Elexacaftor/tezacaftor/ivacaftor and inflammation in children and adolescents with cystic fibrosis: a retrospective dual-center cohort study

Ther Adv Respir Dis 2025, Vol. 19: 1–9 DOI: 10.1177/ 17534666251314706

© The Author(s), 2025.

Article reuse guidelines: sagepub.com/journals-permissions

Angela Pepe, Cristina Fevola, Daniela Dolce, Silvia Campana, Novella Ravenni, Giovanni Taccetti, Donatello Salvatore and Vito Terlizzi

Abstract

Background: Cystic fibrosis (CF) is characterized by chronic neutrophilic inflammation in the airways. Elexacaftor/tezacaftor/ivacaftor (ETI) therapy has demonstrably improved clinical outcomes and quality of life in people with CF (pwCF), but its effects on systemic inflammatory parameters remain unclear.

Objective: To evaluate the impact of ETI on systemic inflammation in children and adolescents with CF.

Design: Retrospective, dual-center observational, propensity score-matching study of pediatric pwCF on ETI.

Methods: PwCF aged \leq 18 years treated with ETI at two Italian reference centers were included in this study. Data on immunoglobulins (Ig) (A, G, and M), γ -globulin, leukocyte levels, percent predicted forced expiratory volume in the first second (ppFEV1), sweat chloride (SC) concentration, and sputum cultures were collected at baseline, 12, and 24 months of treatment. Laboratory data of a control group (pwCF, not in ETI therapy, same demographic characteristics as the study group) were also collected.

Results: Sixty-six patients (30 males, median age: 12 years, F508del homozygous: 23) were included. Mean IgG levels (SD) significantly decreased (p = 0.001) from 1168.20 mg/dl (344.41) at baseline to 1093.05 mg/dl (258.73; 12 months) and 1092.87 mg/dl (232.42; 24 months). Similar reductions were observed for IgA and γ-globulin; IgM reduction was not statistically significant. Leukocyte levels also decreased significantly from $8.04 \times 10^3/\mu l$ (3.23 × 10³) at baseline to $6.61 \times 10^3/\mu l$ (1.74 × 10³) (12 months) and $6.45 \times 10^3/\mu l$ (1.70 × 10³; 24 months). As for the control group, no significant changes in the levels of Ig, leukocytes, and γ-globulin were detected throughout the study period (p > 0.05).

The mean (SD) ppFEV1 and the overall mean (SD) SC concentration significantly decreased during the follow-up. Regarding cultures, 18 (27%) of the 27 patients positive (41%) for *Staphylococcus aureus* at baseline became negative during treatment. Three patients (4%) with persistently positive cultures for *Pseudomonas aeruginosa* during the first 12 months, became negative after 24 months. One patient (1.5%), with a baseline positive culture for *Pseudomonas Aeruginosa*, showed negative cultures after 12 months.

Conclusion: ETI treatment improved respiratory outcomes and significantly reduced values of IgG, IgA, γ -globulin, and leukocytes, suggesting an effect on the systemic inflammatory response. Further research is warranted to elucidate the role of inflammatory parameters in monitoring response to therapy.

Correspondence to:
Vito Terlizzi
Meyer Children's Hospital
IRCCS, Department
of Pediatric Medicine,
Cystic Fibrosis Regional
Reference Center, Viale
Gaetano Pieraccini 24,
Florence 50139, Italy
vito.terlizzi@meyer.it

Angela Pepe

Cristina Fevola

Daniela Dolce

Florence, Italy

Cystic Fibrosis Center, Hospital San Carlo, Potenza, Italy

Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," Pediatrics Section, University of Salerno, Baronissi, Italy

Silvia Campana Novella Ravenni Giovanni Taccetti Meyer Children's Hospital IRCCS, Department of Pediatric Medicine, Cystic Fibrosis Regional Reference Center,

Donatello Salvatore Cystic Fibrosis Center, Hospital San Carlo, Potenza, Italy

Plain language summary

Inflammation in cystic fibrosis: impact of a new therapy in children and adolescents.

- Inflammation plays a pivotal role in Cystic Fibrosis (CF) progression
- The new combination therapy Elexacaftor/Tezacaftor/Ivacaftor (ETI) improves lung function, nutritional status, and quality of life in eligible CF patients. Limited data exists on the impact of ETI on inflammation in CF.
- This retrospective study demonstrates that ETI appears to positively impact inflammation markers in children and adolescents with CF.
- Further research is needed to better understand how inflammation parameters can help monitor the response to therapy

Keywords: immunoglobulin, leukocyte levels, *Pseudomonas aeruginosa*, γ-globulin

Received: 1 August 2024; revised manuscript accepted: 23 December 2024.

Introduction

Cystic fibrosis (CF) arises from variants in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, leading to epithelial chloride channel dysfunction and impairing the water-salt balance across various organ systems.1 This dysfunction results in reduced or absent flow of chloride/bicarbonate ions and the formation of thickened secretions, causing symptoms such as recurrent lung infections, pancreatic insufficiency, liver cirrhosis, intestinal obstruction, and male infertility.2 The interplay of obstruction, infection, and inflammation is pivotal in CF lung disease pathogenesis and progression.3 Studies suggest that individuals with CF exhibit increased susceptibility to inflammation, possibly due to dysregulated CFTR protein leading to overproduction of proinflammatory cytokines by respiratory epithelial cells.4-6

The correlation between serum immunoglobulin (Ig) levels, particularly IgG, and pulmonary involvement is well established, with higher IgG levels indicative of chronic inflammation and poorer respiratory outcomes.^{7–9}

The emergence of highly effective modulator therapies (HEMT) targeting CFTR protein has revolutionized CF management.^{10–11} Elexacaftor/tezacaftor/ivacaftor (ETI) is the first triple combination modulator approved for patients with responsive *CFTR* variants.¹² In Italy, ETI is approved for use in people with CF (pwCF) aged 6 and above with at least one F508del variant¹³

and has demonstrably improved lung function, nutritional status, and quality of life in this population. 14–16 These improvements are likely attributed to enhanced mucociliary clearance and reduced inflammation. 17

Against this backdrop, we conducted a retrospective study to evaluate the impact of ETI therapy on inflammation parameters in pediatric CF patients with a focus on respiratory outcomes.

Materials and methods

Study design, subjects, and data

This was a retrospective, dual-center observational, propensity score-matching study. Inclusion criteria were as follows: having a diagnosis of CF according to Farrell et al.,18 and with at least one F508del CFTR variant, undergoing ETI treatment, and being ≤ 18 years before starting the drug. Data were retrieved from the hospital's electronic database system at baseline and after 12 and 24 months of therapy. Key exclusion criteria included the following: liver cirrhosis or history of solid organ or hematologic transplantation and presence of CFTR variant other than F508del, not eligible for ETI prescription, according to Italian legislative guidelines.

The dosing regimen for ETI was tailored to the patient's weight and followed the protocol outlined below¹⁹:

For patients weighing <30 kg:

ELX: 100 mg once daily
TEZ: 50 mg once daily
IVA: 75 mg every 12h

For patients weighing $>30 \,\mathrm{kg}$:

ELX: 200 mg once daily
TEZ: 100 mg once daily
IVA: 150 mg every 12h

Primary outcome measures included Ig (classes A, G, and M), leukocyte, and γ -globulin levels over the initial 24 months of ETI treatment. The same data of a control group of people with CF not eligible for ETI therapy and intentionally with the same demographic characteristics as the study group was also collected.

Secondary outcomes comprised percent predicted forced expiratory volume in the first second (ppFEV1) adjusted for age and sex, percentage of positive sputum cultures, change in sweat chloride (SC) concentration from baseline, and nutritional status assessed via body mass index (BMI) z-score. Normal ranges for IgG, IgA, and IgM were determined following Bayram et al.²⁰

Ig levels and assessment of lung function were conducted during the period without pulmonary exacerbations (PEx)²¹ or in the next quarterly visit an episode of PEx. Microbiological status was assessed in line with standard care protocols.²² Chronic *Pseudomonas aeruginosa* (PsA) infection was defined according to the modified Leeds criteria.²³

The study was conducted following STROBE guidelines for observational cohort studies (Supplemental File).²⁴

Statistical analysis

Statistical analysis was performed using SPSS. Results are expressed as means and standard deviations (SD), means and 95% confidence interval (CI), or medians and interquartile range (IQR), as appropriate. The Wilcoxon signed rank test and the paired t-test, as appropriate, were used to compare data, and p-values <0.05 were considered significant.

Table 1. Clinical characteristics of the study population at initiation of ETI.

Variable	Value
Number of patients, n	66
Sex, n (%)	
Male	30 (45.4%)
Female	36 (54.6%)
Age at ETI initiation, median (IQR), years	12 (11.0–14.0)
Age categories, %	
6-12 years	25 (37.9%)
12-18 years	41 (62.1%)
Genotype	
F508del/F508del, n (%)	23 (34.8%)
F508del/other, <i>n</i> (%)	43 (65.2%)
ppFEV ₁ , mean (SD), (%)	85.7 (17.1)
Chronic <i>Pseudomonas</i> aeruginosa colonization, n (%)	4 (6.1%)
BMI z-score, mean (SD)	-0.34 (1.02)
Sweat chloride (mmol/L), mean, SD	109.2 (38.8)

Results

Characteristics of the study population

Sixty-six patients (30 males), aged 6–8 years (median age: 12 years; IQR: 11–14), were included. Baseline demographics and patient characteristics of the study group are summarized in Table 1.

Immunological and inflammatory parameters

Immunoglobulin levels for age before ETI treatment are summarized in Table 2.

Overall mean (SD) IgG values significantly decreased (p=0.001) from 1168.20 (344.41) mg/dl at baseline (95% CI (1085.11, 1251.29) to 1093.05 (258.73) g/dl after 12 months (95% CI: 1030.63–1155.46) and 1092.87 (232.42) after

Table 2. Number of patients (%) with normal, low, or high immunoglobulin levels for the age before ET	Ί
treatment, according to Bayram et al. ²⁰	

Immunoglobulin values	Normal for age n (%)	High for age n (%)	Low for age n (%)
IgG	59 (89.4%)	6 (9.1%)	1 (1.5%)
IgM	62 (93.9%)	4 (6.1%)	0
IgA	61 (92.4%)	4 (6.1%)	1 (1.5%)

Table 3. Laboratory parameters. Values are expressed as mean (95% CI).

Laboratory parameters	Before ETI	After 12 months	After 24 months
IgG mg/dl p-value	1168.20 (1085.11–1251.29)	1093.05 (1030.63–1155.46) p=0.001*	1092.87 (1011.05–1174.69) p=0.001*
IgA mg/dl p-value	173.08 (149.35–196.82)	156.17 (136.83–175.51) <i>p</i> < 0.05*	160.52 (136.12–184.92) <i>p</i> > 0.05
IgM mg/dl p-value	133.92 (120.19–147.66)	130.60 (115.69–145.50) $\rho > 0.05$	137.54 <i>p</i> > 0.05 (110.31–164.78)
γ-globulin g/l p-value	15.32 (14.16–16.47)	14.13 (13.32–14.95) <i>p</i> = 0.001*	14.87 (13.75–15.98) <i>p</i> < 0.05*
Leukocytes × 103/mmc p-value	8.04 (7.26–8.82)	6.61 (6.19–7.03) p < 0.001*	6.45 (5.86–7.04) p < 0.05*
*Indicates statistically significant values.			

24months of ETI treatment (95% CI: 1011.05–1174.69; Table 3).

IgA levels decreased from 173.08 (98.39) (95% CI: 149.35-196.82) to 156.17 (80.15) mg/dl (p < 0.05; 95% CI: 136.83-175.51) after 12 and 160.52 (69.31) mg/dl after 24 months of treatment (95% CI: 136.12-184.92). IgM values also decreased from 133.92 (56.94) mg/dl at baseline (95% CI: 120.19-147.66) to 130.60 (61.78) mg/dl at 12 months (95% CI: 115.69-145.50) and 137.54 (77.36) at 24 months (95% CI: 110.31-164.78), but this variation was not statistically significant.

Concurrently, mean (SD) γ -globulin levels significantly reduced from 15.32 (3.92; 95% CI: 14.16–16.47) to 14.13 (2.75) g/l after 12 months

of treatment (p=0.001) (95% CI: 13.32–14.95) and 14.87 (2.48) g/l (p<0.05) after 24 months (95% CI: 13.75–15.98).

Mean (SD) leukocyte values decreased from $8.04\times10^3/\mu l$ (23×10^3) (95% CI: $7.26\times10^3-8.82\times10^3$) to $6.61\times10^3/\mu l$ (1.74×10^3) during the first 12 months of ETI treatment ($p\!=\!0.00009$) (95% CI: $6.19\times10^3-7.03\times10^3$) and to $6.45\times10^3/\mu l$ ($1.70\times10^3/\mu l$) after 24 months ($p\!<\!0.05$) (95% CI: $5.86\times10^3-7.04\times10^3$).

No significant changes in the levels of Ig, leukocytes, and γ -globulin were detected over time (p > 0.05) in the control group (N.55, 38 males; median age at initiation of study: 14.4 years; Supplemental Table (A–C)).

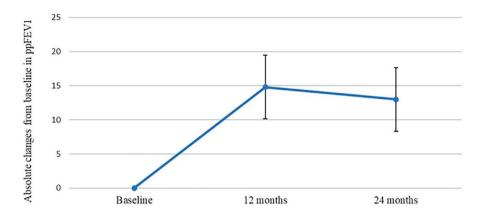


Figure 1. Absolute changes from baseline in ppFEV1.

Lung function

At baseline, the mean ppFEV1 (SD) was 85.7 (17.1). This increased to 100.7 (16.3) after 12 months of ETI treatment, representing a mean absolute ppFEV1 improvement of 14.8% (95% CI: 12.3–17.3; Figure 1). After 24 months of treatment, the mean (SD) ppFEV1 had mildly declined to 95.5 (16.9).

A significant difference was observed in the number of respiratory exacerbations requiring oral antibiotics between the 2 years before and after starting ETI (p < 0.05). However, no significant difference was found in the number of respiratory exacerbations requiring parenteral therapy (p > 0.05).

Bacterial pathogens

Eighteen (27%) of 27 patients who were positive (41%) for *Staphylococcus aureus* at baseline showed negative cultures during treatment. Three patients (4%) had persistent positive cultures for PsA during the first 12 months of treatment, but these cultures became negative after 24 months of treatment. One patient (1.5%), with a baseline culture positive for PsA, showed negative cultures after 1 year of treatment.

Nutritional status

The mean (SD) BMI z-score at baseline was -0.34 (1.01) and progressively increased to -0.04 (0.95) after 12 months of ETI treatment (p=0.0001) remaining stable after 24 months (-0.05 (0.70)).

The mean (95% CI) absolute increase in BMI z-score was 0.31 (CI 95%: 0.14-0.47; p < 0.0001) after 12 months of ETI treatment.

Sweat chloride

The overall mean (SD) SC concentration was 109.2 (38.8) mmol/l at baseline, significantly decreased to 50.2 (25.2) mmol/l during the first 12 months of ETI treatment and further to 47.0 (22.2) mmol/l after 24 months (p < 0.0001).

The mean absolute change from baseline was -56.9 mmol/L (95% CI: -64.3 to -49.4) after 12 months of treatment.

Discussion

Inflammation plays a pivotal role in CF progression. Despite showing significant quality-of-life improvements with ETI treatment, further research is warranted to assess the effects of CFTR modulators on inflammatory response and immune processes.

In this study, we report the trend of inflammatory parameters in children and adolescents with CF during ETI treatment.

A previous study analyzing the effects of CFTR modulators on inflammatory markers in pwCF, like Jarosz-Griffiths et al.,²⁵ suggests that CFTR modulators have anti-inflammatory properties; however, inflammation persists, albeit reduced, during ETI treatment.^{26,27}

Our study revealed a significant decrease in overall mean IgG, γ -globulin, and leukocyte levels after 24 months of treatment. These findings align with Schnell et al.'s²⁸ prospective monocentric study involving CF people aged at least 12 years treated with ETI, which observed reductions in Ig A, G, M, and leukocyte levels. Lepissier et al., in a study on an adult cohort of patients, noted reductions in blood and sputum inflammatory biomarkers within a month of ETI treatment, particularly for C-reactive protein, leukocytes, and polymorphonuclear neutrophil counts.²⁹

Other studies³⁰ reported normalized neutrophil counts, decreased proinflammatory cytokine levels^{31,32} and chemokines,³³ and enhancements in monocyte and macrophage function^{34–36} in pwCF undergoing ETI treatment.

As it is known, IgA is a protective barrier defending mucosal surfaces against microorganisms and IgG is involved in the humoral immune response.³⁷

Elevated IgG and IgA levels are associated with poorer clinical outcomes and reduction in lung function in pwCF.^{38–39} Wheeler et al. found that children with hypogammaglobulinemia G exhibited better lung function, nutritional status, fewer PEx, and less colonization with *PsA*, with a slower decline in lung function.⁷ Gur et al. described a positive correlation between IgG levels and some markers of disease severity such as, among others, lung clearance index and C-reactive protein.⁸ In our study, only 1 out of 66 patients (1.5%) had low total IgG levels for age before ETI treatment; this too small subgroup making it difficult to compare adequately with the remaining study population.

Some authors speculated that IgA and IgG levels should be considered as a routine strategy to indirectly assess lung function impairment because their elevation is inversely related to the ppFEV1^{35–37} or, more generally, their levels could be a useful outcome marker in the follow-up of pwCF.⁹

Regarding sputum cultures, previous studies have demonstrated that ETI treatment led to a reduction in CF pathogens^{40,41}; however, most individuals had the same bacteria before CFTR modulator treatment.⁴¹ In this research, it was registered a lower percentage shift to negative

PsA cultures after 12 months of treatment (25%) than reported in previous studies.^{28,42}

A notable improvement in lung function was also observed, consistent with data from the study by Middleton et al. and by Wainwright et al.⁴³

In our study cohort, it is interesting to note that the mean ppFEV1 at 24 months (95.50 (16.99)), although remaining higher than baseline (85.7 (17.1)), was lower than that the value reached at 12 months (100.7 (16.3)). This decline might be explained by reduced adherence or discontinuation of multiple therapies, as reported elsewhere. This finding warrants further investigation in larger studies with longer follow-ups.

As previously reported in other studies, ^{14–16,43} SC concentrations decreased significantly, halving their baseline value after 12 months of treatment and, additionally, BMI increased.

Despite these findings, our study has limitations, including its retrospective design, small sample size recruited from only two Italian CF Centers, a small number of evaluated immune endpoints, and lack of data on concomitant medications or discontinuation of therapies after starting ETI that might influence inflammatory parameters or clinical outcomes. In addition, we did not perform a sample size calculation nor an analysis stratified by age, sex, previous treatment with CFTR modulators, other or genotype. Furthermore, the limited number of samples may have affected the statistical significance of your results. While we did not evaluate cytokine levels, these are not routinely measured in the clinical practice for CF treatment.

Conclusion

ETI treatment could reduce serum levels of IgG, IgA, and leukocytes, suggesting its potential antiinflammatory effect and significantly improving respiratory function (as measured by ppFEV1), and nutritional status of children and adolescents with CF.

Larger-scale studies are warranted to elucidate the role of this inflammatory parameter in monitoring response to therapy.

Author's note

Poster presentation of this work at the following link: https://www.cysticfibrosisjournal.com/article/S1569-1993(24)00366-7/abstract

Declarations

Ethics approval and consent to participate

The study was conducted according to the principles of the Declaration of Helsinki. Parents provided written informed consent for anonymous data processing and approval was obtained from the Ethical Committee of the CF Center of Florence (Ethics Clearance number 109/2023 and 47/2024).

Consent for publication

Written consent for publication was obtained from the parents/legal guardians of the participants.

Author contributions

Angela Pepe: Conceptualization; Data curation; Investigation; Resources; Writing – original draft; Writing – review & editing.

Cristina Fevola: Data curation; Formal analysis; Writing – review & editing.

Daniela Dolce: Data curation; Resources; Writing – review & editing.

Silvia Campana: Data curation; Resources; Writing – review & editing.

Novella Ravenni: Data curation; Resources; Writing – review & editing.

Giovanni Taccetti: Resources; Supervision; Validation; Writing – review & editing.

Donatello Salvatore: Conceptualization; Supervision; Validation; Writing - review & editing.

Vito Terlizzi: Conceptualization; Investigation; Supervision; Validation; Writing - review & editing.

Acknowledgements

None.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Competing interests

The authors declare that there is no conflict of interest.

Availability of data and materials

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

ORCID iDs

Angela Pepe 5801-0397

https://orcid.org/0000-0002-

Vito Terlizzi 1106-4424

https://orcid.org/0000-0003-

Supplemental material

Supplemental material for this article is available online.

References

- 1. Ratjen F, Bell SC, Rowe SM, et al. Cystic fibrosis. Nat Rev Dis Primers 2015; 1: 15010.
- 2. Boucher RC. Airway surface dehydration in cystic fibrosis: pathogenesis and therapy. Annu Rev Med 2007; 58: 157-170.
- 3. Petrocheilou A, Moudaki A and Kaditis AG. Inflammation and infection in cystic fibrosis: update for the clinician. Children (Basel) 2022; 9: 1898.
- 4. Carrabino S, Carpani D, Livraghi A, et al. Dysregulated interleukin-8 secretion and NF-kappaB activity in human cystic fibrosis nasal epithelial cells. 7 Cyst Fibros 2006; 5: 113-119.
- 5. Stecenko AA, King G, Torii K, et al. Dysregulated cytokine production in human cystic fibrosis bronchial epithelial cells. Inflammation 2001; 25: 145-155.
- 6. Brennan S, Sly PD, Gangell CL, et al. Alveolar macrophages and CC chemokines are increased in children with cystic fibrosis. Eur Respir J 2009; 34: 655-661.
- 7. Wheeler WB, Williams M, Matthews WJ, et al. Progression of cystic fibrosis lung disease as a function of serum immunoglobulin G levels: a 5-year longitudinal study. J Pediatr 1984; 104: 695-699.
- 8. Gur M, Ben-David Y, Hanna M, et al. The association between IgG and disease severity

- parameters in CF patients. *J Clin Med* 2021; 10: 3316.
- 9. Hanssens LS, Cellauro S, Duchateau J, et al. Immunoglobulin G: a useful outcome marker in the follow-up of cystic fibrosis patients? *Immun Inflamm Dis* 2021; 9: 608–614.
- Bacalhau M, Camargo M, Magalhães-Ghiotto GAV, et al. Elexacaftor-Tezacaftor-Ivacaftor: a life-changing triple combination of CFTR modulator drugs for cystic fibrosis. *Pharmaceuticals (Basel)* 2023; 16: 410.
- 11. Terlizzi V and Farrell PM. Update on advances in cystic fibrosis towards a cure and implications for primary care clinicians. *Curr Probl Pediatr Adolesc Health Care* 2024; 54: 101637.
- 12. Trikafta Prescribing Information, https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/212273s004lbl.pdf (accessed 6 May 2024).
- Agenzia Italiana del Farmaco, https://farmaci. agenziafarmaco.gov.it/aifa/servlet/PdfDownload Servlet?pdfFileName=footer_004908_048984_ RCP.pdf&retry=0&sys=m0b113 (accessed 6 May 2024).
- 14. Heijerman HGM, McKone EF, Downey DG, et al. Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial. *Lancet* 2019; 394: 1940–1948.
- 15. Middleton PG, Mall MA, Dřevínek P, et al. Elexacaftor-tezacaftor-ivacaftor for cystic fibrosis with a single Phe508del allele. *N Engl J Med* 2019; 381: 1809–1819.
- 16. Mall MA, Brugha R, Gartner S, et al. Efficacy and safety of elexacaftor/tezacaftor/ivacaftor in children 6 through 11 years of age with cystic fibrosis heterozygous for F508del and a minimal function mutation: a phase 3b, randomized, placebo-controlled study. Am J Respir Crit Care Med 2022; 206: 1361–1369.
- Donaldson SH, Corcoran TE, Pilewski JM, et al. Effect of elexacaftor/tezacaftor/ivacaftor on mucus and mucociliary clearance in cystic fibrosis. J Cyst Fibros 2024; 23: 155–160.
- 18. Farrell PM, White TB, Ren CL, et al. Diagnosis of cystic fibrosis: consensus guidelines from the cystic fibrosis foundation. *J Pediatr* 2017; 181S: S4–S15.e1.
- 19. Terlizzi V, Fevola C, Presti S, et al. Reported adverse events in a multicenter cohort of patients ages 6-18 years with cystic fibrosis and at least one F508del allele receiving Elexacaftor/

Tezacaftor/Ivacaftor. J Pediatr 2024; 274:114176. Erratum in: J Pediatr 2024; 274: 114228.

Volume 19

- Bayram RO, Özdemir H, Emsen A, et al. Reference ranges for serum immunoglobulin (IgG, IgA, and IgM) and IgG subclass levels in healthy children. *Turk J Med Sci* 2019; 49: 497–505.
- 21. Flume PA, Mogayzel PJ Jr, Robinson KA, et al. Clinical Practice Guidelines for Pulmonary Therapies Committee. Cystic fibrosis pulmonary guidelines: treatment of pulmonary exacerbations. *Am J Respir Crit Care Med* 2009; 180: 802–808.
- Burgel PR, Southern KW, Addy C, et al. Standards for the care of people with cystic fibrosis (CF); recognising and addressing CF health issues. J Cyst Fibros 2024; S1569– 1993(24)00005-5.
- 23. Lee TW, Brownlee KG, Conway SP, et al. Evaluation of a new definition for chronic Pseudomonas aeruginosa infection in cystic fibrosis patients. *J Cyst Fibros* 2003; 2: 29–34.
- 24. Von Elm E, Altman DG, Egger M, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. *Lancet* 2007; 370: 1453–1457.
- 25. Jarosz-Griffiths HH, Scambler T, Wong CH, et al. Different CFTR modulator combinations downregulate inflammation differently in cystic fibrosis. *Elife* 2020; 2: 9:e54556.
- Casey M and Simmonds NJ. Why don't antiinflammatories work in cystic fibrosis? Expert Rev Respir Med 2024; 18: 1–3.
- 27. Schaupp L, Addante A, Völler M, et al. Longitudinal effects of elexacaftor/tezacaftor/ivacaftor on sputum viscoelastic properties, airway infection and inflammation in patients with cystic fibrosis. *Eur Respir J* 2023; 62: 2202153.
- 28. Schnell A, Hober H, Kaiser N, et al. Elexacaftor Tezacaftor Ivacaftor treatment improves systemic infection parameters and Pseudomonas aeruginosa colonization rate in patients with cystic fibrosis a monocentric observational study. *Heliyon* 2023; 9: e15756.
- 29. Lepissier A, Bonnel AS, Wizla N, et al. Moving the dial on airway inflammation in response to trikafta in adolescents with cystic fibrosis. *Am J Respir Crit Care Med* 2023; 207: 792–795.
- 30. Dhote T, Martin C, Regard L, et al.

 Normalisation of circulating neutrophil counts
 after 12 months of elexacaftor-tezacaftor-ivacaftor

- in patients with advanced cystic fibrosis. Eur Respir 7 2023; 61: 2202096.
- 31. De Vuyst RC, Bennard E, Kam CW, et al. Elexacaftor/tezacaftor/ivacaftor treatment reduces airway inflammation in cystic fibrosis. *Pediatr Pulmonol* 2023; 58: 1592–1594.
- 32. Sheikh S, Britt RD Jr, Ryan-Wenger NA, et al. Impact of elexacaftor-tezacaftor-ivacaftor on bacterial colonization and inflammatory responses in cystic fibrosis. *Pediatr Pulmonol* 58: 825–833.
- 33. Westhölter D, Pipping J, Raspe J, et al. Plasma levels of chemokines decrease during elexacaftor/tezacaftor/ivacaftor therapy in adults with cystic fibrosis. *Heliyon* 2023; 10: e23428.
- Cavinato L, Luly FR, Pastore V, et al. Elexacaftor/tezacaftor/ivacaftor corrects monocyte microbicidal deficiency in cystic fibrosis. *Eur Respir J* 2023; 61: 2200725.
- 35. Zhang S, Shrestha CL, Robledo-Avila F, et al. Cystic fibrosis macrophage function and clinical outcomes after elexacaftor/tezacaftor/ivacaftor. *Eur Respir J* 2023; 61: 2102861.
- Gillan JL, Davidson DJ and Gray RD. Targeting cystic fibrosis inflammation in the age of CFTR modulators: focus on macrophages. *Eur Respir J* 2021; 57: 2003502.
- 37. Schroeder HW and Cavacini L. Structure and function of immunoglobulins. *J Allergy Clin Immunol* 2010; 125: S41–S52.
- 38. Ortega López M, Escobar Quintero A, et al. Basal serum levels of immunoglobulins G, A, M, and E in the group of patients with cystic fibrosis at Hospital Infantil Universitario de San José Bogotá DC, in 2014. *Alergia, Asma e Immunología Pediátricas* 2016; 25: 38–45.
- 39. Kan A, Savaş S, Şen V, et al. The significance of immunoglobulins in cystic fibrosis: normal or high? *J Pediatr Res* 2022; 9: 267–273.
- 40. Dittrich AM, Sieber S, Naehrlich L, et al. Use of elexacaftor/tezacaftor/ivacaftor leads to changes in detection frequencies of Staphylococcus aureus and Pseudomonas aeruginosa dependent on age

- and lung function in people with cystic fibrosis. *Int J Infect Dis* 2024; 139: 124–131.
- 41. Nichols DP, Morgan SJ, Skalland M, et al. Pharmacologic improvement of CFTR function rapidly decreases sputum pathogen density, but lung infections generally persist. *J Clin Invest* 2023; 133: e167957.
- 42. Beck MR, Hornick DB, Pena TA, et al. Impact of elexacaftor/tezacaftor/ivacaftor on bacterial cultures from people with cystic fibrosis. *Pediatr Pulmonol* 2023; 58: 1569–1573.
- 43. Wainwright C, McColley SA, McNally P, et al. Long-Term safety and efficacy of Elexacaftor/Tezacaftor/Ivacaftor in children aged ≥6 years with cystic fibrosis and at least one. *Am J Respir Crit Care Med* 2023; 208: 68–78.
- Robinson PD, Douglas TA and Wainwright CE.
 Reducing treatment burden in the era of CFTR modulators. *Lancet Respir Med* 2023; 11: e78.

Appendix

List of abbreviations

BMI	body mass index
CF	cystic fibrosis

CFTR cystic fibrosis transmembrane con-

ductance regulator

CI confidence interval

ETI elexacaftor/tezacaftor/ivacaftor HEMT highly effective modulator therapies

Ig immunoglobulin
IQR interquartile range
PEx pulmonary exacerbations

ppFEV1 percent predicted forced expiratory

volume in the first second

PsA Pseudomonas aeruginosa

pwCF people with CF SD standard deviation SC sweat chloride

STROBE Strengthening the reporting of obser-

vational studies in epidemiology

Visit Sage journals online journals.sagepub.com/home/tar

Sage journals