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1  | INTRODUC TION

Pancreatic cancer (PC) is one of the ten most common cancers 
in human. Most of the cases are pancreatic exocrine cancer, only 
1%-2% of cases of PC are neuroendocrine tumours. According to the 
American Cancer Society, the incidence of PC was 53 770 in 2019, 
with a concomitant mortality of 45 750 (23 800 men and 21 950 
women).1 It is the fourth cause of cancer-related death in both men 
and women in the United States each year.1 In the United States, the 
number of new cases of PC was 12.4 per 100 000 men and women 
per year based on 2009-2013 cases. In spite of massive effort on 
diagnosis and treatment, the 5-year survival rate has been increased 
to a mere 8%.1 By 2030, the number of deaths from PC will surpass 
breast, prostate and colon cancer and become the second leading 
cause of cancer-related death in the United States.2 Due to unclear 

symptoms and no screening recommendations, a vast majority of PC 
patients are diagnosed at late stages, with already advanced disease 
and no opportunity for surgical intervention. The risk factors for PC 
include tobacco products, obesity, diabetes, chronic pancreatitis, al-
cohol abuse, malnutrition, hereditary conditions and family history 
(Figure 1).3,4 Diabetes mellitus (DM), or impaired glucose tolerance, 
is concurrently present in 50%-80% of patients with PC. DM is a 
known risk factor for PC,5,6 and new-onset DM could be an early 
manifestation of PC,7 resulting from insulin resistance induced by 
a paraneoplastic syndrome 8 or pancreatic β-cell dysfunction.9,10 In 
addition, it has been demonstrated that moderate alcohol consump-
tion had insignificant impact, while high alcohol intake was associ-
ated with an increased risk of PC.11,12 Although the effects of DM 
and alcohol abuse on the development of PC have been studied for 
the last few decades, their molecular mechanisms of action are not 
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Abstract
The incidence of obesity and type 2 diabetes (T2DM) in the Western world has in-
creased dramatically during the recent decades. According to the American Cancer 
Society, pancreatic cancer (PC) is the fourth leading cause of cancer-related death in 
the United States. The relationship among obesity, T2DM and PC is complex. Due 
to increase in obesity, diabetes, alcohol consumption and sedentary lifestyle, the 
mortality due to PC is expected to rise significantly by year 2040. The underlying 
mechanisms by which diabetes and obesity contribute to pancreatic tumorigenesis 
are not well understood. Furthermore, metabolism and microenvironment within the 
pancreas can also modulate pancreatic carcinogenesis. The risk of PC on a population 
level may be reduced by modifiable lifestyle risk factors. In this review, the interac-
tions of diabetes and obesity to PC development were summarized, and novel strate-
gies for the prevention and treatment of diabetes and PC were discussed.
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well understood. We conducted this review to update and summa-
rize the mechanisms of association among diabetes mellitus, obesity, 
alcoholism, other factors and cancerous pancreas. In addition, pre-
vention and treatment strategies are also critically discussed in this 
review paper.

2  | DIABETES MELLITUS (DM),  A RISK 
FAC TOR OF PANCRE ATIC C ANCER

There are three major types of diabetes mellitus (DM): type 1, type 
2 and gestational diabetes. Type 1 diabetes (T1DM) may account for 
about 5% of all cases of diabetes. Type 2 diabetes account for about 
90% to 95% of diabetes. In obese individuals with euglycaemia, pe-
ripheral insulin resistance is present but compensated by increased 
insulin secretion.13,14 Increase in insulin resistance and β-cell dys-
function, and reduction in β-cell mass occur over time, finally leading 
to T2DM.13,14 Unlike T2DM, studies conducted on small on num-
ber of patients have not shown that T1DM is risk factor of PC.15,16 
Patients with T2DM possess a threefold risk of developing PC.17 
Consistently, duration of the diabetes increases the risk of develop-
ing PC in a prospective study with hazard risk 2.0 in both men and 
women.18 Although HbA1C is used as a marker of metabolic control, 
some studies have suggested its use as a predictor and prognostic 
factor in PC. Moreover, hyperglycaemia in diabetic patients pro-
motes the growth of solid tumours and metastasis to distant organs 
in cancers.19

3  | POTENTIAL MECHANISMS OF 
DIABETES ON THE DE VELOPMENT OF 
PANCRE ATIC C ANCER

The pathogenesis of PC in DM or hyperglycaemia has been substan-
tially studied (Figure 2). High glucose-activated p38 MAPK induced 
the proliferation and invasion of PC cells.20 In response to cellular 
stress and inflammatory conditions, P38 MAPK is activated.21 In 
addition, the proliferation, apoptosis and metastasis can also be 
regulated by the p38 MAPK.22,23 P38 MAPK enhanced inflamma-
tory cytokine (IL-6)- and VEGF-mediated paracrine effects, result-
ing in PC cell growth and development.24 Moreover, proliferation 
and invasiveness in PC cells were promoted by high glucose via RET 
[proto-oncogene encodes a receptor tyrosine kinase for members 
of the glial cell line-derived neurotrophic factor (GDNF) family of 
extracellular signalling molecules].25 DM stimulates PC growth, 
epithelial-mesenchymal transition and metastasis through genera-
tion of inflammatory cytokines (IL-6 and TNFα) and activation of ki-
nases (p38 MAPK and NFκB).20 NFкB is not only activated in cancer 
cells, but also in immune cells where it regulates the production of 
inflammatory cytokines (IL-6, IL-8, IL-1β and TNFα) triggering PC cell 
growth.

In type 2 DM (T2DM), elevated insulin levels result in increased 
bioavailability of insulin-like growth factor-1 (IGF-1) by reducing 

hepatic production of IGF-binding proteins (IGFBPs) and PC cells 
highly express receptors of high-affinity insulin and IGF-1.26,27 
The interaction of insulin, IGF-1 and their receptors plausibly in-
duces more activated PC cells. Insulin regulates glucose uptakes 
in target tissues and also acts as a mitogen for PC cells.28,29 IGF-1 
besides its mitogenic effects, induces angiogenesis and increases 
EMT and metastasis, and blocks apoptosis, thereby enhancing PC 
growth.30 Higher insulin and IGF-1 levels in T2DM patients were 
associated with larger pancreas tumours than in non-diabetic con-
trols.31,32 The prevalence of PC in T1DM is lower than in T2DM. It 
is not clear whether hyperglycaemia alone or the combination of 
hyperglycaemia with insulin resistance in T2DM act as an initiat-
ing factor for PC. Hyperglycaemia has been shown to accelerate 
the development of PC by providing glucose as a fuel to cancer 
cells. Some other studies have indicated hyperglycaemia enhanced 
proliferation via the induction of EGF/EGFR,33 local invasiveness 
and metastatic potential in PC via neural and perineural environ-
ment.34 Hyperglycaemia has been shown to induce endothelial 
dysfunction and neo-angiogenesis,35 resulting in endothelial dis-
continuities, large blood-filled spaces and decreased vessel density 
via angiopoietin-2.36

In another aspect, receptors of advanced glycation end products 
(RAGE), another cancer-related factor, are constitutively expressed 
on the epithelial, immune, endothelial and vascular smooth muscle 
cells.37 There is still a paradox about the role of AGE/RAGE in can-
cerous pancreas. The RAGE has been shown to enhance pancreatic 
carcinogenesis by amplifying IL-6-induced autophagic translocation 
of STAT3 to the mitochondria in mice.38 However, human studies 
failed to show any association between AGE/RAGE and PC risk.39 
This controversy is probably explained by the fact that AGE/RAGE 
could be only functional in the earlier stages of pancreatic carcino-
genesis; and smoking, another risk factor, in the latter stages could 
affect to the role of AGE/RAGE in tumorigenesis. Alternatively, the 
disparity is simply due to the difference between human and mouse 
models. However, other studies showed a positive correlationship 
between the AGE/RAGE interaction and development of pancre-
atic and gastric cancers, and melanoma.40-42 AGE/RAGE induces 
pro-inflammatory cytokines and generates oxidative stress and re-
active oxygen species, resulting in activation of NFкB and its target 
genes.43

Thrombospondin-1 (TSP-1), adhesive glycoprotein, mediates 
cell-to-cell and cell-to-matrix interactions and play crucial roles in 
platelet aggregation. TSP-1 has been described as anti-carcino-
genic due to its potent anti-angiogenic properties.44 In addition, a 
significant reduction in TSP-1 was reported up to 24 months prior 
to diagnosis of PC with DM compared to non-cancer DM.45 These 
findings suggest that TSP-1 could be a novel target in lowering the 
risk of PC. Aside from that, miRNAs are being evaluated as novel 
therapeutic targets and biomarkers for PC. A combination of serum 
miRNAs (miR-483-5p, miR-19a, miR-29a, miR-20a, miR-24, miR-25) is 
potential biomarker for the diagnosis and discrimination of PC-DM 
from non-cancer new-onset DM.46,47 Future studies are needed to 
validate the function of these miRNA in PC.
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The bromodomain and extraterminal domain (BET) proteins 
are a bromodomain subfamily that includes BRD2, BRD3, BRD4 
and BRDT.48-52 The BET proteins utilize bromodomains to interact 
with acetylated histone tails and mediate downstream functions, 
such as histone acetylation recognition, chromatin remodelling and 
transcription regulation. They have been implicated to play roles in 
inflammation, apoptosis, cell proliferation and cell cycle and can-
cer.50,53 Bromodomain containing protein 4 (BRD4) is a coactivator 
of NFkB, enhances the transcription of NFkB-dependent pro-in-
flammatory cytokine genes.54 In addition to activating NFkB, BET 
proteins also regulate STAT signalling pathway.55 The inhibition of 
BET protein attenuates cytokine production (such as IL-6, IL-17 
and IL-1β), which have been implicated in diabetogenic inflamma-
tion.56,57 As a linkage of diabetes and inflammation, Hsp60, a mi-
tochondrial stress protein, regulate immune inflammation by acting 

as a ligand for innate immune receptors and adaptive immune 
receptors.58

Immune cells, including macrophages, B cells and T cells, play 
key roles in the progression of T2DM. They contribute to cytokine 
driven diabetogenic inflammation and the development of T2DM.59-

61 The most common pro-inflammatory T-cell subsets implicated 
in diabetogenic inflammation are Th1 cells, Th17 cells and CD8+T 
cells.62-65 It was shown that T cells from humans with T2DM only 
produce levels of pathogenic IL-17 in the presence of B cells66 which 
was found in visceral adipose tissue of obese people.67 IL-17 pro-
duced by γδ T cells drives neutrophil polarization into a myeloid-de-
rived suppressor cell (MDSC)-like phenotype, resulting in inhibition 
of cytotoxic CD8+T cells and promotion of metastasis.68 CD4+T cells 
tend to polarize to pro-inflammatory Th1 and Th17 cells in peripheral 
blood and adipose tissue of T2DM patients. In contrast, polarization 

F I G U R E  1   Schema of risk factors 
of pancreatic cancer. Pancreatic 
cancer (PC) can be induced by several 
factors. Smoking is known as the 
strong carcinogen for PC. Obesity and 
T2DM synergistically act to induce the 
development of PC. Other factors such 
as alcohol abuse, pancreatitis, nutrition, 
genetics, family history and chemical 
carcinogen can contribute to the 
development of PC

F I G U R E  2   Pathogenesis of pancreatic 
cancer. Pancreatic cancer can be 
initiated and accelerated by several 
factors. Hyperglycaemia with or without 
insulin resistance is a risk factors of PC. 
Inflammation, oxidative stress and certain 
immune cells can initiate the development 
of PC. Angiogenesis can enhance the 
development of PC
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of anti-inflammatory Th2 cells was decreased. M1 pro-inflamma-
tory macrophages induced the secretion of IL-1β, IL-6, IL-12, TNF-
α, CCL5 and CCL2 in adipose tissue during obesity.69,70 During islet 
inflammation, macrophage transformation shifts towards the pro-in-
flammatory activated M1-like phenotype, which contributes to β 
cell dysfunction in T2DM.71,72 Consumption of foods high in satu-
rated fatty acids (palmitate) is known as one of the risk factors of 
T2DM. There was palmitate-dependent recruitment of CD11b+Ly-
6C+classically activated M1-like monocytes/macrophages to the 
islets.73 TLR4 in islet cells and Myd88 were required for M1-like 
macrophage recruitment, leading the β cell dysfunction via secretion 
of IL-1β.73

4  | OBESIT Y AND PANCRE ATIC C ANCER

The prevalence of obesity is on the rise worldwide and is consid-
ered a serious pandemic today. It is now well accepted that the obe-
sity is one of the leading risk factors for PC.3,74-76 Although obese 
people possess an increased risk of developing PC, patients with 
increased pancreatic fat have a poorer outcome than those who de-
velop cancer in a lean pancreas.77 The mechanisms by which obe-
sity mediates the risk for PC are not well understood. Studies have 
suggested the involvement of inflammation and hormonal imbal-
ance. Emerging evidence demonstrates that the increase of certain 
hormones in obese patients, such as insulin, adipokines and resistin, 
and oxidative stress are responsible for the initiation and progres-
sion of PC.78,79 Adipocytes in obesity secreted high IL-1β, recruiting 
tumour-associated neutrophils (TAN) which induces activation of 
pancreatic stellate cells (PSC). IL-1β, TAN and PSC induced the aggra-
vation of desmoplasia which is modulated by angiotensin-II type-1 
receptor, and promoted PC progression.80 Obesity has been found 
to be associated with increased systemic levels of placental growth 
factor (PLGF).81,82 PLGF/VEGFR-1 system modulates angiogenesis 
and promotes tumour-associated macrophage (TAM) recruitment 
and activity in PC.83 Therefore, targeting PLGF/VEGFR-1 signalling 
may be an attractive strategy to reprogramme the tumour immune 
microenvironment and inhibit obesity-induced acceleration of PC 
progression.84

Recent studies have shown a link between obesity and obesi-
ty-related PC through adipokines.85,86 Epidemiologic studies re-
ported low adiponectin levels in human obesity and have been 
associated with increased PC risk. As adiponectin can suppress PC 
growth by inhibiting the β-Catenin signalling pathway,87 the activa-
tion of adiponectin signalling could be a novel therapeutic strategy 
for obesity-related PC.

Obesity is the leading risk factor associated with the develop-
ment of T2DM. Obesity causes the activation of multiple inflam-
matory signalling pathways. Some of these pathways are associated 
with adipose tissue hypoxia,88,89 leptin secretion and unfolded pro-
tein responses that are activated by endoplasmic reticulum stress.90 
Secretion of inflammatory cytokines (eg TNFα, IL-6) and increased 
lipolysis can also occur during obesity-related complications.91 

Visceral adipose tissue (VAT) is one of the major sites for the inflam-
mation that is associated with DM.59,92 Immune cells infiltrate VAT, 
resulting in low-grade chronic inflammation and secretion of pro-in-
flammatory cytokines that can induce insulin resistance, both locally 
and systemically.93

The abdominal adiposity is one of the modifiable risk factors for 
PC onset, suggesting weight loss could manifest an effective pre-
ventive measure. Lifestyle modifications (eg exercise and healthy 
diets) for the purpose of reducing obesity could also reduce PC 
rates. In cases when these measures alone were found to be inef-
fective, bariatric (metabolic) surgery was a useful alternative.86,94,95 
Bariatric surgery in extremely obese patients may produce many 
health benefits along with weight loss, consequently reducing the 
chances of PC, especially when additionally incorporating healthy 
lifestyle habits.

5  | GENETIC MUTATIONS IN PANCRE ATIC 
C ANCER

Genome-wide association studies have shown that the pancreatic 
development genes, HNF1A, HNF1B, HNF4G, PDX1 and NR5A2 
contributed to the significant association of PC.85,96,97 HNF1A and 
HNF1B are also associated with T2DM.85,96 In addition, the glu-
cokinase regulator single-nucleotide polymorphism (SNP) rs780094 
with CC genotype was associated with PC risk in T2DM patients.98 
The DM risk alleles of two SNPs, FTO rs8050136 and MTNR1B 
rs1387153, showed slight but significant associations with increased 
PC risk,99,100 supporting with the notion that DM or obesity (which is 
influenced by the FTO locus)101 increases PC risk.102 The KRAS mu-
tations are among the earliest genetic alterations which have been 
associated with the initiation of PC.4,103,104

Apart from that, the role of BRCA2 alterations has been used 
in early diagnosis and prediction of familial PC patients.105 BRCA2 
mutation was a late event in sporadic pancreatic tumorigenesis 106 
preceded by KRAS mutation (G12D) or loss of TP53.107 PALB2 was 
found to be the second most commonly mutated gene for hereditary 
PC.108 Interestingly, the most commonly mutated gene was BRCA2, 
whose protein product was capable of binding with the PALB2 pro-
tein.109 The germline mutations of STK11 (a tumour suppressor 
gene) are associated with Peutz–Jeghers syndrome which increases 
the risk of PC.110 Moreover, mutations in STK11 gene have also been 
reported in sporadic PC.111,112

6  | MICROENVIRONMENT, IMMUNE CELL S 
AND PANCRE ATIC C ANCER

Microenvironment plays a major role in cancer initiation, progression 
and metastasis.113 Stroma consists of various cell types including fi-
broblasts and immune cells, and the extracellular matrix (ECM) se-
creted by the cellular components. In mouse model of PC, targeting 
the hyaluronan in the ECM of stroma relieved the pressure on the 
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blood vessels resulting in enhancing the survival of tumour-bearing 
mice.114 In contrast, PEGylated hyaluronidase failed to improve the 
survival of patients.115 Signalling pathways in stroma environment 
play significant roles in chemotherapy resistance. For example, 
inhibition of the Sonic Hedgehog (Shh) pathway depleted tumour-
associated stromal tissue, increased micro-vessel density and drug 
delivery in animals116 but failed to offer the benefit to patients. The 
tumour-associated stroma (TAS) is responsible for deposition of col-
lagen and various ECM components that stimulate cancer cell pro-
liferation and angiogenesis.117 MyD88-dependent TAS responded 
to PC cell–secreted factors resulting in loss of Th1 function and in-
hibition of cytotoxicity by the CD8+T cells.117,118 Pancreatic cancer 
cells express prostate stem cell antigen (PSCA). Immunosuppressive 
function of IL-4 in microenvironment was investigated by using the 
fusion of IL-4 receptor exodomain with immunostimulatory IL-7 re-
ceptor endodomain in PSCA-targeting T cells, resulting in potent 
and sustained anti-tumour effects.119 Shh/Gli signalling pathway 
plays a significant role in both epithelial and stromal cells of PDAC 
tumours.120 In PDAC, the inhibition of bromodomain and extrater-
minal domain (BET) protein resulted in down-regulation of Shh.120 
Shh ablation resulted in diminished stroma formation, reduced sur-
vival due to formation of more aggressive, dedifferentiated tumours 
and increased metastases.121 Inconsistently, stromal depletion re-
sulted in decreased survival with similarly aggressive tumours.122 
The increased tumour vascularity with stromal depletion correlated 
with disease progression but also increased responsiveness to anti-
angiogenic agents. Elevated pro-angiogenic vascular endothelial 
growth factor A (VEGF-A) levels in patients have been found to cor-
relate with increased vascular density of PDAC and greater disease 
progression.

Accumulation of hyaluronan/ hyaluronic acids (HA) promotes tu-
mour growth in mice and correlates with poor prognosis in patients 
with PDAC. Inhibiting HA signalling or depleting HA levels in tumour 
stroma could represent a promising therapeutic strategy against 
PDAC. Production of HA was used as the primary determinant of 
elevated intratumoural pressures. In PDAC, targeting the HA in the 
ECM of stroma significantly reduced the pressure on the blood ves-
sels and enhanced the survival of tumour-bearing mice.114 Indeed, 
treatment with human recombinant hyaluronidase (PEGPH20) re-
lieved intratumoural pressures, increase in tumour vascular perfu-
sion and gemcitabine delivery, improved survival and decreased the 
metastatic burden.123

Regulatory T (Treg) cells, myeloid-derived suppressor cells 
(MDSCs) and macrophages appears early in PDAC development. T 
helper 17 (TH17) with few CD8+lymphocytes were also found in the 
microenvironment of the KRAS PDAC model.124 Depletion of carci-
noma-associated fibroblasts (CAFs) that express fibroblast activation 
protein (FAP) resulted in an increased anti-tumour cytotoxic T-cell-
mediated inhibition of PDAC.125 Furthermore, blocking the activity 
of CAF-secreted cytokine CXCL12 induced rapid T-cell accumulation 
in tumours and acted synergistically with PD-L1 to greatly deplete 
cancer cell.125 Analysis of resected tumour specimens demonstrated 
that that intratumoural levels of IL-8, IL-1β and TNFα were associated 

with larger tumours and poor differentiation.126 Inflammation within 
the pancreatic tumour microenvironment has been linked to tumour 
progression and chemo-resistance through IL-6, Toll-like receptor, 
NFkB and TGF-β signalling pathways.127 In KrasG12D mouse model 
of PC, we have demonstrated that Th17, PMN-MDSC, IL-6 and IL-8 
(Th2 type) cells were up-regulated, whereas CTL, NKT, γδT, NK and 
IFNϒ (Th1 type) cells were suppressed.128 These studies suggest 
that microenvironment plays a significant role in the development 
of PC.

7  | NUTRITION AND PANCRE ATIC 
C ANCER

Malnutrition and consumption of unhealthy diets have been associ-
ated with incidence of PC; however, the results have been incon-
sistent.4,129 The Western diet, containing high red meat, refined 
grains and sugar-sweetened beverages, has been associated with 
increased levels of systemic inflammatory markers 130 and increased 
risk of PC.4 In contrast, the Mediterranean-style diet, containing 
plant foods, whole grains and fish, has been associated with reduced 
levels of inflammatory markers131,132 and reduced risk of PC.133 The 
higher inflammatory scores of diet increased the risk of PC with odds 
ratio (OR) of 2.54,134 confirming a previous study on Italian popula-
tion in which higher OR was associated with PC risk.135 Inflammatory 
conditions created by unhealthy diet may contribute to pancreatic 
carcinogenesis by increasing blood levels of inflammatory cytokines 
(eg IL-6, IL-8, IL-1β, TNF-α and IFN-ϒ), which can promote exces-
sive levels of reactive oxygen species.136 As a result, these inflam-
matory conditions cause DNA damage, mutagenesis and, thus lead 
to the development of PC.136 Interesting consumption of red and 
processed meat was shown to increase risk of PC in men but not in 
women through unknown mechanism.137 The consumption of citrus 
fruits, vitamin B6 and choline has been inversely correlated with the 
risk of PC.138,139 Intake of N-3 (ω-3) polyunsaturated fatty acids and 
docosahexaenoic acid from fish was associated with a lower risk of 
PC.140 Unsaturated fatty acids was associated with decreased risk 
of developing PC whereas saturated fatty acids found in dairy prod-
ucts increased the risk of PC.141 Like saturated fatty acids, higher 
consumption of sugar and high-sugar foods was associated with a 
greater risk of PC.142 The intake of folate also lowered the risk of 
PC.143,144 The folic acid exerts its effects via reducing RhoA activ-
ity mediated by activation of the FR/cSrc/p190RhoGAP signalling 
pathway.145 Dietary fat-induced PC growth and metastasis via en-
dogenous cholecystokinin (CCK).146

Purified natural products have shown promising results in cell 
culture and mouse models of diabetes and PC.4 Epigallocatechin-3-
gallate (EGCG), a polyphenolic compound from green tea, showed 
anticancer activities in cell culture and mouse xenograft model of 
PC.147,148 Several other natural products such as mangostin, cur-
cumin, resveratrol, silibinin, sulforaphane, anthothecol, berber-
ine and embelin have demonstrated anticancer activities against 
PC.4,128,149-159 These agents inhibited PC growth, development and 
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metastasis by generally suppressing NFκB, AKT, Shh, Notch or Wnt 
pathways.4,160 Although effective in mouse models, these agents 
have not demonstrated satisfactory pharmacokinetic (PK) and 
pharmacodynamics (PD) profiles in clinical trials. Nanotechnology 
appears to be promising in improving the PK/PD profiles of natural 
products in mouse models of PC and diabetes.4,158,161-163 Clinical tri-
als are needed to assess the therapeutic potential of nanoparticles 
containing natural products for the treatment and/or prevention of 
PC and diabetes.

8  | ANTIHYPERGLYC AEMIC THER APY AND 
RISK OF PC

There is some evidence that therapies that increase insulin levels 
such as exogenous insulin may have potential increase PC risk.164 
Metformin (T2DM drug) can decreases insulin levels by decreasing 
insulin resistance and also reduces the risk of pancreatic malignancy 
with hazard ratio of 0.15-0.54.165 The use of metformin in patients 
with diabetes and pancreatic malignancy prolonged median survival 
compared to control (non-users): 16 vs 11 months.166-170 Although 
an anti-tumour effect of metformin has been shown in preclinical 
and epidemiological studies, other studies have not shown a consist-
ent survival benefit from metformin in PC patients with pre-existing 
diabetes.171,172 Metformin is known to activate the LKB1-AMPK 
pathway, a cellular energy stress-sensing mechanism, and blocks 
proliferation through inhibition of mTOR which also enhances cell 
proliferation by activation the insulin signalling pathway.173,174 In ad-
dition to reducing glucose levels in T2DM, the use of metformin in 
prevention of PC is very promising and needs further evaluation.

9  | PRE VENTION OF PANCRE ATIC 
C ANCER

The first step in preventive strategy is avoiding the exposure to the 
modifiable risk factors such as smoking, drinking, obesity, carcino-
genic chemicals and some specific foods (saturated fats). PC pro-
tecting foods (polyphenols or flavonoids, folic acid and fish) should 
be included in daily dietary. Recent studies have recommended the 
use of polyphenols rich in specific foods (cloves, peppermint, star 
anise, cocoa powder and so on) as a chemopreventive approach 
for PC.175,176 The health-related properties of a wide range of di-
etary constituents show potential biological activities against PC.177 
Resveratrol, a red wine polyphenol, can directly bind and inhibit leu-
kotriene A4 hydrolase (LTA-4H) activity and, therefore, induces the 
production of LTB4178 which prevents the development of PC.154,179 
Most natural products including curcumin inhibit PC growth and 
metastasis by suppressing NF-κB and its targets.179,180 Therefore, 
resveratrol and curcumin can be used for preventing PC in high-risk 
patients. The preliminary data on resveratrol and curcumin indi-
cated potential benefits but needs confirmation in clinical trials. It 
is also critical to diagnose and start radical treatment for gallstones, 

cholecystitis and chronic pancreatitis and set up a PC screening in 
these high-risk patients. So far, no tumour-specific markers with high 
sensitivity and specificity have existed for PC. The carbohydrate an-
tigen 19-9 (CA19-9) as a prognostic marker of PDAC has been used 
with a limited success. Serum CA19-9 maker has low specificity but 
high sensitivity.181,182 Using quantitative proteomic analysis, C4b-
binding protein alpha-chain (C4BPA) was identified as a novel serum 
biomarker for diagnosis of early stage PDAC.183 Therefore, CA19-9 
and C4BPA could be used for screening high-risk individuals with PC.

10  | CONCLUSIONS

In spite of enormous research efforts, pancreatic cancer remains a 
deadly disease with incremental benefits seen with cytotoxic chem-
otherapy in recent years. Fortunately, the treatment of patients with 
chemotherapy has nearly doubled median overall survival but still 
remains very poor (<1 year). Immunotherapy, vaccine and check-
point inhibition appear to be emerging modalities for PC. Diabetes, 
obesity and dietary patterns are closely correlated to cancer risk. 
Thus, avoiding these risks will obviously attenuate the morbidity 
and mortality of cancers. Furthermore, regular exercise and improv-
ing lifestyle can help in reducing obesity and diabetes. In addition, 
the discovery of new cancer-related genes is critical for the cancer 
screening strategy and prevention. Eventually, the better compre-
hension of pathogenesis and novel therapies should be more exten-
sively studied to lower or eliminate morbidity and mortality of PC.
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