, i.e., the pluripotent 
inner cell mass (ICM) generates future cell lineages of the embryo 

proper, while the outer epithelial TE makes the first physical and 
physiological connection with the maternal uterus for implantation. 
The invasive trophoblasts of mouse blastocysts adhere, spread, 
and migrate on ECM substrates [14–17] and penetrate the three-
dimensional ECM structures [18]. The TE of the implantation-induced 
blastocyst alters its functional programming via changes in cell 
surface molecules. The basement membrane consists predominantly of 
laminins and collagens secreted by the TE and the parietal endoderm 
of the pre-implantation blastocysts (Fig. 2B) [61] that then enter the 
implantation stage [62]. The parietal endoderm arises from the ICM 
in the blastocyst as a result of differentiation events and produces 
large quantities of ECM proteins to form the Reichert’s membrane, 
which separates the yolk cavity from the maternal tissue [63, 64]. 
The Reichert’s membrane contains laminin and collagen IV [65, 66].

In contrast to the ECM, extracellular matrix proteins that do not 
contribute directly to the formation of structural elements in vertebrates 
but serve to modulate cell-matrix interactions and cell function are 
categorized as matricellular proteins [67]. The mouse ortholog of the 
gene encoding tubulointerstitial nephritis antigen-like 1 (TINAGL1, 
also known as adrenocortical zonation factor 1 [AZ-1] or lipocalin 7) 
has been cloned from mouse adrenocortical cells and is tightly linked 
with the zonal differentiation of this cell type [68]. TINAGL1 is a 
matricellular protein that interacts with both structural matrix proteins 
and cell surface receptors [69]. On the basis of its colocalization and 
binding ability with laminin 1 and collagens, TINAGL1 was found to 
be a component of the basal lamina [69]. During the pre-implantation 
phase of mouse embryonic development, the expression of both 
Tinagl1 mRNA and TINAGL1 protein is increased just prior to 
implantation (Fig. 2B) [66, 70]. In blastocysts, TINAGL1 expression 
is localized to the TE after hatching from the zona pellucida and is 
restricted to the basement membrane at the surface of the blastocoele 
site of the TE just prior to luminal epithelium attachment [66, 70]. 
In post-implantation embryos, TINAGL1 is an extraembryonic 
tissue-specific protein and interacts with laminin 1 in the Reichert’s 
membrane. In the uterus, TINAGL1 is expressed in the basement 
membrane of luminal epithelial cells during the pre-implantation 
period. During post-implantation, TINAGL1 is markedly expressed 
in the decidual endometrium, including the uterine capillaries, and 
it associates with integrins α5 and β1 in the decidualized uterine 
endometrium [71]. These findings suggest that it plays a physical 
and physiological role in embryo development and/or decidualization 
of the uterine endometrium during pregnancy. Indeed, TINAGL1 
deficiency affects female mice and results in subfertility phenotypes 
[72]. In humans, TINAGL1 protein is downregulated in preeclamptic 
women [73]. Furthermore, the behavior of trophoblasts invading the 
uterus resembles that of metastatic tumor cells, and recent studies 
have revealed a novel role for TINAGL1 that is associated with 
metastasis in cancer cells [74, 75]. Therefore, Tinagl1 knockout 
mice would likely substantially contribute to revealing the role of 
TINAGL1 in reproductive functions and metastasis.

IHH as a Progesterone-responsive Factor Mediating 
Epithelial–mesenchymal Interactions in the Uterus

The importance of morphogens for uterine receptivity has been 
reported, including research on hedgehog (HH), WNT, and bone-
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morphogenetic-protein (BMP) signaling (Fig. 2C) [1, 2, 76]. Indian 
hedgehog (Ihh) expression is induced by P4 in the uterus [77–80]. The 
genes encoding the components of the HH signalling pathway, Ihh, 
HH-binding protein/receptor Patched (Ptc) and the transcription factors 
Gli1–3 are expressed in the mouse uterus [77, 80]. Ihh expression 
is P4-dependent and reaches high levels in epithelial cells on day 
4, while that of Ptc, Gli1 and Gli2 is upregulated in the underlying 
stroma [77]. In day 4 uterine-explant cultures, recombinant N-sonic 
hedgehog (N-SHH) stimulates mesenchymal-cell proliferation, a 
characteristic of the receptive phase [77]. Furthermore, uterine deletion 
of Ihh leads to implantation failure due to poor uterine receptivity 
[78]. These results suggest that epithelial IHH functions as a paracrine 
growth factor for stromal cells and that this epithelial–mesenchymal 
signalling is important for uterine receptivity. The chicken ovalbumin 
upstream promoter-transcription factor II (COUP-TFII, Nr2f2) has 
been proposed as a downstream target of IHH signaling, and is 
expressed in the subepithelial stroma [81]. Uterine-specific COUP-
TFII knockout mice are infertile due to failure of implantation, i.e., 
epithelial IHH regulates stromal COUP-TFII to control BMP2 and 
regulate decidualization [81]. In addition, enhanced epithelial estrogen 
activity impedes the maturation of the receptive uterus in the absence 
of COUP-TFII [81]. These finding reveal that COUP-TFII plays a 
critical role in maintaining the balance between E2 and P4 activities 
to establish proper implantation.

Uterine Angiogenesis via VEGF and Its Receptors

The control of uterine angiogenesis by angiogenic factors, including 
vascular endothelial growth factor (VEGF) and its receptors, has been 
studied to assess its role in uterine angiogenesis during implantation 
and decidualization [5, 8, 10]. Differential splicing of the Vegf gene 
transcript generates several VEGF isoforms in both humans and mice. 
VEGF121 and VEGF165 are the predominant isoforms in humans, 
whereas VEGF120 and VEGF164 are the most predominant isoforms 
in mice [82, 83]. In the mouse uterus, VEGF164 mediates vascular 

changes and angiogenesis in the uterus during implantation and 
decidualization (Fig. 2C, 4)[83].

The effects of VEGF are primarily mediated by two tyrosine 
kinase receptors: VEGFR1 [fms-like tyrosine kinase 1(FLT1)] and 
VEGFR2 [fetal liver kinase 1 (FLK1)/kinase insert domain-containing 
receptor (KDR)] [84−87]. During the post-implantation period, the 
expression of Flk1 was evident in stromal cells close to, but not 
immediately surrounding, blastocysts on day 5 (Fig. 2, 4). On days 
6–8 (Fig. 2, 4), Flk1 mRNA accumulation occurred in cells in both 
the mesometrial and anti-mesometrial decidual beds. However, 
Flk1 expression was more intense at the mesometrial pole, the 
presumptive site of placentation and heightened angiogenesis. On day 
8, some embryonic cells exhibited a marked accumulation of Flk1 
mRNA. Flk1 mRNA was absent from the avascular primary decidual 
zone (PDZ) [83, 88]. During peri-implantation in the mouse uterus, 
expression levels of Flt1, as detected by northern blot hybridiza-
tion and in situ hybridization, were lower than those of Flk1 [88]. 
Another multifunctional VEGF receptor is neuropilin-1 (NRP1). 
The Nrp1 mRNA expression pattern is similar to that of Flk1 in the 
mouse uterus (Fig. 4) [83, 88]. However, it is interesting to note 
that Nrp1 mRNA was observed to be more widely distributed than 
Flk1, suggesting that NRP1 is present in stromal cells other than 
endothelial cells [83]. Collectively, genes encoding murine VEGF 
isoforms and their receptors, Flk1, Flt1, and Nrp1, are differentially 
expressed in the mouse uterus in a spatiotemporal manner during 
implantation, and the predominant VEGF164 isoform interacts with 
FLK1 and NRP1 [83, 88]. These results suggest that the VEGF 
system is involved in uterine vascular permeability and angiogenesis 
during implantation (Fig. 4).

Receptor TIE2 and Angiopoietins Substrates

The effects of VEGF are complemented and coordinated by 
another class of angiogenic factors—the angiopoietins [89]. VEGF 
acts during the early stages of vessel development [90–92], while 

Fig. 4. A schematic diagram of angiogenic signaling in the uterus during implantation. COX2-derived prostaglandins are important for uterine 
angiogenesis during implantation and decidualization and primarily target the VEGF system, but not the angiopoietin system. The proangiogenic 
factor VEGF and its receptor FLK1 are important for uterine angiogenesis during the post-implantation period. VEGF in complementation with 
the angiopoietins (ANG1 and ANG2) and their receptor TIE2 directs angiogenesis during decidualization. ANG1 in collaboration with VEGF 
induces vessel maturation and maintains vessel leakiness, whereas ANG2 induces vessel destabilization required for further sprouting in the 
presence of VEGF.
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angiopoietin 1 (Ang1, also known as Angpt1) acts later to promote 
angiogenic remodeling, including vessel maturation, stabilization, 
and leakiness [93–95]. In contrast to the agonistic functions of 
ANG1, ANG2 behaves as an antagonist, i.e., ANG1 and ANG2 are 
naturally occurring positive and negative regulators of angiogenesis, 
respectively. They interact with an endothelial cell-specific tyrosine 
kinase receptor called TIE2 [96]. Collectively, VEGF and its receptor 
FLK1 are primarily important for uterine vascular permeability and 
angiogenesis before and during the attachment phase of implantation, 
whereas VEGF, together with the angiopoietins and their receptor 
TIE2, direct angiogenesis during decidualization after implantation 
(Fig. 4) [97].

Prostaglandins Derived from COX2 Participate in 
Uterine Angiogenesis during Implantation and 

Decidualization

Prostaglandins are also likely to participate in uterine vascular per-
meability and angiogenesis during implantation and decidualization, 
i.e., COX2 (also known as PTGS2)-derived prostaglandins participate 
in uterine angiogenesis during implantation and decidualization (Fig. 
2C, 4) [97]. Cox2(–/–) mice show implantation and decidualization 
failure. The attenuation of uterine angiogenesis in these mice is primar-
ily due to defects in VEGF signaling, rather than the angiopoietin 
system. Vegf164 expression is remarkably downregulated in stromal 
cells at the blastocyst site in Cox2(–/–) mice. A prostacyclin (PGI2) 
agonist, carbarprostacyclin (cPGI; a more stable analog of PGI2), 
functions as a ligand for peroxisome proliferator-activated receptor 
δ (PPARδ) and facilitates its heterodimerization with the retinoid X 
receptor (RXR). cPGI together with the RXR agonist, 9-cis-retinoic 
acid (9-cis-RA), improves the poor implantation in Cox2(–/–) mice 
[97, 98]. Administration of cPGI and 9-cis-RA also restored the 
expression of Vegf, as well as the number of blood vessels, leading 
to improved implantation. These results suggest COX2-derived 
prostaglandins influence uterine angiogenesis primarily by affecting the 
VEGF system during implantation (Fig. 4). In contrast, no significant 
difference was noted in the expression patterns of angiopoietins 
and Tie2 between the Cox2(–/–) and wild type mice, although the 
decidual response was depressed in Cox2(–/–) mice. Therefore, the 
angiopoietin signaling involved in uterine angiogenesis is distinct 
from that of the COX2-derived prostaglandins. Collectively, COX2-
derived prostaglandins direct angiogenesis during implantation and 
decidualization by differentially regulating VEGF and angiopoietin 
signaling (Fig. 2C, 4).

Differential Regulation of E2 and P4 for Uterine 
Vascular Permeability and Angiogenesis

The expression of VEGF and its receptors in the uterus is affected by 
steroid hormones [88]. E2 rapidly induces uterine vascular permeability 
and Vegf transcription through the nuclear estrogen receptor [88], 
and the Vegf gene contains estrogen response elements [99, 100]. P4 
also upregulates uterine Vegf expression through activation of the 
nuclear progesterone receptor, but at a slower rate [99, 100]. E2 was 
widely believed to be a potent stimulator of uterine angiogenesis 
during normal reproductive processes in vivo because vascular 

permeability is considered a prerequisite for angiogenesis and E2 
rapidly stimulates uterine vascular permeability and Vegf expression. 
However, the evidence from molecular, genetic, physiological, and 
pharmacological studies has revealed that E2 and P4 have differ-
ent effects in vivo. E2 promotes uterine vascular permeability but 
profoundly inhibits angiogenesis, whereas P4 stimulates angiogenesis 
with little effect on vascular permeability [101]. These effects of E2 
and P4 are mediated by the differential spatiotemporal expression of 
proangiogenic factors in the uterus [101].

Differential Expression and Hormonal Regulation of 
Motin Family Members in the Uterus

Angiomotin (AMOT) is a vascular angiogenesis-related protein 
that was initially identified as an angiogenesis inhibitor angiostatin-
binding protein that can induce endothelial cell migration and tubule 
formation, and therefore, promote angiogenesis [102–104]. There are 
also two angiomotin-like proteins, AMOTL1 and AMOTL2. These 
three proteins belong to the motin family characterized by a highly 
conserved coil-coil domain, PDZ binding domain, and glutamine-rich 
domain [103]. AMOTL1 and AMOTL2 also play important roles in 
cell migration and angiogenesis [105–108]. The expression patterns 
of motin family members vary during development, i.e., there is a 
spatiotemporal-dependent expression of Amot, Amotl1, and Amotl2 
in the mouse uterus during pre-implantation and post-implantation 
periods [109]. Specifically, ovarian steroid hormones regulate the 
differential expression of motins. The expression of Amot is induced 
by P4 in stromal cells. Amotl1 expression is upregulated by both P4 
and E2 in stromal cells; however, E2 increases Amotl1 expression 
for only a limited time—12 h after its expression diminishes. In 
contrast, P4 regulates the expression of Amotl2 in stromal cells while 
E2 regulates its expression in luminal epithelial cells. Collectively, 
Amot, Amotl1, and Amotl2 are differentially expressed in uterine 
cells during peri-implantation, and their expression is differentially 
regulated by P4 and E2.

Conclusions

Although many important discoveries have been made in this field, 
the knowledge of the complex events that occur during implantation 
is insufficient to prevent infertility caused by implantation failure. 
This review article describes the molecular and cellular events during 
blastocyst implantation in the receptive uterus in mouse models. These 
observations may help to elucidate the mechanisms underlying the 
completion of blastocyst implantation that allow for the establishment 
of pregnancy. The implantation rate of IVF-derived blastocysts after 
embryo transfer remains low, with poor embryo quality among 
the limiting factors for low pregnancy success in IVF. Therefore, 
it is possible that the inadequate expression of specific proteins 
in IVF-derived blastocysts induced by culture contributes to low 
implantation rates. In this instance, appropriate treatments to induce 
up- and/or down-regulation in vitro culture before embryo transfer 
may improve the implantation rate and embryonic development 
during the post-implantation period. However, further investigation 
is still required to develop strategies to further improve the success 
of implantation and pregnancy.
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