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Abstract

Neurofibromatosis type 1 (NF1) is a genetic disorder that affects a range of tissue systems,

however the associated muscle weakness and fatigability can have a profound impact on

quality of life. Prior studies using the limb-specific Nf1 knockout mouse (Nf1Prx1
-/-) revealed

an accumulation of intramyocellular lipid (IMCL) that could be rescued by a diet supple-

mented with L-carnitine and enriched for medium-chain fatty acids (MCFAs). In this study

we used the Nf1Prx1
-/- mouse to model a range of dietary interventions designed to reduce

IMCL accumulation, and analyze using other modalities including in situ muscle physiology

and lipid mass spectrometry. Histological IMCL accumulation was significantly reduced by a

range of treatments including L-carnitine and high MCFAs alone. A low-fat diet did not affect

IMCL, but did provide improvements to muscle strength. Supplementation yielded rapid

improvements in IMCL within 4 weeks, but were lost once treatment was discontinued. In

situ muscle measurements were highly variable in Nf1Prx1
-/- mice, attributable to the severe

phenotype present in this model, with fusion of the hips and an overall small hind limb mus-

cle size. Lipidome analysis enabled segregation of the normal and modified chow diets, and

fatty acid data suggested increased muscle lipolysis with the intervention. Acylcarnitines

were also affected, suggestive of a mitochondrial fatty acid oxidation disorder. These data

support the theory that NF1 is a lipid storage disease that can be treated by dietary interven-

tion, and encourages future human trials.

Introduction

Neurofibromatosis type 1 (NF1) is a complex genetic disease that can have a profound impact

on childhood development and adult quality of life. A clinical diagnosis of NF1 relies on
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fulfilling at least two of the seven diagnostic criteria; café au lait macules, skinfold freckling,

neurofibromas, Lisch nodules, optic pathway tumors, bone dysplasia, and a family history [1].

Individuals with NF1 are predisposed to neural tumor formation and development of neuro-

logical, musculoskeletal and vascular abnormalities that contribute to the morbidity of the dis-

order. However, the reduced muscle tone, muscle weakness, poor co-ordination, and

increased fatigability associated with NF1 are being increasingly appreciated as major burdens

of disease [2]. These can lead to significant functional impairment and reduced quality of life

in children, particularly when combined with other features of NF1 such as learning and

behavioral difficulties [3].

Key insights into the role of NF1 in muscle have come from conditional Nf1-deficient

mouse lines. A limb-specific Nf1 knockout mouse (Nf1Prx1-/-) was generated using a Prx1-cre

transgene to drive deletion of Nf1 in cells of the mesenchymal lineage in the fore and hind

limbs. This mouse strain has reduced muscle weight, muscle weakness, fibrosis and impaired

myoblast differentiation in the developing limbs [4]. To more specifically investigate the func-

tion of Nf1 in muscle, Sullivan et al. generated a Nf1 knockout mouse specifically deleting the

gene in skeletal muscle (Nf1MyoD
-/-) [5]. Nf1MyoD

-/- pups are born with a reduced body weight,

exhibit stunted growth and failure to thrive, and maternal infanticide typically occurs during

the first week of life. Electron microscopy analysis of Nf1MyoD
-/- muscle revealed excessive

accumulations of intramyocellular lipid (IMCL), consistent with a metabolic myopathy [5].

This was confirmed at the light microscopy level by Oil Red O staining. These novel findings

led us to speculate that NF1 may have a key role in the regulation of muscle lipid metabolism.

More recently, Summers et al. published a report examining the IMCL found in Nf1MyoD
-/-

muscle [6]. Lipidomics identified an increase in triglycerides, diglycerides, and cholesterol

esters containing long-chain fatty acids (LCFAs). This led to the hypothesis that a deficiency in

LCFA metabolism may underlie the muscle weakness. Consequently, a dietary intervention

where Nf1Prx1-/- mice were treated with a diet enriched for medium-chain fatty acids (MCFA)

and supplemented with 300mg/kg L-carnitine led to reversal of the muscle lipid phenotype

and improved forelimb grip strength. L-carnitine has previously been shown to treat muscle

weakness in patients with other metabolic myopathies [7–9].

However, the mouse chow containing 70% octanoic acid as a MCFA source [6] is an

approach that is not directly translational to dietary modification in humans. Moreover, it was

unknown whether L-carnitine supplementation alone would be sufficient to produce signifi-

cant reductions in muscle lipid and improvements in strength; an intervention that could be

more readily adopted than changes in dietary fat intake. Thus the aim of this study was to use

the published preclinical model to guide future clinical trials in individuals with NF1.

In addition to positive control (70% FAs�C12:0, 300mg/kg/day L-carnitine) and negative

control (standard chow) groups, a number of other treatments were tested. These included a

mitochondrial cocktail of L-carnitine, CoQ10, riboflavin (VitB2) and creatine [10]. This com-

bination nutraceutical therapy can target many pathways of cellular energy dysfunction,

including mitochondrial energy depletion and oxidative stress, which can be amendable by

this approach in several lipid storage myopathies (LSM) [11]. We further included a group

modelling limited dietary compliance, being fed normal chow 2 days per week. Finally, we

tested mice given a low fat (<2%) diet, to see whether a generic low-fat strategy is effective.

The primary outcome measure for this study was IMCL accumulation, as measured by Oil

Red O staining, and detailed in some cases by lipidomics. Our prior report had shown variabil-

ity with grip strength testing in Nf1Prx1-/- mice. Thus, in situ muscle physiology testing was per-

formed to better functionally assess the effects of dietary interventions on hind limb muscle

strength and fatigability.
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Study design

The screening of dietary strategies and dietary supplements (Table 1) was performed over 8

weeks, as previously shown to produce a significant decrease in IMCL in group 2 compared to

group 1 [6]. Outcome measures included functional and histological assessments (n = 10/

group). Tibialis anterior (TA) muscle was measured for maximum specific muscle force (mN/

mm2), as well as the rate of muscle fatigue and recovery [12–14]. Hind limb wet muscle weight

was also measured and frozen mouse quadriceps muscle, with other muscle groups (soleus,

TA, and gastrocnemius) collected for comparison via Oil Red O staining for neutral lipids.

In this subsequent study, High MCFA chow + L-carnitine was tested in a longitudinal

study to assess the onset of reduced IMCL as well as the effects of longer-term treatment

(Table 2). A third group was also tested, which was reverted to standard chow at week 8 to

examine the potential restoration of IMCL with an unrestricted diet. Outcome measures for

this study were histological staining (Oil Red O, n = 6 per group per time point) as well as a

more detailed lipid analysis by LC-MS/MS and GC-MS/MS mass spectrometry of the week 8

time point (n = 8 per group).

The original registered report protocol can be found at https://osf.io/mjc8u.

Materials and methods

Mouse strains and husbandry

All animal experiments were approved by the Westmead Hospital Animal Ethics Committee,

The Children’s Hospital at Westmead/Children’s Medical Research Institute Animal Ethics

Committee (protocol number: K319) or Murdoch Children’s Research Institute Animal Ethics

Committee (protocol number: A879), and performed according to their prescribed guidelines.

Prx1-Cre transgenic mice [15] and Nf1flox/flox mice [16] (sourced from Jackson laboratory

USA) were crossed to produce first generation Prx1-Cre+/- Nf1flox/+ mice. They were then

backcrossed to the parental Nf1flox/flox strain to generate experimental homozygous knockout

animals Prx1 Cre+/- Nf1flox/flox.

Table 1. Screening of dietary strategies and dietary supplements to reduce muscle lipid accumulation and

improve muscle function.

Group Diet N

1 Standard chow 10

2 High MCFA chow + L-carnitine 10

3 High MCFA chow + L-carnitine (5/7d) Standard chow (2/7d) 10

4 High MCFA chow (no L-carnitine) 10

5 Standard chow + L-carnitine 10

6 Standard chow + mitochondrial cocktail 10

7 Low fat chow 10

https://doi.org/10.1371/journal.pone.0237097.t001

Table 2. Timing and resilience of therapeutic treatment.

Group Genotype Diet N Time Points

1 WT Standard chow 8 Weeks 8

2 Nf1Prx1
-/- Standard chow 26 Weeks 4, 8, 16

3 Nf1Prx1
-/- Modified chow 26 Weeks 4, 8, 16

4 Nf1Prx1
-/- Modified chow, standard chow (w8-16) 12 Weeks 12, 16

https://doi.org/10.1371/journal.pone.0237097.t002
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Nf1Prx1-/- mice were distinctly smaller than their littermates. To ensure their survival and

reduce maternal rejection, pups were given daily saline injections of 0.1 mL up until four

weeks of age. Samples were collected at three weeks of age for genotyping by quantitative real-

time PCR for the Cre and Nf1flox alleles (Transnet YX, TN, USA). All Nf1Prx1-/- mice used in

this study were age matched females.

All experimental animals were monitored twice daily throughout the course of the study. If

any mice showed signs of distress or deterioration, or greater than >10% weight loss then

0.1mL saline injections were administered daily until weight normalized. Humane endpoints

were defined as>10% weight loss or significant signs of distress that persisted. Mice were

anesthetized by isofluorane inhalation prior to cardiac puncture and euthanasia by cervical

dislocation after the completion of studies.

Modified diets and dietary supplement therapies

Female mice were grouped housed 3–5 mice per cage, and fed ad libitum either standard

AIN93M rodent chow pellets, or were assigned one of the modified diet chows. Those on the

intermittent feeding regimens received 5 days of modified chow followed by 2 days of standard

chow. All modified diet formulas were based on AIN93M and were designed to contain equal

amounts of digestible energy (15.7 MJ/kg), carbohydrates (65.6–65.8%), protein (13.8–13.9%)

and total fats (4%), excluding the low fat chow, which contained 15.0 MJ/Kg of digestible

energy, a higher amount of carbohydrates (68.6%), and minimal requirements for total fats

(1.8%).

High MCFA chow contains octanoic acid (C8:0, 2.8%) as its predominant lipid source, rep-

resenting 70% of the total fatty acids content. LCFAs were included at minimal levels for ani-

mal health (Palmitic Acid 16:0, 0.07%; Stearic Acid 18:0, 0.03%; Oleic Acid 18:1, 0.17%;

Linoleic Acid 18:2 n6, 0.61%; Linolenic Acid 18:3 n3, 0.30%). In contrast, the standard

AIN93M, contains 100% of fatty acids as�C16:0. Palmitic Acid 16:0, 0.17%; Stearic Acid 18:0,

0.08%; Oleic Acid 18:1, 2.22%; Gadoleic Acid 20:1, 0.04%; Linoleic Acid 18:2 n6, 0.86%; Linole-

nic Acid 18:3 n3, 0.56%). The low fat chow was based on the AIN93M diet but had reduced fat

(<2%).

L-carnitine was added to standard or high MCFA chow, at a concentration of 1.71g/kg,

achieving a desired daily dose of 300mg/kg/mouse/day. The mitochondrial cocktail chow con-

sisted of L-carnitine added at 1.71g/kg (300mg/kg/mouse/day), CoQ10 added at 0.114g/kg

(20mg/kg/mouse/day), creatine added at 0.057g/kg (10mg/kg/mouse/day) and riboflavin

(active vitamin B2) added at 0.0684g/kg (12mg/kg/mouse/day). All additives were based on

standard chow consumption rates (Specialty Feeds, WA, Australia).

In situ muscle physiology

After 8 weeks of treatment in situ assessment of the TA was performed using the 1300A Whole

Mouse Test System and 701C stimulator (Aurora Scientific). The mice were anaesthetized

using isofluorane inhalation and placed on a heated platform (37˚C) for the procedure. Briefly,

a small incision was made in the distal end of the animal’s leg and the skin is retracted halfway

up the leg to expose the TA. The distal tendon of the TA was surgically isolated and the knee

joint exposed. Surgical silk was used to secure the tendon to the dual-mode lever arm and the

foot and knee were secured. The muscle was then stimulated to contract by placing electrodes

adjacent to the sciatic nerve. The optimal length (Lo) was determined based on production of

maximum twitch force (Pt), resting muscle length was recorded. The TA was then stimulated

to contract (5 – 200Hz, with 2 minutes rest between each contraction) to generate a force fre-

quency curve and maximal tetanic force (Po) was achieved at 150Hz. Absolute force (mN),
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specific force (mN/mm2), and the rate of muscle fatigue and recovery (%) were determined as

previously outlined in Garton, et al. 2018 [17]. An additional control group of standard chow

fed C57/BL6 mice (n = 10) were compared to the Nf1Prx1-/- test groups. The operator was

blinded to treatment in all cases.

Tissue collection and histological staining

Mice were euthanized via cervical dislocation and muscles were dissected out and weighed,

discarding of overlying fascia and adipose tissue. Muscle tissues were surface coated in Tissue-

Tek1O.C.T. Compound (Sakura Finetek USA), placed on a thin piece of tin foil and frozen in

liquid nitrogen supercooled isopentane (2-methyl butane) and stored at -80 ˚C. 8um sections

were cut on a Leica CM1950 Clinical Cryostat, and captured on Superfrost™ Plus Microscope

Slides (Fisher Scientific, USA) and stored at 4 ˚C prior to staining.

Oil Red O staining were performed as previously published [6]. Quantification was done

using Fiji ImageJ, by quantifying total lipid stained red area as a percentage of total section

area.

Liquid chromatography–mass spectrometry (LC-MS) lipid analysis

Please see the Supporting information (S1 File) for a complete description of lipidomics mate-

rials and methods. Lipids for LC-MS analysis were extracted using a modified Bligh Dyer

extraction protocol. Lipids were analyzed using Agilent LC 1290 binary pump coupled with

Ascentis Express RP amide (50 ×2.1 mm, 1.8u), and separated lipid species were detected

using Agilent QQQ 6490 mass spectrometer, using multiple reaction monitoring (MRM) as

previously published [6].

For GC-MS based fatty acid analysis, dried samples and dried fatty acid calibration mix

were derivatised with 5 μL of Meth-Prep™ II (Grace Davison Discovery). The samples were

then analyzed on a GC-MS system comprised of a Gerstel 2.5.2 Autosampler, a 7890A Agilent

gas chromatograph and a 5975C Agilent quadrupole mass spectrometer (Agilent, Santa Clara,

USA) [18, 19].

Statistical analysis

For Oil Red O analysis, the average lipid area from four sections from n = 10 (study 1) or n = 6

(study 2) individual mice were compared by ANOVA with Tukey’s post-hoc multiple compar-

isons test (multiple groups) or two-tailed Student’s t-test (two groups). For muscle physiology

measures, similar parametric comparisons were made using n = 10 mice. Experimental results

are expressed as mean ± SEM. P-values of<0.05 were considered statistically significant.

Results

Measuring strength, fatigability and muscle recovery in Nf1Prx1-/- mice

A prior study using the Nf1Prx1-/- mice used grip strength as the primary functional outcome

measure [6], however more detailed assessment was sought using in situ muscle physiology.

Following 8 weeks of ad libitum access to the allocated dietary treatments outlined in Table 1,

the maximum specific force was measured in all groups of Nf1Prx1-/- mice. Notably, the low fat

diet regimen yielded a 66% increase in maximal specific force of the TA muscle compared

with standard chow (Fig 1D) (n = 10 P< 0.02). The increased maximum specific force was not

associated with changes in TA muscle wet weight or body weight (Fig 1A and 1B). Other diet

intervention groups did not demonstrate significant changes compared with standard chow

(Fig 1C and 1D).
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Analysis of TA muscle fatigability measured following 120 contractions and after 1, 3 and

10 min recovery (Fig 2A–2F) showed an extremely high amount of intragroup variability. No

significant differences in muscle function in terms of fatigue and recovery could be detected

between groups. Nevertheless, the challenges associated with reliably carrying out the protocol

Fig 1. Nf1Prx1-/- mice fed a low fat diet have increased maximum specific force without change to TA muscle wet weight. (A) TA muscle wet

weight and (B) Body weight remained unchanged following 8 weeks of dietary treatment. (C-D) Low fat feeding resulted in a 66% increase in maximum

specific force compared with Nf1Prx1
-/- fed standard chow. N = 10 in situ TA muscles per group. Data presented as group mean ± SEM. p-values were

assessed by one way ANOVA. �p<0.02.

https://doi.org/10.1371/journal.pone.0237097.g001
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Fig 2. Dietary treatment effects on muscle fatigue and recovery in Nf1Prx1-/- TA muscles were unobservable. Fatigue and recovery response of (A)

MCFA enriched diet supplemented with L-carnitine (B) MCFA enriched diet supplemented with L-carnitine treatment modelling cheat days (5/7 days)

(C) MCFA enriched diet (D) L-carnitine supplementation alone (E) L carnitine in combination with riboflavin, CoQ10 and creatine, a common

mitochondrial mix and (F) Low fat diet, at final fatigue measure (120th contraction), 1, 3 and 10 min recovery period (arrows) showed no difference.

N = 10 in situ TA muscles per group. Data presented as group mean ± SEM. p-values were assessed by non-parametric ANOVA.

https://doi.org/10.1371/journal.pone.0237097.g002
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on muscles that were smaller and weaker than WT likely added to the high variance seen in

the data.

Nf1Prx1-/- mice were characterized relative to wild type mice to confirm reduced wet muscle

weight and strength. The wet muscle weight (mg) of the TA in Nf1Prx1-/- mice was reduced by

81% compared to WT mice (S1A Fig). Additionally, they exhibited an 83% reduction in abso-

lute force (mN) (S1B Fig).

Multiple dietary interventions reduced IMCL in Nf1Prx1-/- mice

The major prior finding that prompted this study was that high MCFA diet + L-carnitine

could reduce IMCL accumulation in Nf1Prx1-/- mice [6]. Analysis of the two components of

this treatment separately, as well as modeling cheat days (5/7 days) and a “mito mix” all sup-

port the concept of dietary intervention for this condition. Oil Red O staining of sections

taken from the mid-belly of the quadriceps was used to show histological changes in lipid

droplet density. MCFAs + L-carnitine, MCFAs, L-carnitine and mito mix treatment yielded a

55–69% reduction in IMCL, whereas MCFAs + L-carnitine (5/7 days) gave a 40% reduction

(Fig 3) (n = 10, P<0.001). This can be visualized in representative sections (Fig 3). In contrast,

the low fat diet did not change IMCL via histology (Fig 3).

The response to dietary intervention occurs within 4 weeks and subsides

after cessation of treatment

Longitudinal assessment of Nf1Prx1-/- mice fed a high MCFA diet + L-carnitine diet was per-

formed. Histological staining confirmed a reduction of IMCL as early as 4 weeks of treatment

(n = 6, p<0.03) (Fig 4A). This reduction was consistent with prior findings with dietary inter-

vention at a single time point of 8 weeks [6]. Moreover, the reduction persisted concomitant

with treatment out to the final time point of 16 weeks (n = 6, p<0.02) (Fig 4B and 4C). For

mice that received MCFAs + L-carnitine for 8 weeks and were then reverted to standard chow,

IMCL was found to re-accumulate after a further 4 and 8 weeks (n = 6, p<0.003) (Fig 5).

These data suggest that dietary changes need to be maintained in order to prevent the build-up

of new IMCL.

Changes in lipidome profile in response to Nf1 deficiency and dietary

intervention

To help elucidate the mechanism underlying the changes in IMCL accumulation, muscle sam-

ples underwent lipid mass spectrometry analysis for a variety of lipid species including triglyc-

erides (TGs), diglycerides (DGs) and free fatty acids. Three test groups: WT mice on standard

chow, Nf1Prx1-/- mice on standard chow, and Nf1Prx1-/- mice on modified chow (MCFAs + L-

carnitine) were examined after 8 weeks of dietary intervention. This utilized homogenized

quadriceps muscle with all associated subcutaneous adipose tissue carefully removed.

Principal Component Analysis (PCA) was used to determine whether the samples clustered

into distinct groups, which indeed was the case (Fig 6A). The first two components captured

>60% of the variance across the dataset (PC1: 40%, PC2: 21.6%). This supports the concept

that not only genotype but also diet leads to consistent and separable changes in muscle lipi-

dome profile. Hierarchical clustering analysis and heat map visualization of the top 50 lipid

species selected based on fold change suggested substantive increases in species of DG, includ-

ing DG 16:0, DG 16:1, DG 18:1, species of TG, including TG16:1, TG 18:1, and species of phos-

phatidylglycerol (PG), including PG 34:1, PG 34:2 and PG 36:2 in modified chow treated

Nf1Prx1-/- mice (Fig 6B). Total TG, total DG and total PGs were all significantly elevated in
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Fig 3. Dietary modifications in Nf1Prx1-/- mice rescue IMCL accumulation. Histological analysis using Oil Red O showed up to 69% reduction in

IMCL accumulation. Scale bar; 200um at 10x magnification, n = 10. Data presented as group mean ± SEM. p-values were assessed by one way ANOVA.
��p = 0.0083, ���p = 0.0001 and ����p<0.0001.

https://doi.org/10.1371/journal.pone.0237097.g003
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Fig 4. Nf1Prx1-/- mice fed MCFA + L-carnitine chow show reduced IMCL accumulation within 4 weeks of treatment. A significant reduction of IMCL

accumulation was observed in quadriceps muscle of Nf1Prx1-/- mice fed MCFA + L-carnitine chow compared to standard chow fed Nf1Prx1-/- mice at all time

points; (A) 4 weeks (B) 8 weeks and (C) 16 weeks of treatment. (D) IMCL accumulation did not significantly increase over 12 weeks in standard chow fed

Nf1Prx1-/- mice. (E) IMCL reduction plateaued after 4 weeks of MCFA + L-carnitine treatment in Nf1Prx1-/- mice. Scale bar; 200um at 10x magnification, n = 6.

Data presented as group mean ± SEM. p-values were assessed by one way ANOVA.

https://doi.org/10.1371/journal.pone.0237097.g004
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Nf1Prx1-/- mice fed the modified chow (n = 8, P <0.0001) (Fig 6C). In contrast, total CE, LPC,

LPE, PC, PE, PI and PS were unaltered (Fig 6C). Fatty acid analysis using GC-MS confirmed

increases in several FA species including palmitoleic acid (C16:1), oleic Acid (C18:1n9c) and

eicosapentaenoic acid (C20:5n3) in modified chow-fed Nf1Prx1-/- mice (Table 3).

Strikingly, total acylcarnitines were elevated in Nf1Prx1-/- mice compared to WT mice

(n = 8, p<0.003) (Fig 7). Detailed analysis of individual acylcarnitine species revealed signifi-

cantly increased levels of acylcarnitine 14:0 (n = 8, p<0.024), 16:0 (n = 8, p<0.0001), 16:1

(n = 8, p<0.0013), 18:0 (n = 8, p<), 18.1 (n = 8, p<0.0001) and 18:2 (n = 8, p<0.0002). Acyl-

carnitine 16:1 and 18.1 (n = 8, p<0.0001) were further increased with modified chow feeding

(Fig 7).

The full lipidomics data set is included in the Supporting information (S2 File).

Discussion

Murine studies have previously shown that Nf1 deficiency is associated with accumulation of

IMCL high in LCFAs. This study was prompted by our prior finding that a modified diet

enriched with MCFAs and supplemented with L-carnitine could decrease muscle IMCL and

improve grip strength in Nf1Prx1-/- mice [5, 6]. This study confirms and builds upon these

findings.

Our first major finding was the relative increase in strength on a low fat diet. This was an

unexpected finding, and notably not aligned to any changes in muscle lipid. A low fat diet is

commonly recommended to LSM patients, and it has been demonstrated to decrease liver size

Fig 5. IMCL re-builds following reversion from MCFA + L-carnitine chow to standard chow. (A) Representative histopathology of quadriceps

muscle from Nf1Prx1-/- mice following reversion to standard chow. (B) Cessation of MCFA + L-carnitine chow causes IMCL to return over 8 week

period. (C) IMCL levels return to levels of standard chow fed Nf1Prx1-/- mice following 8 week of dietary reversion. Scale bar; 200um at 10x

magnification, n = 6. Data presented as group mean ± SEM. p-values were assessed by one way ANOVA.

https://doi.org/10.1371/journal.pone.0237097.g005
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and normalize hepatic enzymes [20]. Liver dysfunction and physical function has not been

adequately studied, however there is growing evidence to suggest that liver dysfunction causes

impaired muscle protein synthesis and decline of muscle strength [21], which could be recti-

fied by a low fat diet [21]. A second major finding was establishing that L-carnitine alone and

increased MCFAs alone could both produce reductions in IMCL. This has translational appli-

cations for clinical trials and therapy as L-carnitine can already be readily purchased in capsule

form as a dietary supplement, and is simpler to medicate than a complex dietary program.

Fig 6. Lipidomics analysis of whole quadriceps of MCFA + L-carnitine fed Nf1Prx1-/- mice confirms dietary intervention can alter lipid

metabolism. (A) Principal-component analysis of LC-MS data showed group clustering and separation of lipid data between WT, Nf1Prx1-/- mice fed

standard chow and Nf1Prx1-/- fed MCFA + L-carnitine chow. The first two components captured>60% of the variance across the dataset (PC1: 40%,

PC2: 21.6%). (B) Heat map analysis of the top 50 lipid species selected based on fold change suggests increased TG and DG species. (C) Total DG, TG

and PG are increased in whole quadriceps of Nf1Prx1-/- fed MCFA + L-carnitine chow. Total acylcarnitines are elevated in Nf1Prx1-/- mice, which were

exacerbated upon MCFA dietary enrichment and carnitine supplementation. n = 8 quadriceps muscle samples analyzed for all lipidomics studies. Data

presented as group mean ± SEM fold change compared to WT. p-values were assessed by ANOVA. ���� p<0.0001 �� p<0.003. CE; Cholesterol esters,

DG; Diglycerides, TG; triglycerides, LPC; Lysophosphatidylcholine, LPE; Lysophosphatidylethanolamine, PC; Phosphatidylcholine, PE;

Phosphatidylethanolamine, PG; Phosphatidylglycerol, PI; Phosphatidylinositol, PS; Phosphatidylserine.

https://doi.org/10.1371/journal.pone.0237097.g006
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Lastly, the reappearance of IMCL following halting of the modified diet suggests that any clini-

cal therapy will need to be ongoing to maintain benefits in individuals with NF1.

Moving forward, L-carnitine supplementation represents a promising therapeutic interven-

tion for individuals with NF1 and concerns about muscle strength and fatigue. L-carnitine is a

well-established treatment for LSM’s, including primary carnitine deficiency [11]. These

patients can show a rapid reversal of clinical symptoms within one month [22–24] and, consis-

tent with our murine data, L-carnitine needs to be maintained to provide ongoing symptom-

atic relief [9, 25]. While it can be challenging to extrapolate clinical timelines from animal

data, the effects in our model were seen rapidly–as early as 4 weeks in the mice.

Nevertheless, the mechanism of L-carnitine on lipid metabolism and the lipidome has not

been extensively studied, particularly in NF1-deficient muscle. The capacity of L-carnitine to

reduce IMCL in Nf1Prx1-/- mice suggests a redirection from storage pathways to lipolysis. This

Table 3. GC-MS analysis reveals significant increase of fatty acids in whole quadriceps of modified diet fed Nf1Prx1-/- mice. n = 8 quadriceps muscle samples per

group were analyzed. Data presented as group mean ± SEM fold change compared to WT. p-values were assessed by ANOVA.

GC-MS

Fatty Acid Analysis

Fatty Acid Fold increase in Nf1-/- Standard muscle P value Fold increase in Nf1-/- MCFAs + L-carnitine P value

Palmitoleic Acid (C16:1) 5.12 <0.001 20.51 0.001

Oleic Acid (C18:1n9c) 5.91 <0.001 14.35 0.006

cis-5,8,11,14,17-Eicosapentaenoic acid (C20:5n3) 1.86 0.002 14.12 <0.001

Myristoleic Acid (C14:1) 2.15 0.003 7.91 0.002

Myristic Acid (C14:0) 3.16 0.001 7.07 0.001

Palmitic Acid (C16:0) 3.54 <0.001 5.95 0.017

https://doi.org/10.1371/journal.pone.0237097.t003

Fig 7. Acylcarnitines are elevated in Nf1Prx1-/- mice compared to WT. C14:0, C16:0, C16:1, C18:0, C18:1 and C18:2

are significantly increased in whole quadriceps muscle samples of Nf1Prx1-/- mice compared to WT, which are further

exacerbated (excluding C18:2) in modified diet fed Nf1Prx1-/- mice. n = 8 quadriceps muscle samples per group were

analyzed. Data presented as group mean ± SEM. p-values were assessed by one way ANOVA. ���� p<0.0001 ��

p<0.003. C14:0 and C14:1; Tetradecanoylcarnitines, C16:0 and C16:1; hexadecenoylcarnitines, C18:0 and C18:1;

octadecenoylcarnitines and C18:2; octadecadienoylcarnitine.

https://doi.org/10.1371/journal.pone.0237097.g007
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is supported by an increased fatty acid content in muscle of mice fed the modified diet, as

shown by GC-MS data. In cultured adipocytes, the addition of L-carnitine supplementation

has been shown to stimulate lipolysis by the induction of lipolytic gene expression, including

hormone sensitive lipase, carnitine palmitoyltransferase Ia (CPT-1a) and Acyl-CoA oxidase,

and suppression of adipogenic genes, including PPARγ [26]. In a zebrafish model, L-carnitine

supplementation similarly resulted in significantly increased CPT1 and decreased fatty acid

synthase (FAS) expression [27]. The latter is particularly notable as Nf1Prx1-/- muscle exhibits

increased FAS expression and decreased CPT1 levels [5].

While the lipidomics analysis revealed a range of changes within the Nf1Prx1-/- genotype, of

particular note was the increase in acylcarnitines (particularly C16 and C18:1). Substantially

elevated acylcarnitines have been previously associated with disorders of mitochondrial fatty

acid oxidation and organic academia’s [28, 29]. Furthermore, elevated plasma C16 and C18:1

acylcarnitines are the formal diagnostic criteria for carnitine-acylcarnitine translocase defi-

ciency [30], and support diagnosis of carnitine palmitoyltransferase II deficiency [31]. The

acylcarnitine levels were further increased with dietary modification. Thus one possibility is

that aberrant NF1-Ras signaling may lead to downstream changes in CPT1 activity as the pri-

mary enzyme that exchanges the CoA moiety from long-chain acyl-CoAs for carnitine to gen-

erate acylcarnitines [32].

While the Nf1Prx1-/- mouse model has proven useful for biochemical analysis, it remains

challenging as a model to study muscle function. The mouse features partial-to-complete

fusion of the hip joint [4, 33], which impairs locomotion and causes secondary reductions in

loading and strength over time. The Nf1Prx1-/- hind limb muscles were proportionally smaller

than the forelimb muscle when compared to WT mice (S2 Fig). Prior grip strength tests pri-

marily utilize the forelimb muscles. In contrast, the in situ strength and fatigue testing focused

on the hind limb TA muscle, which presents the greatest reduction in muscle size (-83%) com-

pared to WT TA. Additionally, the variability of hip fusion affected our ability position their

hind limbs, and subsequently altered the dorsal location of the mouse for in situ muscle physi-

ology analysis. The resultant variability in the in situ muscle physiology data was challenging

to draw definitive conclusions from. Indeed a post-hoc power analysis suggested n� 54 mice

are required to achieve 80% power for a genotype/diet effect, which is not feasible due to sever-

ity of the model and poor breeding of the strain.

In conclusion, data from this preclinical study supports the concept that NF1 features a

metabolic dysregulation that can be ameliorated by dietary intervention. In particular, L-carni-

tine supplementation appears to be a feasible and promising option for human trials as it is

inexpensive and well-tolerated. Such clinical studies would likely be superior options to exam-

ine functional effects on muscle in a longitudinal manner than the challenging Nf1Prx1-/-

mouse model. The lipidome analysis suggests that Nf1 produces profound changes in the lipi-

dome that can be altered by dietary intervention suggestive of an increase in muscle lipolysis.

Moreover, the murine data suggests some evidence for dysregulated carnitine metabolism in

Nf1, however this will need to be further addressed using clinical samples. While this study has

focused specifically on muscle, these data also raise the possibility that the Nf1 regulation of

metabolism may affect other tissues, e.g. bone [34] and could have broader implications for

the treatment of the condition.

Supporting information

S1 Fig. Nf1Prx1-/- mice demonstrated significant deficits in muscle size and force produc-

tion compared to WT. (A) Nf1Prx1-/- TA muscle wet weight was reduced by 81% compared to

WT and (B) Nf1Prx1-/- TA force was reduced by 83% compared to WT. N = 10 in situ TA
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muscles per group. Data presented as group mean ± SEM.

(TIF)

S2 Fig. Cartilaginous fusion of the hip joints is a characteristic feature of the Nf1Prx1-/-
mouse model that varies between complete and partial fusion. (A) Lower extremity repre-

sentative X-ray images of Nf1Prx1-/- mice to demonstrate leg position variability in dorsal place-

ment due to variability in hip fusion. (B) Hind limb muscle wet weight is reduced by 61–83%

in the Nf1Prx1-/- mouse model compared to WT.

(TIF)

S1 File. Complete description of lipidomics materials and methods.

(PDF)

S2 File. Full lipidomics data set.

(XLSX)
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