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Abstract

The forces that arise from the actin cytoskeleton play a crucial role in determining the cell shape. These include protrusive
forces due to actin polymerization and adhesion to the external matrix. We present here a theoretical model for the cellular
shapes resulting from the feedback between the membrane shape and the forces acting on the membrane, mediated by
curvature-sensitive membrane complexes of a convex shape. In previous theoretical studies we have investigated the
regimes of linear instability where spontaneous formation of cellular protrusions is initiated. Here we calculate the evolution
of a two dimensional cell contour beyond the linear regime and determine the final steady-state shapes arising within the
model. We find that shapes driven by adhesion or by actin polymerization (lamellipodia) have very different morphologies,
as observed in cells. Furthermore, we find that as the strength of the protrusive forces diminish, the system approaches a
stabilization of a periodic pattern of protrusions. This result can provide an explanation for a number of puzzling
experimental observations regarding cellular shape dependence on the properties of the extra-cellular matrix.

Citation: Kabaso D, Shlomovitz R, Schloen K, Stradal T, Gov NS (2011) Theoretical Model for Cellular Shapes Driven by Protrusive and Adhesive Forces. PLoS
Comput Biol 7(5): e1001127. doi:10.1371/journal.pcbi.1001127

Editor: Dimitrios Vavylonis, Lehigh University, United States of America

Received September 14, 2010; Accepted March 31, 2011; Published May 5, 2011

Copyright: � 2011 Kabaso et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by the U.S.-Israel Binational Science Foundation (grant 2006285 to NSG), and the Ministry of Absorption of Israel (DK). The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: nir.gov@weizmann.ac.il

Introduction

The factors that determine the local and global shape of a cell,

are numerous, including the internal state of the cell, with respect

to the cell cycle and metabolism, and the properties of the extra-

cellular matrix (ECM). Cells that are round while floating in

solution, change their shapes dramatically when in contact with a

solid substrate [1–5]. On a two dimensional surface some cells

spread uniformly, while others form elongated extensions

(filopodia), or form motile fan-shaped lamellipodia. Inside a three

dimensional matrix, cells extend protrusions through their ability

to penetrate between the matrix filaments, and by degrading the

surrounding material [6–8]. These processes have been widely

studied in recent years due to the interest in cell motility in normal

and cancerous cells, and in relation to the observed dependence of

stem-cell differentiation on the properties of the surrounding

matrix. Providing a unified model for this large variety of cellular

behaviors is difficult, and we aim here to explore the consequences

of a relatively simple model, which describes some of the principle

forces acting on the cell membrane.

There are several examples of puzzling cellular shape

dependencies that have been observed in recent years; (i)

Developing neuronal cells have been shown to produce more

(less) numerous and shorter (longer) protrusions, when the cells

had less (more) actin filament polymerization [9]. (ii) In [7] cells

encapsulated in a three-dimensional matrix have been found to

have more (less) numerous and shorter (longer) protrusions, when

the surrounding gel was stiffer (softer) and therefore harder (easier)

to degrade.

While the two examples given above studied the static shapes of

cells, there are several studies which investigated the dynamics of

cellular shape changes; (i) In [10] the polarization of adhering cells

was followed in time, and it was observed that cells initially form

numerous and short adhesion ‘‘spikes’’ along the cell perimeter,

which later (up to 24hrs) reorganized into two large adhesion

regions at the opposite poles of the final elongated cell shape. (ii) In

[11] it was observed that cells on a flat substrate, can

spontaneously change their shape and cytoskeleton organization

between three prototypical forms, which are round (featureless),

spiky or ruffled. The cells seemed to randomly switch between

these three morphologies over the time course of the experiments.

In recent years, experiments have implicated a large family of

curved membrane proteins, for example those containing Bin/

Amphiphysin/Rvs (BAR) and IRSp53-Missing-In-Metastasis

(IMD) domains, as responsible for sensing (and inducing) concave

or convex curvature [12]. Such curved proteins bind preferentially

to curved membranes [13–15] and the curved domains have also

been shown to tubulate membranes [16]. Furthermore, these

curved proteins are known to form membrane-bound protein

complexes (membrane protein) that include actin-activating

components, such as WASP and WAVE [17,18], and have been

found to localize and induce cellular protrusions (filopodia) [19–

22], and at the leading edge of lamellipodia [23,24].

In several previous theoretical studies we described how such

membrane complexes that have both convex curvature and

promote actin polymerization, can induce the spontaneous

initiation of membrane protrusions [25,26]. The intrinsic

curvature is an essential since it completes the positive feedback

between the membrane shape and local density of membrane

proteins; only due to the curvature sensitivity of the proteins do

they flow towards the protruding curved parts of the membrane,
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thereby increasing the cytoskeletal forces acting there on the

membrane and leading to the instability and spontaneous

formation of protrusions.

Furthermore, it has been shown that the adhesion molecules

that connect the cell membrane to the external substrate (such as

integrins) aggregate at regions of high convex membrane

curvature [5,6,27,28], at the leading edge of motile cells and at

cellular protrusions, such as microvilli [29,30] and filopodia [31].

Thus, we have previously proposed [26] to treat the adhesion

molecules as part of the same convex membrane protein that is

also responsible for the recruitment of actin polymerization to the

membrane (this simplification is discussed further in the Model

Details section). The protrusive force in this model can therefore

originate either from the reduction in the effective membrane

tension due to the adhesion with the extracellular matrix or from

the force of actin polymerization (Fig. 1a). For simplicity, we

assume that these are the two dominant forces that determine the

cell shape; direct contractile forces applied to the membrane are

neglected. Also, the role of microtubules (MT) in determining the

cell shape is not described here.

Our model does not explicitly describe the dynamics of the

cytoskeleton in the cell interior, only close to the membrane.

Specifically, the role of contractility induced by myosin-II in the actin

network, is not directly accounted for. However, it is possible to

effectively take the role of this contractility into account in the present

model through the following parameters; (i) The direct contraction of

the membrane inwards due to myosin activity, may be included in the

values of the effective tension parameter (s) and the effective bulk

modulus for the cell’s projected area (K ). Experiments indicate that

both parameters are stiffer when myosin contractility is present, and

are softer when it is absent [32–34].(ii) In addition, myosin activity is

critical for the formation and maturation of adhesion contacts [35].

Therefore the adhesion strength parameter (a) is very much

dependent on the myosin activity, again qualitatively. (iii) Myosin

activity can furthermore affect the turn-over of the actin and thus

modify the rate of actin polymerization, making the parameter (Aactin)

also myosin dependent [36]. While the exact relation between these

parameters and the activity of myosin is not known, qualitatively the

dependencies should be as described here.

The model presented here is meant to explore the dynamics of

cellular shapes driven by the coupling of the cytoskeletal forces

with the membrane through curved proteins that can recruit the

cytoskeleton activity to the membrane. As a step in this direction, it

is therefore important to first understand the behavior of this

coupling and feedback, before adding to the model further layers

of realism and complexity (which are currently absent). This is the

basic philosophy of our approach. The treatment that we present

here is general and is not limited to a particular set of curved

membrane proteins.

Our model is a coarse-grained model, whereby we do not

describe the detailed of the molecular-scale level. The minimal

length-scale along the membrane that is relevant to this model is of

order 100 nm. The model is written as a set of equations of motion

for the continuum fields that describe the membrane shape and

density of membrane proteins, including the actual forces acting

on the membrane, and the details of the membrane elasticity.

Other coarse-grained models were recently proposed [37,38].

These models take a much more detailed description of the actin gel

that is pushing the membrane, and the dynamics within the gel

away from the membrane itself. Another recent model [39] treats

the shape evolution of the cell in terms of a spreading layer of fluid,

and relates the instabilities that initiate protrusions to the behavior

of such a fluid. These models do not contain however the key

component that our model was set up to explore, which is the role of

curved membrane proteins that recruit the cytoskeleton forces to the

membrane. Other types of models, such as [40], deal with an even

more coarse-grained view of the cell. In such models the actual

forces acting on the membrane and the membrane elasticity are not

explicitly calculated. They are replaced by a kinematic model for the

shape evolution, taking into account the biochemical signals that act

locally on the cell membrane. These signals represent external and

internal pathways that eventually control the cytoskeleton and lead

to membrane motion. The huge complexity of the cytoskeleton and

membrane dynamics makes it highly beneficial to explore many

simplified models, each exploring the consequences of a small set of

mechanisms and at different length and time-scales. From the study

of these various models we will gain a deeper understanding

regarding the many entangled mechanisms that interact within the

real cell. It may well be the case that different mechanisms are

dominant under different conditions, and therefore control cell

morphology under these circumstances.

The model we present here was previously analyzed in the

linear limit of small deviations from a uniform flat state [25,26],

which therefore only gave information about the initiation stage of

membrane protrusions. In the present paper we explore the

dynamics of the protrusions beyond the linear limit, and for closed

shapes. Despite the simplicity of this model, which does not

describe all the forces that can arise within cells, it may provide a

general understanding of the shapes driven by the coupling of the

cytoskeleton to the membrane, and shed light on the above

mentioned puzzling experimental observations.

Results

The positive feedback between the protrusive forces (either due

to adhesion or actin polymerization), the membrane shape and

distribution of convex membrane proteins, leads to a dynamic

instability that breaks the uniform configuration and produces

membrane undulations where the membrane proteins are

aggregated. At the linear regime this was explored in [26]. Our

main interest in this work is to follow the evolution of the cell

contour shape in two dimensions (Fig. 1b,c), beyond the regime of

small perturbations which is captured by the linear stability

Author Summary

Cells have highly varied and dynamic shapes, which are
determined by internal forces generated by the cytoskel-
eton. These forces include protrusive forces due to the
formation of new internal fibers and forces produced due
to attachment of the cell to an external substrate. A long
standing challenge is to explain how the myriad compo-
nents of the cytoskeleton self-organize to form the
observed shapes of cells. We present here a theoretical
study of the shapes of cells that are driven only by
protrusive forces of two types; one is the force due to
polymerization of actin filaments which acts as an internal
pressure on the membrane, and the second is the force
due to adhesion between the membrane and external
substrate. The key property is that both forces are localized
on the cell membrane by protein complexes that have
convex spontaneous curvature. This leads to a positive
feedback that destabilizes the uniform cell shape and
induces the spontaneous formation of patterns. We
compare the resulting patterns to observed cellular shapes
and find good agreement, which allows us to explain some
of the puzzling dependencies of cell shapes on the
properties of the surrounding matrix.

Theoretical Model for Cellular Shapes
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analysis. In Fig. 1d we plot the stability phase diagram for the

system driven by only two types of forces; actin polymerization and

adhesion. We wish to explore the long-time evolution and steady-

state of the system when it is unstable.

In order to isolate the effects of actin polymerization and adhesion,

we used our model to explore along the two axes shown in Fig. 1d,

such that we either took Aactin~0,aw0 or Aactinw0,a~0. In the

real cell these two effects are closely linked, so such a complete

separation is done here to better understand the dynamics when

each of these factors is dominant. Additionally, in the simulations

shown below we limited the amplitude of the membrane undulations

to simplify the numerical analysis, but note that the model gives rise

to highly elongated protrusions similar to filopodia, when the non-

linear membrane tension is set to a small value. Finally, we note that

the numerical values of the parameters used in the simulations (see

Table 1) were not meant to fit any particular observation, but rather

allow us to illustrate the qualitative features of the model.

Shape evolution driven by adhesion (Aactin~0,aw0)
In Fig. 2a,b we plot the evolution of the system driven by the

adhesion forces, for the flat and round geometries respectively.

The initial conditions in all cases are those of the uniform

equilibrium state (flat or circular respectively), with a random

perturbation in the membrane protein density distribution of

maximal amplitude 1%. It is immediately clear that the system

evolves initially according to the linear analysis, i.e. the most

unstable mode from the dispersion relation (Fig. 1e) grows the

fastest and the system develops periodic undulations (protrusions)

with wavelength lmax~2p=qmax.

At longer times the membrane shape and membrane protein

density distribution no longer follow the linear behavior, and we

observe the coalescence of the protrusions into a single isolated

feature. In the flat geometry we end up with a single protrusion

which has a sharp tent-like shape, and similarly in the round

geometry we find a contour with a droplet shape. The density

distribution of the membrane proteins in the steady-state (nSS(s)),
follows very closely the curvature of the membrane (H(s)). This

arises due to the equality between the dominant currents in the

steady-state, which are Jcurv and Jdisp (Eqs.10,11). Equating these

currents, we find immediately that: nSS(s)!H(s)= �HH (Eq.S3 in

Text S1). The distribution of membrane proteins has a sharp peak

at the membrane peak, while depleted everywhere else, due to

their convex spontaneous curvature. A further analysis of the

steady-state shapes is described in Text S1.

Figure 1. Model scheme and linear stability diagram. (a) Schematic description of the model ingredients: a one dimensional flexible
membrane contour, with convex and mobile membrane proteins, which induce normal protrusive forces, due to actin (Factin) and due to adhesion-
driven tension reduction (dashed arrows, Fadhesion). Both forces are linearly proportion to the local membrane protein concentration n, which in our
coarse-grained model is treated as a uniform field on length-scales larger than those of the individual proteins. The one-dimensional membrane
contour geometries that we calculate (b) round geometry representing the outer contour of a spread cell on a flat substrate, and (c) the flat geometry
which describes either a segment of the cell contour or a membrane with translational symmetry. The variable h(x) gives the local height
deformation of the membrane, relative to its uniform configuration. The curvature at the rim along the cell thickness is indicated by the thin dotted
line in (b), and is not considered in our two-dimensional analysis. (d) The phase diagram obtained from the linear stability analysis as a function of the
actin protrusive force (Aactin) and adhesive strength (a). We find two regimes: Stable (uniform) state (below the solid line), and unstable above (gray
region, for AactinwAactin,c or awac). In the unstable regime we find type I dispersion relation above the dashed line, and type II dispersion relation
between the solid and dashed lines. The correlation between the actin polymerization and the adhesion strengths is illustrated by two possible
trajectories (lines with arrows) in this phase space. (e) The dispersion relations for three different values of a (numbered and marked by bold dots
along the a axis in (c)). Negative values of the dispersion corresponds to stable modes, and positive values corresponds to unstable modes. (f) An
example of the dispersion relation for the round cell; only the values at integer qR0 play a role. The real part (solid line) is zero at qR0~1 which is an
asymmetric mode of translation, while it can be unstable for higher modes.
doi:10.1371/journal.pcbi.1001127.g001

Theoretical Model for Cellular Shapes
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In a real cell the stress-fibers that connect adhesion regions

usually impose a bi-polar steady-state with adhesion localized at

two opposing poles of the cell. In our model this non-local

interaction is absent and therefore the adhesion region can

collapse to a single localized domain (Fig. 2a,b).

Note that in the round case, the adhesion forces along the whole

membrane are not balanced (their sum does not vanish), since the

highly concentrated membrane proteins at the sharp tip give an

overall force pointing in that direction (local negative effective

membrane tension), Eq.5, and leads to a global drift of the whole

cell. This result arises due to the fact that the adhesion-induced

protrusive force (Eq.5) depends on the local curvature of the

membrane, since it appears as a negative membrane tension term.

This means that the sharper the membrane shape at the peak, the

stronger is the adhesion force due to both a larger concentration of

membrane proteins (larger n at the peak) and a larger curvature,

i.e. the force is proportional to H(s)2. Its integral over the closed

contour therefore does not vanish.

Shape evolution driven by actin polymerization
(Aactinw0,a~0)

In Fig. 2c,d we plot the evolution of the system driven by the

actin protrusive forces, for the flat and round geometries

respectively. The initial conditions are the same as for the case

of adhesion-driven shapes (Figs. 2a,b), and similarly the system

evolves initially according to the linear analysis, where the most

unstable mode from the dispersion relation (Fig. 1e) grows the

fastest and the system develops periodic undulations (protrusions)

with wavelength lmax.

At later times we again find that the protrusions coalesce, but

instead of forming a single sharp peak, the system forms a broad and

flat plateau, that is punctuated by a single sharp dip. In the round

geometry the membrane develops a broad fan-like bulge, with a

smaller concave dip. As for the adhesion-driven system, the density

distribution of the membrane proteins again follows the membrane

curvature, and is given by nSS defined above. The membrane protein

distribution is therefore rather flat, except for two peaks at the

‘‘shoulders’’ of the membrane dip, and are depleted from the dip itself.

A further analysis of the steady-state shapes is described in Text S1.

The protrusive force due to actin on the closed membrane in the

round geometry, sums up to zero at the steady-state. This is due to

the linear relation between the actin force and the membrane

protein density (Eqs.2,3), and that the steady-state membrane

protein distribution (nSS ) is closely proportional to the curvature,

while the integral over the change in the curvature vector vanishes

along a closed contour. Until the steady-state shape settles, the

forces can be unbalanced, and the whole shape drifts. This is

clearly illustrated when we start with initial conditions, where the

membrane proteins are localized (in a Gaussian shape) asymmet-

rically along the membrane contour (Fig. 2e).

Note, that unlike the adhesion-induced protrusive force (Eq.5)

whose strength depends on the local curvature of the membrane,

the actin protrusive force acts as a local pressure term (Eqs.2,3).

Dynamics of the approach to the steady-state shape:
Coalescence

In Fig. 3 we plot the evolution of the flat system, driven by

adhesion (a similar behavior is observed when actin drives the

dynamics), as one approaches the critical point the type-II

dispersion vanishes (vmax?0) and the system becomes linearly

stable (Fig. 1d,e). We observe that initially the amplitude of the

fluctuations grow exponentially as: exp(vmaxt) (Fig. 3a). As the

Table 1. List of parameters used in our calculations.

Effective friction coefficient of membrane, j ½grsec{1mm{2� 8:10{3

Diffusion coefficient of membrane protein in membrane, D

½mm2sec{1�
2:10{3

Mean area coverage of membrane protein, n0 0.1

Saturating density of membrane protein, ns ½mm{2� 10

Membrane bending rigidity, k ½kBT � 100

Intrinsic membrane protein curvature, �HH ½mm{1� 210

Membrane tension, s ½grsec{2� 1:10{3

Spring constant, c ½grsec{2mm{2� 4:10{5

Membrane protein binding interaction, J ½grsec{2� 3:5:10{3

Cell effective bulk modulus, K ½grmm{1sec{2� 10{4

Cell radius, r ½mm� 3

Mobility of proteins, L D=(kBT)

Non-linear tension parameter, b ½mm{1� 0,0.1,1

doi:10.1371/journal.pcbi.1001127.t001

Figure 2. Cellular shapes driven by adhesion and actin
protrusive forces. Numerical simulations of the evolution of the
membrane shape (h in the flat geometry) and membrane protein
distribution (n), for the flat (a) and round (b) geometries, driven by
adhesion only (Aactin~0): flat- a~0:013gr=sec2 , round- a~0:0089gr=
sec2 . Dotted lines give the initial shape (uniform) and membrane
protein distributions uniform with a 1% random noise). At an
intermediate time equally spaced protrusions form (dashed lines-
t~4200 sec), which eventually coalesce to form a single protrusion at
the final steady-state (solid lines- t~5000). In (c,d) we plot the evolution
of the system for the case of only actin protrusive force (a~0), using
Aactin~0:01grmm{1sec{2 . All other conditions are as in (a,b) respec-
tively. We see again equally spaced protrusions at an intermediate time
(t~500 sec), which eventually coalesce to form a single protrusion at
the final steady-state (solid lines- t~2100sec). The cell shape in the
round geometry was centered at the origin. (e) Evolution of the system
driven by actin protrusive force (Aactin~0:0125grmm{1sec{2), for an
initial condition of a highly concentrated Gaussian distribution of the
membrane protein. The asymmetric distribution leads at first to a global
motion of the cell (dashed line- t~100 sec), which stops when the
steady-state distribution is reached (solid line- t~700 sec). The
protrusive forces along the cell perimeter at the steady-state is
illustrated by the arrows in the rightmost panel, which are proportional
to the local density of membrane protein. The simulations correspond-
ing to (b,d,e) are shown in supporting Videos S1, S2 and S3 respectively.
doi:10.1371/journal.pcbi.1001127.g002
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amplitude grows, so does the restoring force due to the non-linear

tension, which eventually, together with the spring force, stops the

growth. The final amplitude hmax of the steady-state membrane

peak (Fig. 3b) is therefore given by the balance between the non-

linear tension and the adhesion force of the steady-state shape.

When the coalescence of the protrusions is very slow, close to

the instability transition line, non-linear tension is able to stop the

growth of the most unstable mode, and the system is stalled with

an approximately sinusoidal perturbation (point marked (2) in

Fig. 3a). The amplitude of the membrane undulation at this stage

is much lower than the final steady-state amplitude, since in the

sinusoidal case the membrane proteins are distributed among

many peaks, rather than all of them concentrated at one single

peak. Eventually small differences among the peak amplitudes and

the slow diffusion of membrane proteins break this dead-lock, and

allows the further growth of the single steady-state peak. We

illustrate these stages in Fig. 3a,b.

In Fig. 3c we plot the dependence of the final coalescence time

tc on vmax, and find a simple linear relation: tc!v{1
max, for large

vmax. As vmax becomes smaller, this relation breaks down due to

the partial stabilization of the system in the intermediate state ((2)

in Fig. 3a), by the non-linear tension.

Shape evolution driven by both actin polymerization and
adhesion

Although its simpler to analyze the effects of the two active

forces separately, as shown above, both are present in a real cell.

We now discuss how these two forces act in combination.

Since both adhesion and actin polymerization act to destabilize

the membrane, when both forces act together the system is pushed

deeper into the unstable regime. This means that the linear

instability starts more quickly and with a larger number of

protrusions.

However, the long-time non-linear evolution of the protrusions

is very different in the adhesion or actin-dominated regimes; in the

adhesion-dominated regime, the addition of actin forces results in

faster coalescence of the protrusions, as is intuitively expected in a

more unstable system. Since the actin acts to broaden the

protrusions into fan-shapes, it speeds up local coalescence events.

In Fig. 4a,b we plot typical evolutions of the system dominated by

adhesion, with and without the addition of actin polymerization.

The faster coalescence is shown for these two simulations in Fig. 4c.

However, in the actin-dominated regime we find that additional

adhesion forces result in stabilization of the small protrusions that

form at the early stages, and suppression of their coalescence. This is

Figure 3. Dynamics of protrusion coalescence. (a) Plot of the
maximum membrane amplitude (with respect to the average
membrane shape) as a function of time, for decreasing values of the
adhesive strength (left to right), approaching the critical values
ac~0:01005gr=sec2 (for Aactin~0, Fig. 1d). The time when a single
steady-state protrusion forms is denoted by tc , shown for example for
one of the trajectories. (b) Typical membrane shapes (h) and membrane
protein density distributions (n) at the marked time points 1-3 in (a).
Time point (1) is during the exponential growth of the most unstable
mode at wavelength lmax (dotted line), time point (2) is during the
stalling in the dynamics as the non-linear tension stabilizes the
undulations (dashed line), and time point (3) is at the steady-state of
a single collapsed protrusion (solid line). (c) Log-log plot of the
observed coalescence time tc as a function of the maximal value of the
dispersion relation vmax. We find a linear relation at large values of vmax

(short tc, dashed line). A non-linear relation is observed for small values
of vmax, where tc seems to diverge faster. (d) Plot of the total number of
protrusions as a function of the adhesion strength a, measured at a
time representing the cellular time scale tcell and denoted in (a) by the
vertical dashed line (chosen for illustration to be t~3800 sec). The
(arbitrary) threshold for a membrane protrusion to be counted is to be
at least 20% of the maximum amplitude. Above a� all the simulations
reach steady-state before tcell and the total number of protrusions is 1.
Within the range a#

vava� the number of peaks grows with
decreasing adhesion strength, till it reaches a maximum number:
Nmax~L=lmax. This value then remains unchanged until the critical
value of the stability transition ac , below which there are no protrusions
forming and the total number of peaks collapses discontinuously to
zero.
doi:10.1371/journal.pcbi.1001127.g003

Figure 4. Dynamics driven by both actin polymerization and
adhesion. (a,b) Evolution of the flat geometry dominated by adhesion
(a~0:0105gr=sec2), alone (a) and with additional actin polymerization
force (b) Aactin~0:015grmm{1sec{2 . The lines give snap-shots of the
system at different times, with the dotted line at the earliest time,
dashed line at intermediate time and the solid line at the final time. In
(c) we plot the number of protrusions as a function of time for the two
simulations (dashed line for pure adhesion, solid line with additional
actin polymerization force). (d,e) Evolution of the flat geometry
dominated by actin polymerization force (Aactin~0:015grmm{1sec{2),
alone (d) and with additional adhesion force (e) a~0:0008gr=sec2 . Lines
give snap-shots of the system at different times, in the same scheme as
in (a,b). In (f) we plot the number of protrusions as a function of time for
the two simulations (solid line for pure actin polymerization force,
dashed line with additional adhesion force).
doi:10.1371/journal.pcbi.1001127.g004

Theoretical Model for Cellular Shapes
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due to the fact that the adhesion force stabilizes the pointed tips of

the small protrusions, thereby slowing down their broadening and

coalescence. This is demonstrated for typical simulations in Fig. 4d-f.

Discussion

We now wish to compare the results of our model with

observations on the shapes of cells. Before we do this we must be

aware of the following complication; the membrane shape

calculated in our model is dynamically evolving through

coalescence of protrusions, and the time-scale for this evolution

becomes very long as the critical values of adhesion and actin

polymerization are approached (see Fig. 3a,c). A living cell

produces local actin or adhesion driven structures over time-scales

that vary from several minutes to tens of hours, so when

comparing to the calculated shapes we need to be aware that

the cellular shapes do not necessarily correspond to the steady-

state shapes we predict at very long times. Cells also move around

(even adhering cells), and divide and therefore drastically

reorganize their cytoskeleton over time-scales that correspond to

these two processes. Over such time-scales the cytoskeleton is

‘‘reset’’, and new features start growing from initial perturbations.

Cellular shapes
The essential feature of our model is the feedback between the

symmetry breaking of the membrane shape and the polarization of

the cortical cytoskeleton, i.e. one cannot occur without the other.

A recent study [41] demonstrates this property in a cell, where the

shape was fixed by an external rigid confinement. It was found

that when the confinement imposes a uniform shape, the

polarization of the cytoskeleton (excited by an external signal) is

transient and decayed rapidly to a uniform state. This observation

strengthens the basic mechanism of our model.

We now compare our calculated steady-state shapes with those

of adhering cells on a two-dimensional surface, which are not very

motile (Fig. 5). On a qualitative level we see (Fig. 5a,b) that regions

of the cell that have strong adhesion (marked by stress fibers) tend

to have a pointed tent-like protrusion, as we calculated, while

regions that are dominated by lamellipodia-like protrusions

(marked by diffuse cortical actin) have a fan-like shape similar to

those given by our model. Overlap between adhesion domains and

lamellipodia can be seen in Fig. 5b, where adhesion sites seem to

serve as platforms for new lamellipodia or vice-versa. Such

complex dynamics of overlapping structures is beyond the current

version of our simple model.

We can relate the thickness of the observed cortical actin layer

along the contour (zw(s)) to the local membrane density of

membrane protein that we calculate (n(s)), in the following way;

assuming that the filaments have a constant rate of severing

(depolymerization) kdepol after they are nucleated at the mem-

brane, their number decay as a function of the distance z from the

membrane according to: nfil(z)~n(s)exp({zkdepol=v), where v is

the treadmilling velocity. The fluorescence signal is proportional to

the number of filaments nfil(z), and the images show the signal

above some threshold value nmin, which occurs at a distance:

zw(s)~(v=kdepol) ln (n(s)=nmin). As shown in Fig. 5c,d (using:

v=kdepol~0:2mm and nmin~0:005) we indeed find that the actin

density follows the membrane shape as we calculated; actin is

depleted where the membrane has concave curvature.

Another example for the transition in cell shapes from ‘‘spiky’’

(dominated by adhesion points) to ‘‘fan-shaped’’ (dominated by

actin polymerization pressure) can be found in [42]. Especially

intriguing are the shapes of cells where active Rac1 was expressed,

leading to Arp2/3 recruitment to the membrane. These cells were

predominantly in a shape similar to those shown in Fig. 2d,e when

actin polymerization is the dominant force. In these cells there is a

broad fan-shape region, and a single concave depression, exactly

as we calculate. It is observed that Arp2/3 is absent from the

membrane in the concave region. In our model the actin

polymerization is absent from this region due to the local concave

curvature, so based on this observation we therefore expect that

the Arp2/3 is activated by a membrane-bound complex with

convex curvature. Candidates are the WASP-family proteins that

have been shown to form complexes with convex proteins [23,24].

Another example for cell shapes that are dominated by actin

polymerization comes from the study of spreading cells [34]. In

this work it is shown that cells that normally spread in a roughly

circular shape, become highly crescent when myosin-II is inhibited

by a drug. This effect is attributed to the reduction in the

contractile force due to myosin, which allows the protrusive forces

of actin polymerization to effectively increase [43] and dramat-

ically alter the cell shape. In our model the myosin activity is not

taken explicitly into account, but we can take into account the

reduction in contractility by increasing the effective protrusive

force of actin (Aactin in Eq.2). In Fig. 6 we show that as the actin

protrusive force increases there seems to be an abrupt transition in

the steady-state cell shape, from a circular shape with a small dip

to a crescent-shape cell. In particular we find that there is now

essentially complete depletion of the actin nucleators from the

membrane in the dip. Our results therefore provide a possible

explanation for the dramatic shape transition reported in [34]

when myosin-II was inhibited. Specifically, it was noted in [34]

that there is complete absence of branched actin polymerization

near the membrane in the dip region, as we find in our model.

Figure 5. Qualitative comparison between observed and
calculated cell shapes. (a,b) Shapes of adhering cells on a flat two-
dimensional surface, with fluorescently labeled actin. We denote
lamellipodia by ‘‘A’’ and adhesion domains by ‘‘a’’. (c) A cell dominated
by lamellipodia, where we show a segment of the cell perimeter (lower
panel) and compare to the calculated (flat geometry) membrane shape
(solid line) and cortical actin density (dashed line), assuming a constant
rate of actin depolymerization behind the leading edge. (d) Comparison
between cell shapes dominated by lamellipodia and the calculated cell
shape and cortical actin density (round geometry).
doi:10.1371/journal.pcbi.1001127.g005
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Finally, an example that comes from motile cells is given in [44],

where it was observed that the localization of Ena/VASP to the

leading edge is responsible for the formation of a cell with a single

fan-shape (as we find in Fig. 2d,e). When the Ena/VASP was not

localized to the edge, the cell assumed a more round and

fluctuating shape. We note that Ena/VASP can be localized to the

membrane by association with IRSp53 [45], which is precisely the

type of linkage that our model proposes. In addition, when the cell

membrane was forced to have a flat edge, it was observed that the

localization of the Ena/VASP in this region disappeared, and

reappeared only when the constraint was removed. This

observation again points to the role of membrane shape in the

localization of this protein at the leading edge, as we propose.

Evolution of cellular protrusions: Coalescence
While the coalescence phenomenon was previously discussed

theoretically in [46,47], our work is the first to our knowledge, to

calculate this process explicitly for actin and adhesion driven

protrusions on a membrane. The coalescence dynamics of the

membrane protrusions that we calculate (Fig. 3), allows us to

propose an explanation for a number of long-standing puzzles

regarding the relation between cellular shapes and the properties

of the surrounding matrix. Our model predicts that initially the

adhesion or actin-driven membrane undulations grow at the

wavelength lmax, so that the number of cellular protrusions along

a membrane contour of length L is of order Nmax~L=lmax. The

system then evolves by coalescence of the protrusions into

progressively fewer and larger protrusions, until a single feature

remains (Figs. 2,3b).

It is hard to find much published data to compare with this

general feature of our model. This type of dynamics was observed

for adhering cells in [10], where the adhesion foci along the cell

rim were initially numerous (10{20 after 4 hrs) and spread at

rather uniform spacing, but later formed roughly two adhesion

regions at the two opposing poles of the elongated cell (after

24 hrs). Our model qualitatively captures these dynamics (Fig. 2b),

although it does not lead to a bi-polar distribution since we do not

have the constraint imposed by the need to connect opposing

adhesion regions by internal stress-fibers. Recently, the dynamics

of cell morphology during spreading and adhesion was more

closely investigated experimentally [39]. In this work one can

observe some of the shape evolution we calculate, such as the

formation of regularly spaced protrusions from an initially circular

cell (Fig. 1 of [39]), as well as the later coalescence of such

structures (Fig. 5 of [39]).

Furthermore, our model predicts that as the phase transition line

is approached (Fig. 1d) the time-scale for coalescence of the

protrusions becomes very long (Fig. 3a,c). Since the cell has a typical

time-scale (tcell ) over which it reorganizes its cytoskeleton (deter-

mined by external cues or division time, etc.), it is relevant to

compare the calculated shapes at this particular time. We plot in

Fig. 3d the number of protrusions at this chosen time and find that it

has the following non-linear behavior; for values of the adhesion or

actin forces (a or Aactin) that are below the critical threshold, the

system is stable (uniform) and the number of protrusions is therefore

zero. Just above the critical line (either awac or AactinwAactin,c,

Fig. 1d) the time-scale for coalescence (tc, Fig. 3c) is much longer

than tcell and the observed number of protrusions is simply the

maximal one Nmax~L=lmax (note that near the transition

qmax?q�c , Fig. 1e). As a (or Aactin) increase further the coalescence

time becomes shorter and the protrusions begin to coalesce by the

time tcell , consequently reducing the number of protrusions we

count. Above a certain value of the adhesion or actin parameters

(a� or A�actin), we arrive in a regime where: tcvtcell , and the

protrusions have all coalesced to form a single feature. We count a

membrane protrusion if its amplitude is at least 20% that of the

largest membrane protrusion. This value of the threshold was

chosen arbitrarily, but does not change the qualitative behavior.

This unique prediction from our model suggests a possible

explanation for the following puzzling observations; (i) In [9]

neuronal cells adhering to a flat two-dimensional surface, have

been shown to produce more (less) numerous and shorter (longer)

protrusions, when the cells had less (more) activity of actin filament

polymerization. This observation may correspond in our model to

the cells having their actin force parameter vary within the region:

Aactin,cvAactinvA�actin. Note that the number of protrusions is

stabilized (i.e. further coalescence is suppressed) in these cells when

MTs invade the nascent protrusions along the cell edge. This

invasion process sets the time scale tcell . (ii) In [7], cells

encapsulated in a three-dimensional matrix have been found to

have more (less) numerous and shorter (longer) protrusions, when

the surrounding gel was stiffer (softer) and therefore harder (easier)

to degrade. We can map the ability of cells to degrade their

surrounding matrix and protrude with the parameter describing

the actin protrusion force, such that a stiffer gel corresponds to a

smaller Aactin, and vice versa. The observations therefore suggest

that the regime of stiffness explored in the experiments

corresponds again to: Aactin,cƒAactinƒA�actin. Note that in this

experiment it was reported that when the stiffness increased above

some threshold the number of protrusions collapsed to zero, as our

model predicts (Fig. 3d). A similar relation between the number of

degradation-protrusions and substrate stiffness was also observed

in [48], in the context of invadopodia produced by cancer cells

during invasion of the ECM.

Most recently the number of cellular protrusions (‘‘fingers’’) was

measured as a function of the actin polymerization activity, using a

drug [39]. As our model predicts (Fig. 3d), the measurement shows

that as the actin polymerization is inhibited the number of

protrusions increases.

Figure 6. Crescent-cell shape transition at high actin polymer-
ization levels. (a) Calculated steady-state shapes of cells driven by
actin polymerization (no adhesion, a~0), for increasing levels of actin
polymerization force parameter: Aactin~0:02,0:03,0:035,0:038,0:04,
0:05grmm{1sec{2 (the non-linear tension parameter was taken to be
b~0:1). The crescent shapes obtained above a threshold level of actin
polymerization are similar to those observed in [34]. (b) Plot of the
density distribution of the membrane proteins along the membrane for
the two cases of Aactin~0:038,0:04grmm{1sec{2 (top and bottom
respectively), to demonstrate the strong depletion in the dip region
that accompanies the formation of the crescent cell shape. The size of
the circles that decorate the cell contour are proportional to the local
concentration of the membrane proteins.
doi:10.1371/journal.pcbi.1001127.g006
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The effects of the adhesion strength of a cell on a flat two-

dimensional surface, on the cell shape have been explored in a

number of papers [1,49–51]. As the stiffness of the substrate is

increased, so does the strength of the cell adhesion, and our model

would therefore predict a decrease in the number of protrusions

and more global cell polarization, as the stiffness increases. Indeed

this is the observed trend.

The above discussion suggests that cells seem to naturally live in

a parameter space near the transition lines between the stable

(uniform) and unstable (protrusions) regime (Fig. 1d). Such a

location may allow cells to change their shape by only small

changes to their cytoskeleton activity. This feature may explain the

spontaneous cellular transitions observed in [11], from uniform

round cells to cells covered by filopodia.

Note that there are several effects that may strongly suppress or

delay the process of protrusions coalescence; long actin-driven

protrusions, such as filopodia, can get anchored to the external

substrate at their tips, and stabilize in such a way that any

coalescence with neighboring filopodia is suppressed. We demon-

strate such dynamics in our model, where a small addition of

adhesion stabilizes the actin-driven protrusions (Fig. 4d-f).

Additionally, strong adhesion may decrease the effective mobility

and diffusion coefficient of the membrane proteins, again delaying

or suppressing coalescence. This second process was not explicitly

treated in the current model, but can be added in the future. These

processes may result in cells retaining their ‘‘polygonal’’ (or

‘‘spiky’’) morphology, where by protrusions are separated by the

typical wavelength lmax.

Finally, we have not discussed here the processes that degrade

cytoskeleton-membrane structures (protrusions and adhesion

complexes). While in our model the overall number and activity

of the membrane proteins is constant, in the cell each protein

undergoes processes of degradation and deactivation. Such

processes endow each cytoskeleton-membrane structure with a

finite lifetime [52], which increases with the size of the protrusion

and its protein content. The degradation process therefore further

acts to inhibit coalescence as we approach the critical transition

line where coalescence slows down (Fig. 3). When the coalescence

process is faster than the degradation, we will find cells that reach

the steady-state shapes and attain global polarization, while slow

coalescence will be further inhibited by the decay of the

protrusions and the initiation of new ones (see for example [53]).

Cell motility
Although we have been interested in cell shapes rather than cell

motility, there are two features of our model that may be relevant

for this problem as well, and suggests that curvature-driven

feedback may play a role in cell motility as well.

1. In our model of the round cell driven only by adhesion

(Fig. 2b) there is spontaneous symmetry breaking due to the

feedback between the convex membrane protein and their

induced protrusive force. The protrusive force is driven by a local

negative membrane tension which amounts to the continuous

addition of membrane area at that location. Along the rest of the

cell, the positive membrane tension pulls the cell rear inwards, and

therefore an overall drift in the direction of the sharp feature

ensues. Our model may therefore be relevant for the study of

amoeba-type cell motility observed by cells in a three-dimensional

matrix [8], where localized adhesion to the matrix at the leading

edge is the dominant feature, and cells often have the tear-drop

shape we calculate.

2. In our model of the round cell driven only by actin protrusion

(Fig. 2d) there is overall symmetry breaking and the shape is very

similar to that observed in highly motile cells, such as keratocytes

[54], moving on a two-dimensional surface. Within our model

there is a global cancelation of the protrusive forces such that the

cell is stationary, and this cancelation arises due to the strong

backward forces at the two highly curved corners, where the

membrane shape is most convex (Fig. 2e). These backward forces

cancel the forward protrusive force along the fan-like front of the

cell. In a real motile cell the actin seems to be prevented from

pushing effectively the membrane backward at the cell back, due

to myosin activity and polarization of the actin depolymerization

processes [55,56]. Our model suggests that the localization and

shape of the leading edge may be maintained by curved activators

of actin [23], while additional symmetry breaking processes, such

as retrograde flow and maturation of the adhesion contacts, are

necessary to polarize the actin polymerization and result in overall

cell motility [57–59].

Conclusions
To conclude, let us summarize our main findings:

N When protrusive forces, due to either actin polymerization

and/or adhesion, are recruited by convex membrane proteins

and exceed a threshold value, we find that protrusions

spontaneously form, initially at regular spatial intervals. The

protrusions evolve by a process of coalescence, leading to

larger but fewer protrusions with time.

N The shape of the protrusions at long times differs significantly

between the cases dominated by adhesion (pointed tent-like) or

actin polymerization (broad fan-shaped), as observed in cells.

N The time-scale for the coalescence of protrusions diverges as

the critical threshold of cytoskeleton activity is approached

(from above). This means that the observed number of

protrusions increases near the threshold value (from above)

and vanishes below it. This type of dynamics can explain the

puzzling observed dependencies of cell shapes on the

properties of the surrounding matrix [7,9].

Note that the process of pattern coarsening, which in our case is

in the form of coalescence of protrusions, is a more general

phenomenon than our specific model, and it appears in other

biological systems as well [60]. Therefore our conclusions

regarding the interplay between the cellular time-scales and

observed patterns are also more general and may apply even if the

underlying mechanisms for protrusion formation are different

from those considered here.

Our model not only recapitulates many features of observed

cellular shapes, but also allows us to make predictions that await

further measurements. It highlights the major role of curved

membrane proteins that couple the membrane to the underlying

cytoskeleton in determining cellular shapes [12,23].

Let us emphasize again that the work presented here is just one

step towards the understanding of the coupling of the cytoskeleton

to the cell membrane. Our philosophy is to start with a simple

model, which does not include all the complexity of the cell. We

believe that the results we obtained are interesting and rich enough

to encourage future extensions of our model, that will indeed add

more details.

Materials and Methods

Experimental methods
Murine fibroblastoid cells were as described before [61,62].

Cells were grown in DMEM, 4.5 g/L glucose (Invitrogen,

Karlsruhe, Germany) with 10% FCS (Sigma-Aldrich, Munich

Germany), 2 mM glutamine, 1 mM sodium-pyruvate, 0.1 mM
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non-essential amino acids (Invitrogen) at 37uC and 7.5% CO2. For

visualization of the actin cytoskeleton cells were grown on acid-

washed glass-coverslips. For the induction of lamellipodia cells

were seeded sub-confluently onto glass-coverslips, serum-starved

over night, and treated with DMEM alone or DMEM containing

10 ng/ml PDGF-BB (PDGF-BB; Sigma-Aldrich) for 5 min prior

to fixation. Cells were then fixed with formaldehyde (4%) in PBS

for 20 min, extracted with 0.1% Triton X-100 in 4% PFA for

1 min, and stained with Alexa dye-labelled phalloidin (Invitrogen)

as described. Samples were analyzed on an inverted microscope

(Axiovert 100TV; Zeiss, Jena Germany) using a 63x/1.4-

numerical aperture plan-apochromatic objective and equipped

for epifluorescence as described previously [63]. Images were

acquired with a back-illuminated, cooled charge-coupled-device

camera (TE-CCD 800PB; Princeton Scientific Instruments,

Princeton, NJ, USA) driven by IPLab software (Scanalytics Inc.,

Fairfax, VA, USA). All microscopic images were further processed

with Adobe Photoshop 7.0/CS software (Adobe Systems,

Mountain View, CA, USA).

Model details
In this section we describe the theoretical model that we used.

We start with the derivation of the basic equations of motion for

the membrane shape and density of membrane proteins. We then

describe the linear stability analysis of the flat and round

membrane shapes.

The geometries which we will explore in this work are only two-

dimensional. In three dimensions there is the additional degree of

freedom of the membrane proteins to re-orient themselves in

response to changes in the local curvature tensor [64]. Their

dynamics and distribution along the membrane will therefore be

modified, and may well affect the long-time evolution of the

membrane protrusions, while the short-time linear regime will not

be very much affected by the dimensionality.

The first geometry is that of a round closed shape (Fig. 1b),

which can describe the outer contour of a flat cell that is adhered

on a substrate. Such a geometry arises in many experiments where

cells spread over a solid surface. In this geometry we assume that

the cell has a preferred overall projected area (Starget), which it tries

to maintain while its shape is evolving [38].

The second geometry describes a segment of the cell outer

contour, where the membrane is initially straight (Fig. 1c). This

geometry can also describe a flat two-dimensional membrane,

under the constraint of having undulations with translational

symmetry. In this geometry we need to pin the membrane using

an external harmonic force (Fspring, Eq.6), to prevent its drifting

motion. Such an external force mimics the effects due to the

adhesion of the rest of the cell to an external substrate.

Note that we do not explicitly describe the membrane shape

along the cell thickness (Fig. 1b). If the membrane curvature along

the thickness is roughly constant, then it simply enters our

calculation as a modified membrane tension and adhesion

strength, as well as changing the value of Starget in Eq. 2 (see

more details in Text S1).

Regarding the membrane proteins in our model, we assume

that their overall number on the membrane is conserved, and that

they are allowed to dynamically move along the fluid membrane.

In our model the adhesion and actin protrusive forces are

described by two independent parameters [26] (a and Aactin,

Fig. 1d). In the cell the actin polymerization activity and adhesion

are closely related [65,66]; actin polymerization and treadmilling

induces the initiation of focal adhesions [67], so the adhesion

strength (a) increases with the actin polymerization activity (Aactin).

On the other hand, the protrusive force on the membrane due to

actin polymerization is found to depend in a biphasic manner on

the adhesion strength [1,2,4]; it increases for low adhesions as the

traction with the substrate increases, but eventually decreases as

strong adhesion stalls the membrane. These two types of

dependencies are indicated by the trajectories drawn in Fig. 1d.

Furthermore, the actin organization is different where adhesion or

polymerization dominate; mature adhesion sites have internal

actin stress fibers that have little direct contact with the membrane,

while regions dominated by actin polymerization, such as filopodia

and lamelipodia, have actin filaments that push actively the

membrane surface. These two different scenarios lead us to

describe these two forces by two independent parameters a and

Aactin.

Inside cells the actin polymerization rate should also depend on

the local membrane restoring force applied to the growing tips

[68]. This relation is not well understood inside the cell, where the

mechanism for polymerization depends on the membrane

composition and type of actin nucleator. We can implement this

effect in our model by making the polymerization rate Aactin

dependent on the membrane force, when this force opposes the

actin protrusion [69]. This effect does not modify the (linear)

stability of the system, but does change the shapes and dynamics of

the resulting membrane undulations. In Text S1 we give an

example of a calculation where we demonstrate the effects that this

adds (Fig. S1). For simplicity we use a constant (uniform) Aactin for

the rest of this paper. Note that it is easy to implement within our

model a non-uniform actin polymerization rate or adhesion

strength (Aactin,a) by making these parameters dependent on the

local density of membrane proteins, membrane shape etc.

The actin polymerization in our model produces a force that is

acting normally on the membrane, similar to an internal pressure

force (see Eq.2). This may be a good description for Arp2/3-

induced actin polymerization where a rather uniform network of

filaments, with a distribution of angles, is protruding against the

membrane surface. Actin polymerization that is induced by

Formin-type proteins tends to be unidirectional [63], and the

actin-membrane interactions of the resulting actin bundle can be

strongly influenced by binding proteins and molecular motors

[70,71]. These additional effects are not explicitly treated here,

and could be added in the future.

Another important point to note regarding our model, is that we

treat the adhesion as a localized event on the membrane surface,

while in adhering cells mature adhesion sites require stress-fibers

that link adhesion domains on two distant locations on the

membrane [65]. This non-local feature of adhesion is absent from

the present model.

Equations of motion
Our model investigates the coupling between both the adhesion

and the actin protrusion forces to the membrane curvature. We

give below the free energy expression used in the model, from

which we derive the equations of motion of the membrane shape

and density distribution.

The continuum free energy for the model is based on the

Helfrich form [72], including the membrane proteins interactions

and entropy [26].

F~

ð
(
1

2
k(H{ �HHn)2z(s{an)zch2zkBTnsn(log(n){1))

{Jn2z
J

ns

(+n)2)ds,

ð1Þ

where k is the membrane bending rigidity, H is the local mean
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membrane curvature, �HH the intrinsic curvature of the membrane

protein, n is the fractional area coverage of the membrane by the

membrane proteins, ns is the saturation density of membrane

proteins on the membrane, s is the membrane tension, a is a

proportionality constant describing the effective adhesion interac-

tion between the membrane proteins and the external substrate, c
is a restoring spring term, J is the direct binding interaction energy

between the membrane proteins, and ds~d:dl is an element of

membrane area, where d is the thickness of membrane

represented by our contour and dl is a line element along the

membrane contour.

The first term in Eq.1 gives the curvature energy due to the

mismatch between the membrane curvature and the spontaneous

curvature of the membrane protein. The second term describes

the negative contribution to the effective membrane tension,

induced by the adhesion molecules. The third term describes an

external harmonic potential that pins the membrane (in the flat

geometry), representing the overall localization of the cell to the

external matrix. The fourth term gives the entropic contribution

due to the thermal motion of the membrane protein in the

membrane. The fifth and sixth terms are the bulk and surface

aggregation energies of the membrane protein.

Note that for simplicity in our model we have a single species of

membrane protein complexes, described by the field n, which has

the ability to both recruit actin polymerization and/or adhesion.

In reality these two properties may exist on two (or more)

independent membrane complexes, with different curvatures and

interactions ( �HH and J in Eq.1). Such an increased level of detail,

and complexity, can be introduced in future elaborations of this

model.

We next derive the equations of motions for a general contour

in two dimensions, using the variation of the free energy (Eq.1)

with respect to the membrane coordinate [73,74] and membrane

protein concentration [74], and adding the active forces due to

actin polymerization which cannot be derived from the free energy

[25,26]. To take into account the drag force on the cell membrane

due to viscous forces, we assume for simplicity only local friction

forces [26,74], with overall coefficient j. Note that the local

friction coefficient for membrane motion contains also the effects

of adhesion [26], so that: j~j0(1zg(a)n), where g(a) is some

increasing function of the adhesion strength a, representing the

stick-slip nature of the adhesive bonds [75,76]. This term leads to

non-linear effects, which do not modify the (linear) stability of the

system or its qualitative dynamics, simply slows them down.

Before we give the equations of motion let us note again that we

are interested in two geometries of the membrane; one is a closed,

round shape which describes a whole cell, while the second is a flat

membrane that describes a segment of the entire cell. For the

round shape the equation of motion of the contour coordinate,

~rr(s,t)~(x(s,t),y(s,t)), is given by

j
L~rr
Lt
:~nn~{

dF(s,t)

dh
zAactinnzK(S(t){Starget) ð2Þ

where s is the index along the contour length, Aactin is the

proportionality factor representing the actin protrusive activity

induced by the membrane proteins, K is an effective bulk modulus

for the cell’s projected area, S(t) is the area enclosed by the

contour, and ~nn is a unit vector normal to the contour. The

variation of the free energy is projected to give the forces normal to

the membrane contour [73,74]. The protrusive force of the actin is

assumed to grow linearly with the local concentration of

membrane protein [25,26] and the area-preserving forces act as

a global internal pressure. Both of these forces act normal to the

membrane. Note that in this geometry we do not use the spring

term in the free energy (c~0 in Eq.1).

For the flat geometry the equation of motion of the membrane

height h(x) is given by

j
Lh

Lt
~{

dF (s,t)

dh
zAactin(n{SnT) ð3Þ

where we subtract the average actin force to prevent the

membrane drift, and SnT is the average fractional area coverage

of the membrane proteins along the membrane contour.

Additionally, in the free energy we use a non-zero spring term

to prevent an overall drift of the membrane. In this geometry we

only take the projection of the force along the y-axis, since the

position of the membrane along the x-axis is fixed.

We now list the forces (per unit area) derived from the variation

of the free energy (Eq.1) [73,74]

Fcurv~k {+2Hz �HH+2nz
1

2
n2 �HH2H{

1

2
H3

� �
ð4Þ

Ftension~ s{anð ÞH ð5Þ

Fspring~{2ch ð6Þ

FJ~J {n2z
1

ns

(+n)2

� �
H ð7Þ

where Fcurv is the force due to the curvature energy mismatch

between the membrane curvature and the spontaneous curvature

of the membrane proteins, Ftension is the membrane tension force,

Fspring is the harmonic pinning force and FJ is the force due to the

aggregation potential of the membrane proteins. There is in

addition a force arising from the entropy of the membrane

proteins in the membrane, which acts to expand the length of the

contour, and has the form: Fentropy~kBTnsat(nlogn{1)H . We

have neglected this force in our calculations, since it is smaller than

the other forces. All the derivatives are along the contour length

(s).

In a cell the membrane area is finite and this leads to a non-

linear form for the effective membrane tension [77]

s~s0exp½b(L(t){L0)� ð8Þ

where L(t) is the contour length, L0 is the initial contour length

and b is the factor that determines the length-scale at which the

non-linear growth in the tension sets in. This restraint on the

amplitude of membrane undulations also allowed us to avoid

kinetically trapped configurations, by preventing the strong

depletion of the membrane protein density which would have

slowed down the evolution of the system, since it depends on the

currents of membrane protein flowing in the membrane. Regions

where the membrane protein density is highly depleted act as

effective barriers for such flows [60]. A previous study [60]

suggests that the steady-state of the system is unaffected by this

limitation, only the rate at which the system is able to approach

this steady-state.

We now calculate the dynamics of the membrane protein

density, using the following conservation equation (covariant
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version [78]) and the free energy F [79] (Eq.1)

Ln

Lt
~{+:~JJ~

L

ns

+ n+
dF

dn

� �
{

nffiffiffi
g
p

L
ffiffiffi
g
p

Lt
ð9Þ

where L is the mobility of the proteins in the membrane and ~JJ is

the total current of membrane proteins on the membrane, which

includes the following terms

Jcurv~
kL �HH

ns

n+H ð10Þ

Jdisp~{
kL �HH2

ns

n+n ð11Þ

Jagg~
2JL

ns

n+nz
2JL

n2
s

n+3n ð12Þ

Jdiff ~{D+n ð13Þ

where Jcurv is the flux resulting from the interaction between the

membrane proteins through the membrane curvature, Jdisp is the

dispersion flux due to the membrane resistance to membrane

protein aggregation due to their membrane bending effects, Jagg is

the flux due to the direct membrane protein aggregation

interactions, and Jdiff is the usual thermal diffusion flux, which

depends on the diffusion coefficient, D~LkBT .

The last term in Eq.(9) arises from the covariant derivative of

the density with time on a contour whose length evolves with time

[78]. In this term
ffiffiffi
g
p

is the matrix tensor, which in our one

dimensional contour is simply the line element dl. This term

ensures that the total number of membrane protein is conserved as

the contour length changes.

Note that we have used here a constant value for the mobility of

the membrane proteins (L), but this mobility is in reality

diminished with increasing adhesion strength a. Furthermore,

crowding effects in the membrane decrease the mobility with

increasing local concentration of membrane proteins n. We

checked that both of these effects do not qualitatively change the

results that we present in this paper, where for simplicity we take L
(and therefore also D) to be a constant, independent of a, n or the

local shape of the membrane [80].

Linear stability analysis
We next performed a linear stability analysis of the model, as

was previously done for the flat case [26], in order to find the

regions of instability of the system, and for the round case to

calculate the equilibrium radius and membrane protein density.

Note that we will consider only convex shape for the membrane

proteins ( �HHv0), in order to get instabilities in the dynamics of this

system [25,26].

Flat geometry. In the flat geometry the contour is allowed to

evolve only along one direction and we label the amplitude of the

membrane height fluctuation as h(x) (Monge representation),

where x is the coordinate along the initial contour length. In this

representation the linearized curvature is: H^+2h, and the length

element of the contour dl is given by: dl~1z(+h)2=2. Linearizing

the equations of motion (Eqs.3–9), we then Fourier transform to

get a 2|2 matrix whose eigenvalues v(q) give the dynamic

evolution of small fluctuations from the equilibrium uniform state.

Both eigenvalues are real, and one of them is always negative and

therefore represents only damped modes. The second solution can

become positive in some a range of wavevectors and for certain

parameters of the model, representing unstable modes that grow

with time. The parameters of the model that represent the effects

of actin polymerization and of adhesion are Aactin and a
(Eqs.2,3,5).

Fixing all the other parameters, we plot in Fig. 1d the phase-

diagram from the linear stability analysis as a function of Aactin

and a [26], where the three numbered points correspond to the

adhesion strength used to calculate the dispersion relations given

in Fig. 1e. Below the solid line in Fig. 1d the system is linearly

stable and uniform, while above this line there are unstable modes

and spontaneous patterns are initiated. The instability is driven by

the positive feedback between the membrane shape and the

density of membrane proteins [25,26], due to their induction of

protrusive forces and convex spontaneous curvature. Between the

solid and dashed lines there is a growing range of wavevectors,

qc1wqwqc2, which are unstable (Type-II). Above the dashed line

this range extends to zero wavevectors (qc2~0, Type-I). The most

unstable mode (largest positive v(q)) is denoted by wavevector

qmax. Along the solid line, the type-II instability first appears at a

wavevector q�c , which increases as a (Aactin) increases (decreases).

Round cell geometry. For the round geometry, we follow a

similar linear stability analysis, where we replace the curvature by

the following expansion (as a function of the angle h)

H(h)~{
1

R0
z

h(h)z€hh(h)

R2
0

{
2h(h)2z _hh(h)2z4h(h)€hh(h)

2R3
0

ð14Þ

where R0 is the initial radius and h(h) is the deformation of the

membrane in the radial direction, and the differentiation is with

respect to h. The line element dl, is also expanded up to quadratic

order

dl~R0zh(h)z
_hh(h)2

2R0
: ð15Þ

The differences compared to the flat geometry is that we do not

include now a spring energy term, and the actin protrusive force

does not have the mean force subtracted. Note also that the area-

conserving term appearing in Eq.(2) does not contribute to the

linear stability analysis. Following the same methods as described

for the flat shape membrane, we linearized the equations of

motion, and solved the dispersion relation. In this geometry there

is a uniform force acting on the membrane, which vanishes for the

initial equilibrium circular shape. This condition determines the

initial radius R0 and the initial uniform membrane protein area

coverage which is defined by: n0~Nt=(2pnsR0), where Nt is the

total number of membrane proteins on the initial contour. The

dispersion relations for the circular geometry are very similar to

those shown for the flat case in Fig. 1e, while the wavevector qh

has only integer values.

Numerical simulations
The main results of our work are calculated using numerical

simulations of the dynamics of our model system beyond the linear

limit. For this purpose we solved Eqs.(2–9) using an explicit Euler

method in Matlab. We checked for the convergence of our one-

dimensional simulations, in space and time. We used occasional

re-discretization of the contour into equally spaced nodes, using
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the cubic ‘‘spline’’ routine, to prevent large changes in discretiza-

tion density along the contour as it evolves with time. After such

operation we re-distributed the membrane protein density among

the new node locations using a linear interpolation algorithm, such

that the total membrane protein number is conserved.

In the flat geometry we used the Monge representation h(x),
which leads to a complex curvature restoring force (Eq.S6, Text

S1), but in order to simplify the numerics we eventually kept the

curvature force only up to linear order. The boundary conditions

on the flat geometry were taken to be periodic, for simplicity. In

the this geometry, the membrane moves only along the direction

perpendicular to the initial flat state.

Supporting Information

Figure S1 (a) Numerical simulations of the evolution of the

membrane shape and membrane protein distribution, for the flat

geometry, driven by actin alone. Black lines give the results

without the effects of the local force, while red lines are including

the effects of the local membrane restoring force. (b) The number

of protrusions as a function of time for the two calculations shown

in (a), with the same color code.

Found at: doi:10.1371/journal.pcbi.1001127.s001 (0.78 MB EPS)

Text S1 Cellular shape transitions: Supplementary Information

section. PDF file containing the supplementary information, and

movie captions.

Found at: doi:10.1371/journal.pcbi.1001127.s002 (0.05 MB PDF)

Video S1 Movie of a simulation showing the cell shapes evolving

due to adhesion, corresponding to Fig. 2b.

Found at: doi:10.1371/journal.pcbi.1001127.s003 (0.67 MB AVI)

Video S2 Movie of a simulation showing the evolution of a

polarized cell shape due to actin polymerization, corresponding to

Fig. 2e.

Found at: doi:10.1371/journal.pcbi.1001127.s004 (0.51 MB AVI)

Video S3 Cell shape driven by actin polymerization. Movie of a

simulation showing the cell shapes evolving due to actin

polymerization, corresponding to Fig. 2d.

Found at: doi:10.1371/journal.pcbi.1001127.s005 (1.63 MB AVI)
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