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Purpose. To provide PET/CT image fusion with an improved PET resolution and better contrast ratios than standard reconstruc-
tions. Method. Using a super-resolution algorithm, several PET acquisitions were combined to improve the resolution. In addition,
functional PET data was smoothed with a hybrid computed tomography algorithm (HCT), in which anatomical edge information
taken from the CT was employed to retain sharper edges. The combined HCT and super-resolution technique were evaluated in
phantom and patient studies using a clinical PET scanner. Results. In the phantom studies, 3 mm18F-FDG sources were resolved.
PET contrast ratios improved (average: 54%, range: 45%–69%) relative to the standard reconstructions. In the patient study,
target-to-background ratios also improved (average: 34%, range: 17%–47%). Given corresponding anatomical borders, sharper
edges were depicted. Conclusion. A new method incorporating super-resolution and HCT for fusing PET and CT images has been
developed and shown to provide higher-resolution metabolic images.
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1. INTRODUCTION

Positron emission tomography (PET) provides images of
metabolic processes that are used increasingly in the clini-
cal setting to obtain data on cancer and other pathological
processes. In oncology, the diagnosis of cancer and the as-
sessment of the extent of disease often rely on PET [1]. How-
ever, because PET images are relatively noisy and are limited
by relatively poor spatial resolution, small lesions are difficult
to detect [2] and the anatomical location of hypermetabolic
regions can be difficult to determine in PET images [3].

The introduction of dual modality PET/CT scanners
[4, 5] has addressed the latter issue by providing metabolic
PET images registered with the anatomical information from
CT. In these scanners, the patient lies still on a bed which is
then translated through fixed mechanically aligned coaxial
CT and PET gantries so that the data acquired are precisely
coregistered in space. The PET acquisition typically occurs
immediately after the CT acquisition to minimize the effects
of patient motion. After reconstruction, the high-resolution
anatomical images (from CT) are overlayed with the func-

tional images (from PET) to provide precise localization of
hypermetabolic regions. In oncology, such image fusion has
been shown to improve the diagnostic reliability [6, 7].

In the interest of improving small lesion detectability,
the objective of this study was to provide a new method for
PET/CT image fusion with an improved resolution and bet-
ter contrast ratio relative to standard reconstructions. First,
a modified form of the super-resolution method of Irani
and Peleg [8] shown to improve resolution in PET imag-
ing (Kennedy et al. [9]) was employed for PET data ac-
quisition and image reconstruction. In the super-resolution
method, several acquisitions interspersed with subpixel shifts
are combined in an iterative algorithm to yield a higher-
resolution image, depicted schematically in Figure 1. Sec-
ondly, since the radiopharmaceutical distribution will often
follow anatomical borders, the potential exists to combine
the high-resolution border information from the CT image
with the functional distribution from the PET image to yield
a PET image with enhanced borders. The algorithm we used
to incorporate CT data in PET images is called hybrid com-
puted tomography (HCT). HCT was originally developed for
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Figure 1: Super-resolution algorithms combine multiple low-reso-
lution image acquisitions into a high-resolution image.

artifact reduction in ultrasonic computed tomography [10].
In regions not containing anatomical edges, HCT has been
shown to provide noise reduction in PET images equivalent
to the standard Gaussian filtering typically used [11]. In PET
imaging, HCT provides sharper edges and improves contrast
ratios [11].

In this paper, we demonstrate how a combination of a
super-resolution acquisition and reconstruction combined
with HCT filtering increases the contrast ratios of 18F-FDG
uptake in PET images while providing noise reduction equiv-
alent to a standard Gaussian filter in regions without corre-
sponding anatomical edges. Where corresponding anatomi-
cal edges are available, the technique enhances the edges of
18F-FDG uptake. Through the combination of increased res-
olution and edge enhancement, the PET imaging of small
features is improved.

2. MATERIALS AND METHODS

PET was performed using standard and super-resolution ac-
quisitions [9]. Each type of acquisition was then filtered with
one of two techniques: a standard Gaussian filter or the
equivalent HCT filter [11] incorporating CT border infor-
mation. Consequently, four methods of generating PET im-
ages were compared:

(a) standard acquisition and processing with Gaussian fil-
tering;

(b) super-resolution acquisition and processing with
Gaussian filtering;

(c) standard acquisition and processing with HCT filter-
ing;

(d) super-resolution acquisition and processing with HCT
filtering.

The degree of filtering was chosen to keep the level of
noise constant among images compared.

2.1. Super-resolution and HCT

The term super-resolution refers here to a technique in which
several low-resolution points of view (POVs) are combined
iteratively to obtain a higher-resolution image. In the Irani
and Peleg formulation of a super-resolution algorithm [8],
the initial estimate of the high-resolution image, f (0), can be
based on the average of the upsampled acquisitions shifted to

a common reference frame:
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where gk is one of K acquisitions, T−1
k is the geometric

transformation to a common reference frame, and ↑ s is
the upsampling operator from low-resolution to the high-
resolution representation.

One could obtain the low-resolution measured data gk
from the “true” image f if the acquisition system was ade-
quately modeled. The process would include shifting the im-
age f to the kth POV, blurring to account for limited system
resolution, downsampling to the system’s sampling rate, and
adding noise. For a given estimate of the image, f (n), the low-
resolution data is modeled as in [8]:
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where ∗h is the blurring operation with the kernel h and s ↓
is the downsampling operator which averages the pixels to
the lower resolution. The noise term is dropped. The origi-
nal geometric transformation of the kth acquisition from the
common reference frame is Tk . This is typically the physi-
cal shift between the object and the imager from the original
position.

To obtain a better estimate of the image f , the previous
estimate of the high-resolution image, f (n), is corrected by
the difference between the low-resolution data gk and the

term g̃ (n)
k that represents what the low-resolution data would

have been, had the estimate, f (n), been correct. The next it-
eration f (n+1) of a high-resolution estimate is the following
[8]:
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Here, the differences between gk and g̃ (n)
k are upsampled, ↑ s,

to achieve the smaller super-resolution pixel size, moved to
a common reference frame, T−1

k , and averaged over K ac-
quisitions. The symbol ∗p is a sharpening kernel. This for-
mulation of the super-resolution algorithm has been demon-
strated to improve resolution in MRI imaging [12, 13] and in
PET [9].

Although the blur and sharpening kernels can be set to
unity [9, 12], in this study the blur kernel has been modeled
as a Gaussian point spread function (PSF). In order to reduce
the noise caused by sharpening, the upsampling procedure of
Farsiu et al. [14] was used.

In addition to the super-resolution acquisition, a modi-
fied form of an iterative algorithm called hybrid computed
tomography (HCT), implemented previously on ultrasonic
CT data [10], was utilized here to fuse CT anatomical data
with the PET functional data. The HCT algorithm is based on
a two-dimensional (2D) Taylor series expansion of the gray
levels which incorporates texture and edge information. The
HCT algorithm utilizes edge information taken from CT to
retain sharper edges while smoothing the PET data, which



John A. Kennedy et al. 3

often follow the anatomical borders. Thus, the resulting re-
constructed image has reduced noise but sharp borders.

In HCT, each value of the image f at each pixel is expand-
ed into neighboring pixels. Neglecting higher-order terms,
the modified 2D Taylor expansion about pixel (a, b) has a
value f (x, y) at pixel (x, y) [10]:

f (x, y) = f (a, b) +
[

(x − a) · ∂ f
∂x

∣∣∣∣
a,b

+ (y − b) · ∂ f
∂y

∣∣∣∣
a,b

]

· β(a, b),
(4)

where the function β(x, y) has a zero value within homo-
geneous regions but is set to have a value of 1 at boundary
points. In the PET/CT application, the function β can be ob-
tained from the anatomical edge data of the CT scan. One
method of modifying (4) to include discrete pixels and diag-
onal directions is to write it as

f (x, y) = f (a, b) +
[
Δr · Δ f

Δr

∣∣∣∣
a,b

]
· β(a, b), (5)

where Δr is the step size in the direction
⇀
r = [x − a y − b]

and Δ f = f (x, y) − f (a, b). Here, the expansion was lim-
ited to nearest neighbors, as depicted in Figure 2, so the step
size was unity: Δr = 1. In one HCT iteration, (5) is applied
in a neighborhood of f (x, y) and the results averaged, for
each pixel (x, y) in the image. In the absence of a border, re-
peated iterations of (5) average a pixel value with its neigh-
bors. If a 3× 3 neighborhood is used, in regions distant from
a border, it can be shown that n HCT iterations are equiva-
lent to the application of a Gaussian filter with a full-width
half-maximum (FWHM) of [11]:

FWHM = 4

√
ln(2)n

3
pixels. (6)

If the functional and anatomical boundaries do not match,
HCT may introduce artifacts [11], but in the absence of bor-
der information the default of HCT is the standard Gaussian
filtering.

For a simple HCT example, consider the 3 × 3 image in
Figure 2. The central pixel f22 has an uptake indicated by the
gray shading. In the first HCT iteration, the value assigned to
f22 by (5) is determined by its nearest neighbors. If the thick
solid line is the true border, β between the central pixel and
the 3 gray pixels in the first column is set to 0 because there
is no border among them and (5) sets the value of f (x, y)
to f (a, b). However, when the index (a, b) falls on the other
side of the border, β is set to 1 and f (x, y) retains its original
value. When applied to all 9 neighborhood pixels, the uptake
in the central pixel is averaged with the uptake in those 3 gray
pixels in the first column. Equation (5) generates a weighted
average; in this case the center pixel is weighted at 6/9 and the
3 other pixels are weighted at 1/9 each. However, if the true
border is between the central pixel f22 and f12, as indicated by
the dotted line, then β is set to 0 only among the pixels of the
second and third columns. In the first iteration, the value of
the central pixel is averaged with the 5 other pixels in the sec-
ond and third columns which have no uptake (as indicated

1

2

3

1 2 3

f11 f12 f13

f21 f22 f23

f31 f32 f33

Figure 2: HCT applied to a 3 × 3 image. In the case that pixel f22

indicates a true uptake (gray), the solid line is the true border and
HCT algorithm iteratively averages its value with the pixels in the
first column. In the case that dotted line is the true border, the up-
take in pixel f22 iteratively averages its value with the pixels in the
second and third columns.

by white). Although the value of the central pixel is substan-
tially reduced, the application of (5) to each of the other 5
pixels in turn effectively distributes this uptake among the
6 pixels in the second and third columns. Regardless of the
position of the border, the application of (5) is an averaging
operation; therefore HCT is a counts-preserving process.

The combined technique (i.e., super-resolution and
HCT) was evaluated in both phantom (3D brain-mode ac-
quisition) and patient studies (2D whole-body mode acqui-
sition), using a clinical PET scanner (GE Discovery LS, GE
Healthcare Technologies, Milwaukee, WI).

2.2. Data acquisition and processing

The GE Discovery LS combines X-ray CT and PET scan-
ners arranged such that the gantries are coaxial and a bed
can automatically move through each gantry in order to pro-
vide images in both modalities that are coregistered. The PET
portion of the scanner is similar to a GE Advance NXi de-
scribed elsewhere [9, 15]. In a standard 2D whole-body PET
acquisition, the septa between the 18 detector rings restrict
the photons acquired to the transaxial plane. Transaxial im-
ages (35 per field of view, FOV) are typically reconstructed as
128×128 pixel images having a pixel size of 4 mm×4 mm and
a slice thickness of 4.25 mm. The axial FOV is 14.5 cm and
the transaxial FOV, as reconstructed in this mode, is 50 cm.
An ordered subsets expectation maximization (OSEM) al-
gorithm [16] using 2 iterations and 28 subsets was used for
reconstructing the 2D whole-body data from the PET sino-
grams (projections). Coronal and sagittal images are typi-
cally obtained by stacking the images of several axial FOVs
into a three-dimensional (3D) data set and reslicing appro-
priately.

The 3D brain-mode acquisition is similar except that the
septa are retracted to increase the number of photons de-
tected. The data was rebinned into transaxial data sets using
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Fourier rebinning [17] before being reconstructed with an
OSEM algorithm using 5 iterations and 32 subsets. The pixel
size is typically set to 2 mm × 2 mm reducing the recon-
structed transaxial FOV width by a factor of 1/2. The slice
thickness remains the same as in the 2D whole-body mode.

The CT provided 512× 512 pixels transaxial images with
a pixel size of 1 mm× 1 mm and a slice thickness of 4.25 mm
which were coregistered with the PET images. A tube volt-
age of 140 kV and current of 90 mA was used. For attenua-
tion corrected (AC) PET images, the CT images also served
as the basis for an attenuation map by means of rescaling
the Hounsfield units (HU) of the CT to attenuation coeffi-
cients appropriate for the higher energy of PET gamma rays
[18–21].

In this study, the 2D whole-body mode data was recon-
structed with a voxel size of 2 mm × 2 mm × 4.25 mm, sim-
ilar to the 3D brain-mode acquisition. This gave transaxial
PET images of 256×256 pixels for the 2D whole-body mode.
This was the voxel size for all the standard acquisitions and
for each low-resolution POV in the super-resolution acqui-
sition data sets. After processing with the super-resolution
technique, the pixel sizes obtained were smaller. When super-
resolution was applied in the transaxial plane (see below),
the resulting voxel size was 1 mm× 1 mm× 4.25 mm. When
super-resolution was applied axially (see below), the result-
ing voxel size was 2 mm× 2 mm× 1 mm.

Unfiltered image data sets from standard and super-
resolution acquisitions were then filtered with either a stan-
dard Gaussian filter or an HCT filter which could incorporate
edge information while providing equivalent smoothing (6)
in regions away from anatomical edges. The smoothing was
set to maintain the same level of noise among the images ob-
tained from the four processing methods (see below). In or-
der to make effective use of the resolution of the border infor-
mation provided by the CT [11], the filtering was applied af-
ter the images had been interpolated to a 0.25 mm×0.25 mm
pixel size for the 3D brain-mode PET/CT acquisitions and
0.5 mm× 0.5 mm for the 2D whole-body case using a piece-
wise cubic Hermite interpolation. The edges were extracted
using a Canny edge detector algorithm [22] on CT images
to which the scanner protocol’s default contrast window had
been applied (level: 40 HU, width: 400 HU). For edge extrac-
tion, the Gaussian smoothing employed on the CT by the
Canny edge detector was 1.2 mm FWHM for the 3D brain-
mode PET/CT acquisitions and 3.0 mm FWHM for the 2D
whole-body case.

2.3. Phantom study

To evaluate image quality among the four processing meth-
ods implemented here, a specially designed phantom was
used (Figure 3). The phantom provided cylindrical hotspots
of 18F-FDG solution with diameters of 1, 1.5, 2, 3, 4, 6, and
8 mm arranged in rows such that the separation between
hotspots was equal to their diameters. The hotspots were cre-
ated by drilling holes through a polycarbonate disk (diameter
9 cm, thickness 1.5 cm) and treating the disk with ozone to
allow 18F-FDG solution (130 kBq/mL) to flow freely through

(a)

2 mm
1.5 mm

8 mm
4 mm

3 mm
6 mm 1 mm

(b)

Figure 3: Phantom: a specially treated polycarbonate disk allowed
18F-FDG solution to flow freely through holes of varying sizes when
immersed in a cup of the solution.

Transaxial
plane

Axial
direction Rotation

Translation

z

x

y

Figure 4: Geometry of phantom orientation for the 3D brain-mode
PET acquisition. The phantom disk was aligned with the transaxial
plane and translated and rotated within that plane between each of
four separate POVs.

them when the disk was immersed in a fitted cup containing
the solution. To a 1 cm depth, on each side of the disk, the
cup contained just 18F-FDG solution.

The phantom was placed in the scanner to obtain trans-
axial images in the plane of the disk using the 3D brain-mode
acquisition protocol (Figure 4). A standard acquisition of 10-
minute duration was followed by 4 acquisitions of 2.5 min-
utes each for the super-resolution acquisition. Each PET ac-
quisition was accompanied by a CT scan to provide atten-
uation correction (AC) according to common practice with
such PET/CT scanners [18]. Between the 4 acquisitions, the
phantom was given a small displacement and rotation in the
transaxial plane to provide the geometrical shifts needed by
the super-resolution algorithm. The position of the initial ac-
quisition was taken to be the common reference frame. In the
case of the phantom trial, the size of the geometric shifts was
tracked in the CT images using two 1 mm markers separated
by 43 cm that had been fixed to the phantom in the transaxial
plane. The shifts used are listed in Table 1. The initial CT im-
age also provided the border information used by the HCT
algorithm.
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Table 1: Transaxial displacements and rotations from the initial po-
sition used in the 3D AC brain-mode acquisition phantom trial.

2.5-minute PET
displacement
acquisition

Horizontal
displacement
left (mm)

Vertical
displacement
up (mm)

Clockwise
rotation
(degrees)

Initial 0 0 0

Second 2.0 0.5 1.7

Third 5.0 1.2 3.9

Fourth 9.1 2.0 7.2

The geometry of the phantom and the method of super-
resolution acquisition in the 3D brain mode is described else-
where [9] in more detail.

For comparison purposes, each processing method was
applied to achieve the same degree of noise reduction. As a
measure of the noise, the variance in the PET signal was cal-
culated in a region known to have a homogeneous uptake of
18F-FDG solution. The transaxial slices of the cup of 18F-FDG
solution on either side of the polycarbonate disk contained
no features except for the 9.0 cm diameter circular edge of the
cup. A 5.0 cm diameter circular region of interest (ROI) was
selected from one of these slices. Because such a region con-
tains no edges from the CT, both HCT and Gaussian filtering
provide the same degree of smoothing [11]. The FWHM (or
HCT equivalent) of the smoothing was chosen so that the
standard and super-resolution acquisitions and reconstruc-
tions had the same variance within this homogeneous ROI.
The same filters were then applied to the phantom images
containing the features of interest: the uptake in the holes of
the polycarbonate disk.

As an indication of image quality, a contrast ratio was
calculated for the phantom results. For each row of holes,
the locations of the sources were known so they were masked
and an average PET signal was calculated. The regions falling
between holes were also masked and those pixel values were
used to calculate an average background value for that row.
The contrast ratio was taken to be the average PET signal
to the average background, so that a contrast ratio of unity
would indicate that the feature could not be distinguished.
Because the level of noise as measured by the variance was
kept constant, comparing these contrast ratios was equiva-
lent to comparing a contrast to variance metric.

Three additional studies were performed to measure the
PET resolution of this experimental arrangement in terms of
a PSF of the data acquisition. A single 1 mm hole of the phan-
tom disk was filled with 20 μCi (0.74 MBq) 18F-FDG solution
and capped in order to emulate a “point source” for trans-
verse 3D brain-mode images that were acquired as above.
The reference position for the source was 2.0 cm above the
axial center line of the scanner. Additionally, to check axial
resolution, the phantom was laid flat and fixed to the bed
to emulate a “point source” in coronal images. Between each
of 4 PET acquisitions, the bed was automatically shifted into
the scanner in 1 mm increments, and the super-resolution
technique was applied axially. The process was repeated for

the 2D whole-body mode. These results have been reported
elsewhere [9], but that study used a blurring-and-deblurring
kernel of 1 pixel. Here, as a modification, the blur kernel
was set to a Gaussian PSF with a FWHM chosen to mini-
mize the FWHM of the “point source” and the blurring-and-
deblurring procedure [14] described above was used. For the
purpose of direct comparison, the same data set as the previ-
ous report [9] was used.

Anticipating the focus of the patient study below, the ax-
ial resolution of the 2D whole-body mode was also checked
for 2 POVs with 2 mm axial shifts and 8 POVs with 0.5 mm
axial shifts.

2.4. Patient study

The patient was injected with 370 MBq of 18F-FDG after a 4 h
fast and was then kept resting comfortably for 90 min before
scanning. A 2D head-to-thigh PET/CT scan was acquired,
including a CT scan followed by a PET scan consisting of
6 FOVs with an acquisition time of 4 min per FOV. During
this standard PET acquisition, the CT was reviewed to iden-
tify an ROI suitable for employing the super-resolution tech-
nique. A FOV was chosen containing a suspected small lung
lesion. After the standard PET scan, the patient was requested
to remain still, the bed registration was maintained, and 4 ad-
ditional POVs of the ROI were acquired, taking 4 min each.
Each 4-minute acquisition interval was subdivided into 1-
minute and 3-minute intervals so that four 1-minute-long
POVs were available to check the case in which the total
super-resolution acquisition time equaled the standard ac-
quisition time. Between each subsequent POV, the bed was
automatically moved 1 mm further into the scanner to pro-
vide 4 PET views differing by shifts which were subpixel since
the slice thickness of a standard PET acquisition in the axial
direction was 4.25 mm. The patient was not exposed to addi-
tional radiation since the X-ray CT scan was not repeated.
Because registration was maintained, the initial X-ray CT
scan could be used to provide border information for the
HCT processing of both the standard and super-resolution
PET images by matching the data from any transaxial PET
slice with the data from the appropriate transaxial X-ray CT
slice at the same location.

As in the phantom trial, the patient images were pro-
cessed by the four methods. Nonattenuation corrected im-
ages were used because the pulmonary lesion was more evi-
dent than in the AC PET. The degree of image noise was mea-
sured by the variance. In the absence of a known region of
homogeneous uptake, the variance was calculated from the
nonzero pixel values excluding a 15 mm circular ROI around
the lesion of interest in the coronal images. The degree of fil-
tering in each of the four processing methods was chosen to
keep the noise level the same, as measured by this variance.

In order to compare PET images in the patient study,
target-to-background ratios were calculated as a measure of
the intensity of the lesion’s uptake for coronal, sagittal, and
transverse slices through the lesion of interest. The precise
target shape and location were unknown, so the masking
method used for the phantom contrast ratio calculations was
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Figure 5: Transaxial 3D brain-mode PET image of a slice through
the 9.0 cm diameter phantom cup. The 5.0 cm diameter ROI (white
circle) was used to calculate the variance as a measure of image noise
since it was known to contain a homogeneous distribution of 18F-
FDG solution.

inappropriate here. However, because the small lesion had
substantially higher uptake than other tissues in each of the
images, its location could be demarcated by setting a thresh-
old. For each image, the target was defined as pixels hav-
ing values greater than 60% of the maximum pixel value
for that image. To exclude uptake erroneously assigned to
regions known to be outside the body, a minimum thresh-
old was set (5% of the maximum pixel value). The remain-
ing nonzero pixels defined the background. The target-to-
background ratio was calculated as the mean of the target
pixel values divided by the mean of the background pixel val-
ues. A more intense, localized uptake would have a higher
target-to-background ratio.

3. RESULTS

In order to establish that the phantom images had the same
noise level, a transaxial slice adjacent to the polycarbon-
ate disk was selected and an ROI used to measure noise
was chosen in a region of homogeneous 18F-FDG uptake
(the white circle in Figure 5). To maintain a variance of
10.6 ± 0.1 kBq2/mL2 in this ROI, the standard acquisitions
were smoothed with a 1.8 mm FWHM Gaussian filter (equiv-
alent to 15 HCT iterations; see (6)) and the super-resolution
results were smoothed with a 3.0 mm FWHM Gaussian fil-
ter (equivalent to 41 HCT iterations). These filters were also
applied on the transaxial images through the polycarbonate
disk showing the features of interest (Figure 6).

In the phantom trial (Table 2), the super-resolution tech-
nique improved the concentration ratios of the 3 mm, 4 mm,
6 mm, and 8 mm features from an average of 1.9 (range:
1.1–2.9) for the standard acquisition to an average of 2.1
(range: 1.2–3.3). HCT filtering also improved the standard
contrast ratios to an average of 2.1 (range: 1.3–3.1). Us-
ing the combined acquisition and processing technique of
super-resolution and HCT, the PET contrast ratios were
the highest (average: 2.8, range: 1.6–4.3). Using the super-
resolution/HCT technique, 3 mm 18F-FDG sources were
more clearly resolved (Figure 6) than the standard image and
the edges of the sources were more delineated. A plot of pixel
value profiles through the 3 mm features of the phantom

(a) (b)

(c) (d)

Figure 6: Transaxial PET images through the phantom disk us-
ing 3D brain-mode acquisition. (a) Standard processing. The nine
hotspots in the row (black arrow) along the left are 3 mm in diam-
eter and the five largest hotspots are 8 mm (gray arrow). (b) HCT
result. (c) Super-resolution result. (d) Super-resolution/HCT result
has the greatest contrast. The 3 mm sources (black arrow) are more
clearly resolved than in the standard image. The 8 mm sources (gray
arrow) show sharper edges than in the standard image.

Table 2: Contrast ratios for the PET signals in the 3D AC brain-
mode acquisition phantom trial.

Image type
3 mm 4 mm 6 mm 8 mm

holes holes holes holes

Standard 1.1 1.3 2.1 2.9

Super-resolution 1.2 1.5 2.4 3.3

HCT 1.3 1.5 2.4 3.1

HCT and
super-resolution

1.6 2.2 3.2 4.3

(Figure 7) shows that the super-resolution profile (dashed
line) and the HCT profile (dotted) both gave moderately bet-
ter contrast than the standard method (dashed and dotted).
The combination of HCT and super-resolution gave the best
contrast of all the methods (Figure 7, solid black line).

The efficacy of including a Gaussian blur kernel in the
super-resolution processing [14] was checked by measuring
the PSF in the axial direction (2D whole-body mode and 3D
brain mode) and transaxial directions (3D brain mode). In
each type of image, the “point source” was provided by a
cross section through a single 1 mm hole of the phantom
which had been filled with 18F-FDG and capped. Table 3
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Figure 7: A plot of pixel values through the 3 mm features of the
phantom images in Figure 6. The super-resolution (dashed line)
and HCT (dotted) profiles give better contrast than the standard
method (dashed and dotted). The combination of HCT and super-
resolution gives the best contrast (solid black).

Table 3: Super-resolution point spread function FWHM values for
phantom trials.

Acquisition
mode

Axis
Blur kernel
of 1 pixel(a)

(mm)

Gaussian blur
kernel of 3.0 mm
FWHM (mm)

2D whole
body

Axial 4.1 4.0

3D brain Axial 4.8 4.6

3D brain Radial 4.4 4.3

3D brain Tangential 4.3 4.2
(a)Previously reported [9].

shows that, using the same data, the inclusion of a Gaussian
blur kernel improved the resolution by reducing the FWHM
of the PSFs by a difference of 0.1 mm to 0.2 mm compared to
previously reported results [9]. The value of the blur kernel
used for Table 3 was set to 3.0 mm since this minimized the
FWHM of the “point source.”

In the 2D whole-body mode, when the number of axial
shifts was decreased from 4 POVs (with 1 mm shifts) to 2
POVs (with 2 mm shifts), the axial resolution was degraded
from 4.0 mm to 4.3 mm as measured by the FWHM of the
axial PSF. The axial resolution of the 2D whole-body case did
not improve when 8 POVs with 0.5 mm shifts were used; the
FWHM of the axial PSF remained at 4.0 mm.

For the patient study in which the super-resolution ac-
quisition time was the same as that of the standard (4 min to-
tal), the lesion of interest could not be resolved due to the low
number of counts in each POV. By using a 4 min acquisition
time for each POV (a total of 16 min), the super-resolution
method clearly resolved the lesion as shown in Figure 8(a).
In Figure 8, the filters were selected to achieve the same level

(a) (b)

(c) (d)

Figure 8: Coronal PET images of the patient through the pul-
monary lesion. The black arrow marks the small lesion of interest.
(a) Standard 2D whole-body mode acquisition. (b) HCT. The edge
of the 18F-FDG uptake is more delineated than in the standard im-
age. (c) Super-resolution. The uptake is more localized than in the
standard image. (d) Super-resolution and HCT. The uptake is the
most localized in this image.

Table 4: Lesion target-to-background ratios for the PET signals in
the 2D whole-body mode acquisition patient trial.

Image type Transaxial Coronal Sagittal Average

Standard filter
5.5 6.0 6.6 6.1

(3.0 mm FWHM)

Super-resolution 6.3 6.3 5.9 6.2

HCT 7.6 7.7 7.4 7.6

HCT and
super-resolution

8.1 8.3 7.7 8.0

of noise in the PET images. By smoothing the images with a
3.0 mm FWHM Gaussian filter (10 HCT iterations for the
0.5 mm × 0.5 mm pixel size; see (6)) a variance of 0.36 +
0.01 kBq2/mL2 was maintained in the coronal images exclud-
ing a 15 mm diameter circular ROI around the lesion of in-
terest. Table 4 shows that the lesion target-to-background ra-
tios were higher with super-resolution (except for the sagit-
tal image) when compared to the ratios for the standard im-
ages. The application of HCT further increased the target-
to-background ratios. For the super-resolution acquisition
that was processed with HCT, the target-to-background ra-
tios were the highest. They improved to an average of 8.0
(range: 7.7–8.3) when compared to an average of 6.1 (range:
5.5–6.6) for the standard image. Sharper edges and more lo-
calized uptake were also depicted in the patient reconstruc-
tions using the combination super-resolution and HCT tech-
niques when compared to the other images (Figure 8).

4. DISCUSSION

The super-resolution acquisition and reconstruction meets
the goal of obtaining higher resolution in the PET acqui-
sition. Super-resolution has been reported to improve the
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axial resolution by 9% to 52% compared to a standard ac-
quisition and by 14% to 16% compared to merely interleav-
ing the acquired slices to the appropriate axial location [9].
As described above, modifying the Irani and Peleg method
[8] to include a 3.0 mm blur kernel improves these results
by a further 2% to 4% (Table 3), using the same data sets.
Similarly, in the 3D brain-mode transaxial images, super-
resolution has been reported to improve the resolution by at
least 12% [9] and the modified method used here improves
that result by a further 2%. The improved resolution due to
the super-resolution technique compared to a standard ac-
quisition is evident in the phantom image (Figure 6), in a
pixel plot through its 3 mm features, and in the improved
contrast ratios (Table 2). This improvement due to the super-
resolution acquisition and processing holds true even when
the super-resolution results require more smoothing than the
standard images to achieve the same level of image noise, as
in the phantom case.

In the phantom trial (Figure 6), the application of HCT
filtering, as an algorithm for the fusion of PET and CT
data, improves contrast ratios by an average of 14% (range:
7–18%) when compared to the standard Gaussian method
(Table 2). This is similar to the improvement provided by
super-resolution alone (average: 13%, range: 9–15%) and the
pixel profiles through the 3 mm phantom features using these
two methods roughly match (Figure 7). The application of
both methods in tandem provides superior contrast ratios:
an average of 54% (range: 45–69%) better than the standard
processing method for images with the same level of noise.
This increase in contrast is a combination of the reduction of
partial volume effects provided by super-resolution [9] and
the retention of uptake within established borders when the
image is smoothed with HCT. Small features are most evi-
dent in the super-resolution/HCT image (Figure 6(d)) and
pixel profile (Figure 7) when compared to the other three
processing methods.

Although the improvement in the image due to the
super-resolution technique and the HCT filtering can be
demonstrated with the phantom, the same cannot be said
for the patient trial since the true distribution of 18F-FDG
is unknown. However, in all but the sagittal image, super-
resolution improved the lesion’s target-to-background ratio
(Table 4). HCT improved the target-to-background ratio by
an average of 26% (range: 12–38%). The combined super-
resolution/HCT procedure was superior and improved the
target-to-background ratio by an average of 34% (range: 17–
47%). In the super-resolution/HCT PET image, the uptake is
more localized and delineated (Figure 8) as would be desired
for small tumor detection.

Unlike the phantom case, in terms of acquisition time,
the comparison between standard and super-resolution pa-
tient PET acquisitions is not one to one. The super-resolution
acquisition and reconstruction for the patient required ap-
proximately four times the number of counts as the standard
images. (The signal of the lesion of interest was lost due to the
low-counting statistics when the total acquisitions times were
kept the same.) Using four POVs of 4 min each, this super-
resolution example demonstrates that these acquisitions are

clinically feasible if restricted to one FOV of interest. When
the total acquisition times were kept constant (as in the phan-
tom case) the super-resolution data required more smooth-
ing (Gaussian filters of 3.0 mm FWHM or their HCT equiv-
alent) than the standard data (1.8 mm FWHM). In contrast,
the super-resolution data for the patient did not require ad-
ditional smoothing to obtain the same noise level as in the
standard images (Gaussian filters of 3.0 mm FWHM or their
HCT equivalent were used for both) because of the increased
number of counts in the super-resolution case.

The choice of 4 POVs for the super-resolution technique
in the patient case is reasonable. Since the automated bed
motion readily provides increments of 0.5 mm, conceivably
one could acquire 8 POVs for the super-resolution technique.
However, at 4 min per POV the resulting long acquisition
time may be prohibitive. On the other hand, keeping the to-
tal acquisition time constant renders the number of counts
per position too low to be useful, as found in the four 1-
minute POVs case. In general it could be stated that there
is a minimal acquisition time required for each POV in order
to obtain useful information. Hence, the number of POVs
multiplied by that minimal acquisition time will determine
the needed total acquisition time. The number of POVs used
and their corresponding acquisition times has yet to be opti-
mized.

It is worth reiterating from [9] that patient motion will
further degrade the efficacy of the super-resolution tech-
nique because the registration of the POVs should be known
to subpixel accuracy. Consequently, brain scans may be more
suitable for the clinical application of super-resolution since
the head is then firmly fixed and subject to little motion. Also,
the application of this technique in the transverse direction
would require a method of recording the geometric shifts of
the patient in the transaxial plane. Conceivably, one could
envision a new type of scanner with a rotating gantry, and
perhaps even with some transaxial motion, that would be
able to provide super-resolution without moving the patient.

Applying HCT in the axial direction as presented here is
suboptimal since the slice thickness of the CT was automat-
ically set by the scanner to be the same as that of standard
PET images. However, the CT scanner can potentially pro-
vide thinner slice reconstructions. Using such images as the
CT input would reduce partial volume effects and potentially
further improve the results.

The improvement in resolution due to super-resolution
acquisition and reconstruction and the improvement in con-
trast ratio using HCT filtering come at a considerable in-
crease in computational time when applied together. Com-
pared to standard processing, the super-resolution technique
applied to PET increases processing times by a factor of 23
[9] and HCT filtering increases this by a factor of 8 [11].
On the Discovery-LS scanner used, the reconstruction time
of AC PET is typically 2 to 3 min per FOV with most of
the reconstruction being performed concurrent with a 20-
to-30-minute acquisition of 5 to 7 FOVs per patient. Increas-
ing processing times by factors greater than 8 could not be
easily accommodated. Because of this prohibitive increase
in computer processing time, the clinical application of the
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combined super-resolution/HCT process would likely need
suitable dedicated computer hardware or to be restricted to
a suspicious region of interest to avoid spending computa-
tional resources sharpening the entire data set.

As an alternative to OSEM, one may consider the use
of penalized-likelihood image reconstruction methods, as
a complementary process to super-resolution. Penalized-
likelihood iterative reconstruction algorithms include a
penalty (regularization) term which discourages neighboring
pixels from converging to widely disparate values [23]. With
such an approach, edge information (obtained from another
modality) may be introduced via the regularization term [24]
or prior [25], and perhaps could replace the HCT processing
stage. A disadvantage of using penalized-likelihood methods
for emission tomography is that space-invariant penalties re-
sult in high-count regions tending to be smoothed more than
low-count regions [26], but methods have been developed
to give a more uniform spatial resolution [27]. Although
not addressed by this paper, it would be worthwhile to try
to achieve a similar improvement in resolution for a given
variance by combining the super-resolution method with the
penalized-likelihood reconstruction methods.

5. CONCLUSION

A new method incorporating two techniques, super-reso-
lution and hybrid computed tomography (HCT), for fus-
ing PET and CT images has been developed and evaluated.
A super-resolution acquisition, modified to include a Gaus-
sian blur kernel, has been shown to significantly improve the
resolution of the PET acquisition. The feasibility of imple-
menting the method in a clinical PET/CT scanner has been
demonstrated by showing higher contrast ratios in a phan-
tom study and higher target-to-background ratios in a small
lesion from a patient study for images exhibiting the same
level of noise. The resulting reconstructions provide higher
resolution metabolic images with delineated edges where
corresponding anatomical borders are available.
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