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Abstract: This paper reports the synthesis and characterization of silver oxide films for use as
bactericidal coatings. Synthesis parameters, dissolution/elution rate, and bactericidal efficacy are
reported. Synthesis conditions were developed to create AgO, Ag2O, or mixtures of AgO and Ag2O
on surfaces by reactive magnetron sputtering. The coatings demonstrate strong adhesion to many
substrate materials and impede the growth of all bacterial strains tested. The coatings are effective
in killing Escherichia coli and Staphylococcus aureus, demonstrating a clear zone-of-inhibition against
bacteria growing on solid media and the ability to rapidly inhibit bacterial growth in planktonic
culture. Additionally, the coatings exhibit very high elution of silver ions under conditions that mimic
dynamic fluid flow ranging between 0.003 and 0.07 ppm/min depending on the media conditions.
The elution of silver ions from the AgO/Ag2O surfaces was directly impacted by the complexity of
the elution media, with a reduction in elution rate when examined in complex cell culture media.
Both E. coli and S. aureus were shown to bind ~1 ppm Ag+/mL culture. The elution of Ag+ resulted in
no increases in mammalian cell apoptosis after 24 h exposure compared to control, but apoptotic cells
increased to ~35% by 48 and 72 h of exposure. Taken together, the AgO/Ag2O coatings described
are effective in eliciting antibacterial activity and have potential for application on a wide variety of
surfaces and devices.

Keywords: bactericidal coatings; antibacterial; silver oxide; reactive sputtering; thin film coatings

1. Introduction

Antimicrobial resistance has proven to be an obstacle of overwhelming importance to both the
medical and scientific communities following the introduction of antibiotics in the early 20th century [1].
The ability of many bacteria to adapt to changing environmental conditions can be at least partly a
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result of their ability to overcome pharmaceutical approaches intended to eradicate them. Regular
and improper antibiotic use is partially responsible for providing advantages to mutant bacterial
strains; patients infected with those mutant strains have proven far more costly to treat and often
require longer hospital stays in comparison to patients with strains that are susceptible to traditional,
small-molecule antibiotic treatments [1,2]. In addition to acquired resistance, intrinsic resistance is
another factor in the resistance cascade: the low membrane permeability of certain bacterial strains
makes antibiotic penetration of the membrane nearly impossible [1]. Current projections estimate
that if there are no successful efforts to combat the spread of resistance, the number of deaths could
increase from the current reported annual total of 700,000 to as many as 10 million by the year 2050 [3].

Preventing infections has become a goal of both the scientific and medical communities in an
attempt to reduce antibiotic usage and stop the spread and/or development of resistant strains.
Infection control has become a significant concern in many areas of medicine, but is especially critical
in orthopedic surgery due to the invasive measures that must be taken when infections develop
post-surgery and are extremely difficult to treat with antibiotics alone. The restricted access around
surgical implants results in the need for stronger and longer antibiotic courses and increased potential
for implant retrieval, debridement, and device replacement. Additional surgeries result in increases in
patient stress and prolonged hospital stay [4]. Some studies estimate that 2.5% of primary hip and
knee arthroplasties and up to 20% of revision arthroplasties develop a periprosthetic joint infection,
with the mortality rate for these infections at nearly 2.5% [5].

Silver has been used for thousands of years in different civilizations for numerous applications,
including food and water purification, ulcer treatments, promoting wound healing, as well as
prevention of surgical infections [6]. Antimicrobial studies using silver compounds show its efficacy
against a wide range of bacterial species, including Bacillus subtilis, Escherichia coli, Pseudomonas
aeruginosa, Proteus vulgaris, and Staphylococcus aureus [7–10]. The exact antimicrobial mechanism of
action of silver is not fully elucidated, but the ability of silver to act against multiple bacterial species
suggests that silver interacts with multiple bacterial target sites, most readily with the thiol groups
of cysteine residues [11]. This is consistent with the high abundance of thiol groups in bacterial cell
membranes and silver exhibiting a broad-spectrum antimicrobial activity profile. At the bacterial
cell membrane, ionic silver has been shown to inhibit the proton motive force (PMF), the respiratory
electron transport chain, and affect membrane permeability, all of which can result in cell death [12–14].
Although different forms of silver are available, the ones most readily available fall into three categories:
elemental silver, inorganic silver complexes, and organic silver complexes [14].

Many varieties of silver materials are used in both healthcare and industry, yet the release of
silver ions from the complex is what ultimately determines the compound’s antimicrobial efficacy [15].
The primary drawback of pure silver is the negligible aqueous solubility, which limits the ability
to act as an antimicrobial over meaningful distances from metallic surfaces. Considering that the
silver ion (Ag+-ion) is the most likely antimicrobial form, efficient solubilization in the environment is
necessary for activity beyond the surface [16]. Silver nanoparticles (Ag-NP) as antimicrobial coatings
requires the particles to be embedded in a matrix of another material to adhere to implant surfaces,
creating convoluted paths which suppress the overall elution rate. The rate of Ag+-ion elution from
Ag-NP also may not be sufficient to significantly impact the growth of large numbers of bacteria in
the complex environment of the human body. Silver oxide has higher solubility in water compared to
pure metallic Ag, and has been shown to generate enough Ag+-ions to affect antimicrobial activity in
several applications [17,18].

Armed with the knowledge that the Ag+-ion has broad-spectrum bactericidal properties, and also
recognizing the shortcomings of metallic Ag- and Ag-NP-containing coatings, this work focuses on
developing Ag-based coatings with high dissolution rates in comparison to various forms of metallic
Ag, yielding meaningful levels of Ag+-ions in solution to inhibit bacterial growth. Though some
work has been reported that synthesizes silver oxide materials for semiconductor applications [19,20],
absent from the literature is a systematic investigation of the materials’ characterization under relevant
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conditions for bactericidal activity. Compounds in the silver oxide family can be deposited reactively at
room temperature and have orders-of-magnitude higher dissolution rates than that of pure metallic Ag.
The coatings were analyzed for molecular composition, surface morphology, and the elution properties
of Ag+ ions in a variety of aqueous solutions. The antibacterial activity against model Gram positive
and Gram negative bacterial strains is presented. The results indicate that the solubility of silver oxide
coatings is directly linked to the antibacterial activity and that these materials are promising for future
development as device coatings to mitigate bacterial infections.

2. Results

2.1. Oxygen Flow Dependence of Oxide Formed

Silver oxide films were deposited for 30 min on polished C-axis sapphire and other substrates
by magnetron sputtering at a power of 100 W and a pressure of 25 mTorr. The XRD results of films
grown at two different O2 partial pressures are shown in Figure 1A. Three phases of silver oxide
could be expected to form at room temperature: Ag2O (hexagonal), Ag2O (cubic), and AgO (cubic).
When the O2/Ar gas ratio is 2.5/60, Ag2O (hexagonal) and some cubic phase forms, as indicated by
the position of the XRD peak. When the O2/Ar is 0.67, phase pure AgO (cubic) forms. Isolating AgO
is the most straightforward, while the other phases tend to be mixed. Coatings deposited in this way
are polycrystalline films. The XRD peak relative intensities do not match that expected for powders,
suggesting that interactions with the substrate may cause some texturing.
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For the same films, XPS was performed. These results are shown in Figure 2A,B. The 
compositions are in general agreement with the XRD data. For the Ag2O sample, the XPS results 
indicate that there is an excess of Ag (higher than stoichiometric), although there are no additional 
diffraction peaks such as those associated with the formation of other phases or pure metallic Ag. 
Subsequently, the silver oxide films will be referenced as AgxO, indicating the mix of AgO and Ag2O 
present in the films. 

Figure 1. (A) Plot of the X-ray diffraction intensity versus 2θ showing single phase cubic AgO and
mixed phase AgO and Ag2O deposited at lower oxygen partial pressure; (B) Scanning electron
micrograph showing the typical surface microstructure of the silver oxide deposited at room
temperature. The microstructure can be impacted by deposition pressure, deposition power, oxygen
partial pressure, and coating thickness.

Scanning electron microscopy (SEM) was also performed on a representative coating deposited
on a Ti-foil substrate, shown in Figure 1B. This image shows that the grains were fairly uniform in size
at approximately 100 nm. The small grain size is typical for room temperature depositions. The small
grains are also consistent with the relatively weak diffraction peaks observed.

For the same films, XPS was performed. These results are shown in Figure 2A,B. The compositions
are in general agreement with the XRD data. For the Ag2O sample, the XPS results indicate that there
is an excess of Ag (higher than stoichiometric), although there are no additional diffraction peaks such
as those associated with the formation of other phases or pure metallic Ag. Subsequently, the silver
oxide films will be referenced as AgxO, indicating the mix of AgO and Ag2O present in the films.



Molecules 2017, 22, 1487 4 of 15Molecules 2017, 22, 1487 4 of 15 

 

 

Figure 2. Plot of the X-ray photoelectron spectrum of samples deposited at room temperature at a 
power of 100 W and a pressure of 25 mTorr. (A) The spectrum for the sample shown as AgO in Figure 
1A. Note that the atomic composition is nearly 1:1; (B) The spectrum for the sample deposited at lower 
partial pressure of O2 which results in mixed AgO and Ag2O. Note that the overall sample appears to 
be deficient in O for even Ag2O alone.  

2.2. Adhesion of AgxO Films 

Adhesion testing performed by the ASTM D3359 cellophane tape test demonstrated that the as-
deposited films were strongly adhered to the substrate with no need for a buffer layer. The substrates 
used included single crystal Al2O3, Ti, and the flexible polymer substrates. Even after creasing the 
flexible substrates, which resulted in fractures in the coatings, the adhesion test did not remove the 
coating, indicating that they are uniformly strong rather than at a few strong adhesion sites. 
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Figure 2. Plot of the X-ray photoelectron spectrum of samples deposited at room temperature at
a power of 100 W and a pressure of 25 mTorr. (A) The spectrum for the sample shown as AgO in
Figure 1A. Note that the atomic composition is nearly 1:1; (B) The spectrum for the sample deposited
at lower partial pressure of O2 which results in mixed AgO and Ag2O. Note that the overall sample
appears to be deficient in O for even Ag2O alone.

2.2. Adhesion of AgxO Films

Adhesion testing performed by the ASTM D3359 cellophane tape test demonstrated that the
as-deposited films were strongly adhered to the substrate with no need for a buffer layer. The substrates
used included single crystal Al2O3, Ti, and the flexible polymer substrates. Even after creasing the
flexible substrates, which resulted in fractures in the coatings, the adhesion test did not remove the
coating, indicating that they are uniformly strong rather than at a few strong adhesion sites.

2.3. Ag Elution from Silver Oxide Films

Silver oxide coatings were sputtered on Ti foils, and discs of 0.25” diameter were punched from
the foils to be placed in fixed volume deionized water baths and timed to test the Ag elution from
the coating into the solution. The Ag+-ion concentrations resulting in the solutions were measured
by inductively coupled plasma mass spectroscopy ICP-MS. The data plotted in Figure 3A (circles)
represent the concentration of Ag+-ions measured in the solutions. These results are compared to
the elution of Ag+-ions from silver nanoparticles shown as a red dashed line as measured by Kent et
al. [21].

These measurements were extended to examine the effect of environment on the release rates,
as the majority of previous reports have focused on the release profile in water, while in vitro cellular
experiments take place in much more complex media. Figure 3B demonstrates the cumulative Ag
release in water and various media types as measured by ICP-MS. The results show that the Ag+ elutes
at a faster rate in water compared to the more complex media tested (LB used for bacterial growth
experiments and DMEM used for mammalian cell growth conditions). Interestingly, the release rate
of simple phosphate buffered saline (PBS) is slower than water but faster than the complex growth
media. The overall trend of release rates is H2O > PBS > LB ≈ DMEM. The release rates calculated
from these experiments and statistics are included in the Supplement (Table S1).
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2.4. Antibacterial Activity 

2.4.1. Static Testing 

The ability of the coatings to release Ag+ into solution indicated that these coatings may be 
effective against bacteria that are not directly in contact with the surfaces. This is in contrast to 
previous findings with pure Ag coatings, which demonstrated resistance to bacterial 
colonization/adhesion, but did not provide any antibacterial activity beyond the surface [18]. The 
ability to exert antibacterial activity distal to the coated surface was first examined with a modified 
version of the Kirby–Bauer disc diffusion assay. Discs were laid onto LB-agar plates pre-seeded with 
S. aureus or E. coli (Figure 4A,B) and allowed to incubate overnight. The presence of a zone of 
inhibition (ZOI) indicates that the Ag+ ions from the coating eluted and inhibited bacterial growth 

Figure 3. (A) Elution of Ag ions from AgxO coatings (circles) in distilled water as measured by ICP-MS.
Release profile is compared to estimated elution data from Ag nanoparticles (red dashed line near
X-axis) from [21]; (B) Elution of Ag ions from AgxO coatings in water (blue diamonds), PBS (green
squares), LB growth medium (yellow circles) and DMEM growth medium (red triangles) as measured
by ICP-MS. Data are averages with standard deviations of at least three replicates. In some cases,
the error bars are smaller than the size of the symbol.

2.4. Antibacterial Activity

2.4.1. Static Testing

The ability of the coatings to release Ag+ into solution indicated that these coatings may be
effective against bacteria that are not directly in contact with the surfaces. This is in contrast to previous
findings with pure Ag coatings, which demonstrated resistance to bacterial colonization/adhesion,
but did not provide any antibacterial activity beyond the surface [18]. The ability to exert antibacterial
activity distal to the coated surface was first examined with a modified version of the Kirby–Bauer disc
diffusion assay. Discs were laid onto LB-agar plates pre-seeded with S. aureus or E. coli (Figure 4A,B)
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and allowed to incubate overnight. The presence of a zone of inhibition (ZOI) indicates that the Ag+

ions from the coating eluted and inhibited bacterial growth with this zone. The Ti control disc and the
Ag-coated discs both exhibited no measurable ZOI, indicating that the pure silver coatings were unable
to elute and diffuse through the solid agar medium to any significant concentration able to prevent
bacterial growth. In contrast, the AgxO-coated discs clearly caused a ZOI, ranging from 0.8 to 1.0 cm
in diameter. This inhibition of bacterial growth around the disc clearly indicates that Ag+ is eluting
from the disc at high enough concentrations to inhibit bacterial growth on semi-porous solid surfaces.
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Figure 4. Antimicrobial activity of AgxO coatings (A,B) Zone of inhibition assay. Images of LB plates
seeded with (A) Staphylococcus aureus or (B) Escherichia coli. The AgxO disc (labeled AgO on the plates)
exhibited a zone of inhibition (ZOI) of (A) 9 mm for S. aureus; (B) 10 mm for E. coli. The diameter
of the disc in each case is 6.5 mm (1/4”). No ZOIs were evident for Ag-coated or Ti control discs;
(C) Overnight growth of S. aureus and E. coli in modified minimal inhibitory concentration (MIC)
experiment. Gray bars represent cultures exposed to AgxO-coated discs while black bars represent
cultures exposed to uncoated Ti discs. Data are averages of at least three samples.

A modified version of the traditional minimal inhibitory concentration (MIC) assay was employed
to determine the ability of the coatings to inhibit bacterial growth in liquid culture. In this experiment,
coated or uncoated Ti-discs were added to wells of a 96-well plate, and a known concentration of
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bacteria (5 × 105–5 × 106 CFU/mL) was then added. The optical density at 600 nm (OD600) of the
cultures were measured after overnight incubation at 37 ◦C. In the cases of both S. aureus and E. coli,
there was little or no turbidity observed in the cultures exposed to AgxO-coated discs, indicating
bacterial growth was inhibited. This is in contrast to the control samples containing uncoated Ti-discs,
which exhibited high OD600 readings indicating robust bacterial growth (Figure 4C).

2.4.2. Bacterial Growth Kinetics

Based on the previous findings of AgxO coatings exhibiting antimicrobial activity in solution,
measurements were extended to a more detailed analysis of coating properties on efficacy. Figure 5
shows the growth curves of the same standard model bacterial species in the presence of an uncoated
Ti disc or a Ti disc coated with ~150 nm thick AgxO film. In each case, the culture containing the
Ti disc exhibited growth comparable to the control culture. In contrast, the cultures containing the
AgxO-coated discs showed significantly lower OD600 values for all bacteria tested. These curves
indicate that the AgxO coating is eluting from the surface of the disc into solution, inhibiting bacterial
growth in all bacterial species. Additionally, this inhibition was almost immediate upon the addition
of the AgxO coated disc to the bacterial culture, indicating a rate of release high enough to very quickly
reach a threshold concentration of Ag+-ion in the culture to inhibit growth.
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curve experiments in Figure 5, a portion of the culture was pelleted, dissolved in 5% nitric acid, and 
subjected to ICP-MS analysis. In all cases, bacteria exposed to AgxO-coated discs displayed 
significantly higher Ag content in the pelleted cells compared to those of the Ti controls (Figure 6). 
This suggests that the Ag+-ions are stably associated with or are being taken up by the bacteria. It should 
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the number of viable cells was much smaller. Additionally, while there was some variability between 
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Figure 5. Antibacterial activity of AgxO coatings in liquid culture. Absorbance (i.e., optical density at
600 nm (OD600)) is a measure of the number of bacterial cells in the solution. Ti or Ti discs coated with
AgxO were added to cultures of (A) S. aureus (starting density between 4 × 106 and 4 × 107 CFU/mL);
or (B) E. coli (starting density ~3.73 × 107 CFU/mL). Symbols are (green N, purple ) for AgxO-coated
discs, (blue �) for untreated control, and (red �) for uncoated Ti disc control. Experiments were
performed at 37 ◦C with constant shaking of the cultures except during OD measurement.

2.4.3. Bacterial Uptake of Ag

The results in the previous experiments show that the eluted Ag ions are the driving force behind
the antimicrobial activity of the AgxO coatings. These experiments were then extended to investigate
the association of eluted Ag+-ion to bacteria in solution. Starting with cultures used in the growth curve
experiments in Figure 5, a portion of the culture was pelleted, dissolved in 5% nitric acid, and subjected
to ICP-MS analysis. In all cases, bacteria exposed to AgxO-coated discs displayed significantly higher
Ag content in the pelleted cells compared to those of the Ti controls (Figure 6). This suggests that
the Ag+-ions are stably associated with or are being taken up by the bacteria. It should be noted that
the cell pellets for the AgO-treated samples were very small compared to the control, as the number
of viable cells was much smaller. Additionally, while there was some variability between samples,
all bacteria tested exhibited approximately the same amount of Ag associated.
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2.5. Mammalian Cell Viability

Ag+ ions have been shown to be toxic to mammalian cells at certain concentrations [22]. Therefore,
it was of interest to determine whether AgxO discs and the eluted Ag+ from these discs are toxic to
murine fibroblasts (NIH3T3 cells) in vitro. Cells (1.5 × 105) were seeded in six-well plates in complete
media. Cells were incubated with either no disc, uncoated Ti disc, or AgxO-coated Ti discs for the
indicated times, and apoptosis was analyzed with the Annexin-V assay followed by flow cytometric
analysis. Figure 7 shows that apoptosis significantly increased by 48 h in cells incubated with discs
coated with 150 nm films on one or both sides of the disc. Interestingly, the percentage of apoptotic
cells appears to plateau at approximately 40% in both cases. Of note, it was observed microscopically
that cells immediately surrounding the disc showed signs of cell stress prior to cells located distally to
the disc, which is likely due to an increased local concentration of Ag+ ions after or during elution (data
not shown). Collectively, these data suggest that a high silver concentration in the local environment
eventually becomes toxic to the local cells.
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in triplicate and the averages are graphed with standard deviations. * p-value < 0.05.
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3. Discussion

Reactive magnetron sputtering was shown to produce thin-film coatings containing AgO and/or
Ag2O that display beneficial materials properties for application to medical and other devices. Overall,
the experimental results presented show a distinct and rapid inhibition of bacterial cell growth in
planktonic culture and on surfaces due to the presence of AgxO coatings. This inhibition is clearly
linked to the ability of coatings to elute Ag+-ions into solution, or the local environment.

3.1. Synthesis of and Analysis of AgO Containing Coatings

The AgxO coatings deposited in the work reported here eluted Ag+-ions at a rate of approximately
4 × 1016 ions/cm2 min without a strong dependence on the formed phase, though sample-to-sample
runs could vary by a factor of close to 2. The dissolution of Ag-NP was measured by Kent et al. [21].
In this work, pillars of pure Ag are deposited and the pillar profile is imaged/measured with a scanning
probe microscope before and after exposure to DI-water or various concentrations of NaCl-containing
solutions for specific time intervals. The nanoparticles are approximately 100 nm in diameter and
60 nm tall. Assuming a constant dissolution rate, the pillars dissolve at a rate less than 30 nm3/min.
If the nanoparticle pillars are assumed to be roughly cylindrical and the initial dimensions of 60 nm
tall with a radius of 52 nm are used to calculate the nanoparticle surface area, it is found from the
known density of bulk Ag that about 6 × 1012 atoms/cm2/min are transformed to Ag ions. This Ag
ion release was then compared, as shown in Figure 3A, to that for the AgxO coatings. These results
indicate that the silver oxide coatings, with an elution rate of approximately 2.6 × 1016 ions/cm2/min,
elute Ag+-ions at a rate roughly 4000 times greater than that of Ag nanoparticles.

3.2. Antibacterial Activity

As mentioned previously, Ag has been used as a method for sterilization for thousands of
years [23]. Notably, in that time, there has been limited development of bacterial resistance to Ag [14].
The lack of resistance development is credited to the ability of Ag to induce a response in a variety of
targets in bacterial cells, both membrane and cytoplasmic; multiple bacterial targets also contribute
to the broad-spectrum activity [12,24,25] of Ag. In reported cases of increased Ag resistance, the
main determinant involves a periplasmic metal-binding protein, a chemiosmotic efflux pump, and
an ATPase efflux pump [26,27]. These plasmid-encoded pumps, which actively transfer the Ag+

out of the cell, are thought to be a major cause of Ag resistance [26,27]. The development of silver
resistance is not widespread, which can be attributed to the broad-spectrum activity and the proposed
mechanism of action, which target multiple bacterial components [24]. Although resistance to Ag is a
possibility, the rate of development appears to be slower than that of alternative antimicrobial agents,
which gives promise to future development of Ag-based antimicrobial therapies in combinatorial and
mixed-therapy applications [28]. However, one of the main limitations to using Ag as an antimicrobial
agent or in combination approaches has been the limited solubility of pure Ag metal in aqueous
solutions [16]. Our previous work and that presented here show a viable strategy for developing
Ag-based coatings that circumvent the solubility issue through the use of AgxO [29].

3.3. Broader Perspectives

Ag nanoparticles have also been commonly used as an efficacious and practical way to coat
surfaces; recent advances in nanotechnology have afforded the ability to vary the size of the particles,
the physical characteristics of the particles, and the dissolution/elution profile [30]. However,
nanoparticle coatings have a distinct set of limitations based on the fabrication methodology, including
inherent variability in material composition. The use of nanoparticles has also shown variability in
their toxicity profile, due to the variability in material composition [31,32]. Nonetheless, nanoparticles
do provide a straightforward route to biologically active Ag, although this route is often confounded
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by variability in elution rates, the mechanical properties of the nanoparticles, and the ability to adhere
the nanoparticles to surfaces.

The majority of recently reported work utilizing Ag+ compounds as antimicrobials incorporates
the use of nanoparticles; in fact, 30% of total nano-products are based on Ag [33]. Nanoparticles
have become a popular alternative material for the creation of antimicrobial coatings on medical
devices and bandages. Although copper, zinc, Ti [34], magnesium, gold [35], and alginate [36] have
all been tested for activity, Ag nanoparticles have proven the most efficacious against a wide range
of bacteria and viruses [30]. When three types of nanoparticles were compared in a growth curve
analysis to AgNO3 as a positive control, only the highest concentrations of both colloidal and biogenic
nanoparticles were able to inhibit growth comparable to the positive control in both Gram positive and
Gram negative bacterial species [37]. The concentrations of Ag+ in the aforementioned study ranged
from 0.47 µg/mL to 0.53 µg/mL, with the lowest of those showing no antimicrobial activity [37].
In comparison, the concentrations in the study presented here ranged from 0.35 µg/mL to 1.12 µg/mL,
and showed comparable antimicrobial efficacy for both Gram positive and Gram negative species at
0.52 µg/mL (equivalent to 30 min of release in LB).

Numerous studies have shown that nanoparticle delivery of Ag+ is more toxic to mammalian cells
than delivery via Ag-coated biomaterials [38,39]. Therefore, novel methods for coating biomaterials
with various Ag compounds in order to control Ag+ release have been investigated [40]. Numerous
in vitro and in vivo studies have recently been performed with various Ag-coated materials, and have
demonstrated antibacterial efficacy in the absence of mammalian cell cytotoxicity [41–47]. Our in vitro
cytotoxicity results demonstrate that our coatings show cytotoxicity only in a portion of the cell
population at 48 h (Figure 7). A microscopic analysis demonstrated that toxicity was apparent in
the cells immediately surrounding the disc and not cells located distally, suggesting that that the
local concentration of Ag+ is higher than that of the rest of the culture (data not shown). Preliminary
in vivo results show that subcutaneous implantation of the AgxO-coated Ti discs in mice does not
result in a detectable increase in Ag+ in blood compared to controls up to 21 days (manuscript in
preparation). Collectively, these data suggest that in a “closed system”, such as a tissue culture plate,
the accumulation of Ag+ ions can become cytotoxic, which was also suspected by another group in
their model system [46]. However, in an “open system”, such as an animal, the removal of Ag+ from
the local environment via circulation can reduce or eliminate cytotoxic effects. Additional in vivo
experimentation to investigate the toxicity of these particular coating compositions is warranted.

4. Materials and Methods

4.1. Generation of Ag-Containing Films

Thin films of cubic silver oxide (AgO) were deposited reactively in a custom-designed two-cathode
sputter deposition chamber. Each of the cathodes contains a two-inch diameter silver target with
99.95% purity. The cathodes are in a confocal configuration pointing upward toward a sample holder
that is 1” × 2”. The gas mixture used was 67% argon and 33% oxygen adjusted with two mass flow
controllers. Argon was adjusted to a rate of 20 sccm while oxygen flows at a rate of 10 sccm, though
other mixtures of argon and oxygen also will work to synthesize bactericidal AgxO. The pressure in
the chamber during deposition was held at 20 mTorr controlled by a butterfly baffle valve connected
to a capacitance manometer. The working distance, the distance from the Ag target to the substrate,
was approximately 3.5”.

Each of the cathodes was powered with an MDX-500 DC-power supply applying a power
of 25–100 W to each cathode. In the chamber configuration, the deposition rate is approximately
17 nm/min at 25 W and increases roughly linearly with power. X-ray diffraction results indicate that
the coatings were a combination of cubic phases of AgO and Ag2O. The microstructure of the coatings
was measured with a field emission scanning electron microscope (LEO 1530VP).
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4.2. Bacterial Culturing

Bacteria were streaked onto LB–miller agar (BD-Difco, Franklin Lakes, NJ, USA) plates from
strains stored in a frozen library (E. coli MG1655, S. aureus ATCC: 27660). All streaks were stored in a
refrigerator at 4 ◦C. To prepare overnight cultures, a single colony of each bacterial strain was added
to LB broth (BD-Difco) in sterile culture tubes. Tubes were placed in the shaking incubator at 37 ◦C
overnight to allow for sufficient bacterial growth. Following the incubation period, dilutions of the
overnight culture were made in fresh LB 1:100.

4.3. Bacterial Growth Analysis

Dilutions were grown to an optical density at 600 nm (OD600) 0.2–0.3 before being diluted a second
time to the indicated experimental range. The optical density of a bacterial solution can be used to
estimate the number of bacterial cells in solution. Calculations were performed under the assumption
that OD600 = 1.0 is equivalent to ~108 CFU/mL for S. aureus and ~109 CFU/mL for E. coli [33,48,49].
The value for S. aureus differs from a standard reference in the analysis of bacterial susceptibility [50],
but is more consistent with other published reports [51–54].

Bacterial growth inhibition was investigated using a modified version of the minimal inhibitory
concentration (MIC) assay [55]. The bacteria were grown as described above, and subsequently diluted
to between 105 and 106 CFU/mL in fresh LB media. Subsequently, 200 µL of this diluted culture
was then added to individual wells of a sterile 96-well plate containing either no disc, a Ti disc, or a
AgxO-coated Ti disk. The plate was then covered and incubated at 37 ◦C overnight. After incubation,
150 µL of the culture was transferred to a new, sterile 96-well plate and the OD600 was measured with
a Spectramax M5 multimode plate reader.

For growth kinetics analysis, the bacteria were added to fresh Mueller–Hinton broth in sterile
tubes containing the test piece; the total volume in each tube was 3 mL. All experiments with Ag-coated
discs were performed in at least duplicate for each bacterial species tested. OD600 measurements were
recorded on each of the cultures every 30 min with ultraviolet-visible spectroscopy; between time
intervals, tubes were agitated at 220 RPM in a shaking incubator at 37 ◦C.

The coated or uncoated foils were also used to assess the inhibition of bacterial growth on solid
agar plates. Briefly, an agar plate was seeded with enough bacteria to form a confluent lawn on the
surface and allowed to incubate for 30 min at 37 ◦C to allow the bacteria to adhere to the surface.
Subsequently, the uncoated or Ag-coated Ti discs were applied to the surface to assess a zone of
inhibition (ZOI) of bacterial growth similar to the traditional Bauer–Kirby method [56,57]. The plates
were allowed to incubate overnight at 37 ◦C and the ZOI was measured.

4.4. ICP-MS Analysis

All samples were prepared with deionized water, phosphate buffered saline (PBS, 50 mM sodium
phosphate, 150 mM NaCl, pH 7), sterile LB broth, or DMEM medium. Medium (10 mL) was added to
a sample tube, and test discs were subsequently added to the bottom of each tube. Sample tubes were
placed in the shaking incubator at 37 ◦C for ten-minute intervals. Following the incubation period,
the media was removed, and an equal volume of fresh media was added to the sample tube; release
experiments were performed over a one-hour period.

In the case of bacterial uptake experiments, cells from 1 mL of culture from each of the tubes
used in the growth curve experiment were pelleted for 10 min at 6000 RPM in a Benchmark mini
centrifuge. The supernatant from each of these tubes was placed into a new sample tube and was
combined with 5% nitric acid. The pellet containing the bacterial cells was discarded. All ICP samples
were run against a standard prepared in 5% HNO3 containing 1000 ppm AgNO3 (Ricca, Arlington, TX,
USA) calibrated to fit a linear curve model and contain expected experimental outcome values.
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4.5. Mammalian Cell Viability Assays

NIH3T3 cells (American Type Tissue Culture, Manassas, VA, USA) were cultured in DMEM
with 4.5 g/L glucose, L-glutamine, and sodium pyruvate (10-013-CV; Corning, NY, USA) with 10%
fetal bovine serum (FBS) (35-010-CV; Corning, NY, USA) and 1% penicillin–streptomycin (P0781;
Sigma-Aldrich, St. Louis, MO, USA). NIH3T3 (1.5 × 106 cells) were plated in a six-well plate
approximately 12 h before adding discs and incubated at 37 ◦C with 5% CO2. Titanium only (control)
or silver-coated titanium discs were gently placed into the wells at the indicated time points before
collection. Media was removed and centrifuged to pellet any non-adherent cells; adherent cells were
gently trypsinized and pooled with the non-adherent cells for each sample. Cells were collected and
stained with an Annexin-V/PI kit (630109; Clontech, Mountain View, CA, USA), and flow cytometric
analysis was performed to determine the percentage of apoptotic cells. Student’s t-test was performed
to determine statistical significance for the mammalian cell in vitro toxicity assays for each sample
compared to an untreated control. A p-value < 0.05 was considered statistically significant.

5. Conclusions

In this study, silver oxide thin-film coatings were applied to Ti foil to test antimicrobial activity
as a proof of concept for medical device applications. The coatings were deposited by a reactive
sputtering method that allows the process to be performed at room temperature, making both a
large-scale manufacturing process and applicability to alternative substrates viable options for future
applications. In addition, the sputtering method can be adjusted to produce variability in coatings
including chemical composition and adjustable elution rates. Coatings can be developed and tailored
via composition changes or the creation of distinct, multi-layered systems in which each layer of the
coating has different chemical compositions and/or elution profiles for Ag+. In addition to the layering
capability, homogeneous coatings of varied chemical compositions can also be used to modulate
elution profiles.

Supplementary Materials: The following are available online. Figure S1: Histograms from flow cytometric
analysis used to generate graphs in Figure 7. Panels A, B and C are the three separate replicates used. Table S1:
Elution rate of Ag ions in different media types.
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