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ABSTRACT

The absorption, distribution and excretion of drugs
are largely determined by their transporters (DTs),
the variability of which has thus attracted consid-
erable attention. There are three aspects of vari-
ability: epigenetic regulation and genetic polymor-
phism, species/tissue/disease-specific DT abun-
dances, and exogenous factors modulating DT ac-
tivity. The variability data of each aspect are essen-
tial for clinical study, and a collective consideration
among multiple aspects becomes crucial in precision
medicine. However, no database is constructed to
provide the comprehensive data of all aspects of DT
variability. Herein, the Variability of Drug Transporter
Database (VARIDT) was introduced to provide such
data. First, 177 and 146 DTs were confirmed, for the
first time, by the transporting drugs approved and
in clinical/preclinical, respectively. Second, for the
confirmed DTs, VARIDT comprehensively collected
all aspects of their variability (23 947 DNA methy-
lations, 7317 noncoding RNA/histone regulations,
1278 genetic polymorphisms, differential abundance
profiles of 257 DTs in 21 781 patients/healthy in-
dividuals, expression of 245 DTs in 67 tissues of
human/model organism, 1225 exogenous factors al-
tering the activity of 148 DTs), which allowed mu-
tual connection between any aspects. Due to huge
amount of accumulated data, VARIDT made it pos-
sible to generalize characteristics to reveal disease
etiology and optimize clinical treatment, and is freely
accessible at: https://db.idrblab.org/varidt/ and http:
//varidt.idrblab.net/.

INTRODUCTION

Drug transporter (DT) is acknowledged to be one of the
main determinants governing drug absorption, excretion,
and, in many cases, the extent of drug entry into target or-
gans (1). Therefore, the variability of DTs has attracted con-
siderable attention and widespread interest (2–4). There are
three aspects of variability: (a) epigenetic regulation and
genetic polymorphism of DT that are key in drug resis-
tance (5) and clinical treatment optimization (6); (b) species-
, tissue- and disease-specific DT abundances that are vi-
tal in bridging preclinical study with clinical trial (7), bal-
ancing efficacy and safety (8) and predicting disease-drug
interaction (9), respectively; (c) exogenous factors (envi-
ronmental substance, dietary constituent, bio/mycotoxin,
pharmaceutical excipient/chemical, etc.) modulating DT
activity and altering the disposition of DT’s endogenous
substrate/transported drugs (10,11). These variability data
are essential for preclinical and clinical studies (1,12), and
the accumulation of such data can lay the foundation for big
data-driven precision medicine (13–16).

Due to the extreme complexity of drug disposition in
living organisms, the interplays among different aspects of
DT variability attracts great interest and have emerged to
be promising research directions (5,17,18). Particularly, one
of the common mechanisms of cancer multidrug resistance
(MDR) is the overexpression of particular efflux DTs (18) or
low abundance of some uptake DTs (5) in cancer cells, and
thus, several strategies (based on the interplays between the
abnormal abundances of DT proteins and other aspect of
variability) have been proposed to reverse cancer MDR suc-
cessfully (5,18). These strategies include the discovery of ex-
ogenous chemical to inhibit the efflux of certain DT (17–19),
the demethylation of corresponding DTs (5) or regulation
of histone acetylation to restore DT abundances (20), and
the combination of the multiple strategies reported above
(21). In other words, besides the key role played by each
aspect of DT variability in clinical study (1,12), the inter-
plays among different aspects become increasingly impor-
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tant, which makes the variability data of multiple aspects
essential for revealing disease etiology and further optimiz-
ing clinical treatment.

To date, a variety of databases have been developed to
provide DT-related data, the majority of which are still ac-
tive and are freely accessible. Some of these databases (in-
cluding UniProt (22), PDB (23), KEGG (24), ChEMBL
(25), DrugBank (26) and TTD (27)) contain transporter in-
formation as part of a broader collection of biological and
pharmacological data, and some others (including TCDB
(28), TransportDB (29), HMPAS (30) and METscout (31))
include general classification and categorization for hu-
man transporters. Since the above databases do not fo-
cus on describing DT variability, several databases are de-
signed to provide (i) the association between disease and
the genetic polymorphism of a single transporter (like
ABCA4Database (32) and SCN1A Variant Database (33))
or transporters (like PharmGKB (34), IUPHAR-DB (35),
OMIM.org (36) and SLC TABLES (37)) or (ii) exogenous
chemicals modulating the activity of ∼50 DTs (like UCSF-
FDA (38), Transformer (39) and Metrabase (40)). How-
ever, few epigenetic regulation data of DTs (DNA methy-
lation, histone modification and noncoding RNA regula-
tion) are provided by current available knowledge bases,
and no database has been constructed to simultaneously de-
scribe the multiple aspects of variability for DT(s). Due to
the great importance of the interplay among different vari-
ability aspects (as was discussed in the previous paragraph)
and the big data of variability that is essential for precision
medicine (13,41), it is crucial to develop a new database that
comprehensively describes all aspects of DT variability.

In this study, an open-accessible database, Variability
of Drug Transporter Database (VARIDT) was introduced.
First, a comprehensive literature review on all (>1800)
drugs approved by the U.S. FDA and >1000 drugs in clini-
cal trial or preclinical study was conducted. Different from
the small number of DTs (∼20) that were well character-
ized in previous publication (42), 177 DTs were confirmed,
for the first time, to transport approved drugs, and 146 DTs
were to transport drugs in clinical/preclinical study. Second,
for these newly confirmed DTs, VARIDT comprehensively
provided all three aspects of their variability (a: epigenetic
regulation and genetic polymorphism of DT; b: species-,
tissue- and disease-specific protein abundance of DT; c: ex-
ogenous factors modulating DT activity; as shown in Figure
1), which allowed the mutual connection or interplay be-
tween any two aspects and could thus facilitate the study of
disease etiology and the optimization of clinical treatment.

FACTUAL CONTENTS, DATA ACCESS AND INFOR-
MATION RETRIEVAL

Confirmation and collection of DTs by comprehensive litera-
ture review

The DTs that were collected in this study were confirmed
by the drugs that are of clinical importance (all drugs were
either approved or in clinical/preclinical test). Particularly,
a comprehensive literature review on all the drugs that were
approved by the U.S. FDA (1875 drugs collected from FDA
website) and 1268 drugs that were in clinical/preclinical test

(collected from ClinicalTrials.gov and TTD (43)) was con-
ducted to confirm their corresponding DT by searching the
PubMed. As a result, 177 and 146 DTs were confirmed to
transport 585 approved drugs and 246 clinical/preclinical
drugs, respectively (57 out of these above DTs were able
to transport both approved and clinical/preclinical drugs,
which resulted in a total of 266 DTs confirmed by the drugs
of clinical importance). These 266 DTs belonged to di-
verse transporter families (38 families in total defined by the
TCDB (28)), and the top-5 popular DT families were Major
Facilitator (55 DTs), ATP-binding Cassette (24 DTs), Mito-
chondrial Carrier (18 DTs), Neurotransmitter:sodium Sym-
porter (17 DTs) and Amino Acid/auxin Permease (16 DTs).
The affinities of experimentally assessed kinetic parameters
based on Michaelis–Menten steady-state analysis between
151 drugs (121 approved and 30 clinical trial) and 78 DTs
in 186 types of cell line were also collected via literature re-
view and were provided in the VARIDT.

Moreover, since the discovery of a new drug that hitch-
hiked on a transporter was inspired frequently by the cor-
responding endogenous substrate of that transporter (44),
the transporters with endogenous substrates were consid-
ered to be more feasible in becoming a DT than those
without (44). This made these transporters potential DTs
(PDTs). Herein, the endogenous substrates of all human
transporters (769 in total collected from TCDB (28)) were
thus systematically reviewed and collected. In addition to
the 266 DTs that were confirmed by at least one drug
of clinical importance, 150 PDTs were further identified
to transport 118 endogenous substrates. The transporter
families that were covered by these 150 PDTs were also
very diverse (33 families in total), and the top-5 popular
PDT families included the Drug/metabolite Transporter (18
PDTs), Mitochondrial Carrier (18 PDTs), Major Facilita-
tor (16 PDTs), Voltage-gated Ion Channel (14 PDTs), and
Monovalent Cation:proton Antiporter-1 (13 PDTs). The bio-
logical function of all DTs and PDTs was provided, and the
multiple aspects of DT variability were further collected for
a total of 416 DTs and PDTs.

As an emerging area in current DT researches, the role
of a given DT in the ‘handling’ of a range of endoge-
nous metabolites (45) was frequently discovered using (i)
in vivo DT knockout mice/rats (46), (ii) cell lines over/low
expressing DT (47) or (iii) clinical data of the patients
with DT polymorphisms (48). To collect such valuable data
on endogenous metabolites for each DT, a comprehensive
literature review on all DTs was conducted by searching
the PubMed, which identified 73 DTs with endogenous
metabolite available. Among these 73 DTs, 24 (32.9%), 30
(41.1%) and 7 (9.6%) were discovered by in vivo DT knock-
out mice/rats, cell lines over/low expressing DT, and clini-
cal data of the patient with DT polymorphisms, respectively.
All these data were fully downloadable and could be viewed
in the page of ‘Drug Transporter (DT) Information’.

Epigenetic regulations and genetic polymorphisms of DTs

Epigenetic regulation of DT was one of the key mediators of
drug resistance/toxicity in diseases such as cancer and infec-
tion (5,49), which included DNA methylation, histone mod-
ification and noncoding RNA (ncRNA) regulation (50,51).
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Figure 1. Multiple aspects and sub-aspects of variability described in VARIDT. (A) ERGPDT (red): epigenetic regulations and genetic polymorphisms
of DT; (B) DSTSPA (dark blue): disease-, species- and tissue-specific protein abundance of DT; (C) EFMDTA (gray): exogenous factors modulating DT
activity. The leaf of the corresponding sub-aspect indicated its typical/potential application.

Overexpression of efflux DTs in the acquired resistance to
cancer therapy was reported to be closely associated with
DNA methylation (52) and histone acetylation (53), and
the ncRNAs were found to sensitize the carcinoma cells to
chemotherapy by downregulating DT expression (54,55).
Moreover, the genetic polymorphisms of a DT could alter
its function, which, in turn, significantly affected the phar-
macokinetics of its transporting drug (6). Thus, knowledge
of both the epigenetic regulation and genetic polymorphism
of DTs were important (shown in Figure 1) for understand-
ing the interindividual variations of treatments (6,56), guid-
ing the optimization of medical products (57), and realizing
the promise of precision medicine (58).

Since the epigenetic regulation information of
all DTs was largely dispersed in the literature,
PubMed database was systematically searched for
their corresponding DNA methylation, histone mod-
ification and ncRNA regulation using the com-
bination of the keywords ‘methylation’/‘histone
modification’/‘microRNA’/‘miR’/‘lncRNA’/‘noncoding
RNA’ and the name/synonyms of each DT/PDT. The
discovered publications were assessed manually to retrieve
any epigenetic regulation data of DTs. The collected data
included the epigenetic types (DNA methylation, histone

acetylation/methylation, ncRNA regulation, etc.); the
location, prevalence, resulting alteration in RNA/protein
expression and detail description of each epigenetic
phenomenon; the experimental methods (microarray,
proteomics, immunohistochemistry, etc.) and materials
(various disease cell lines, tissues, etc.) adopted to validate
each phenomenon; and the studied phenotype (species,
habits, treatments, ages, organs, diseases, etc.). Moreover,
the DNA methylation data for all DTs in VARIDT were
further collected by the following process. First, microarray
datasets of 16 disease indications covered by VARIDT
were collected from Gene Expression Omnibus (59),
which included GSE47915 (prostate cancer), GSE48684
(colorectal cancer), GSE66695 (breast cancer), GSE42752
(colon adenocarcinoma), GSE84745 (celiac disease),
GSE67751 (HIV), GSE52955 (bladder cancer), GSE85845
(lung adenocarcinoma), GSE61441 (renal cell carcinoma),
GSE59250 (system lupus erythematosus), GSE54503
(hepatocellular carcinoma), GSE97466 (papillary thyroid
cancer), GSE49149 (pancreatic ductal adenocarcinoma),
GSE70460 (atypical teratoid rhabdoid tumor), GSE102468
(panic disorder) and GSE113725 (depression). All the
datasets were generated using Illumina HumanMethyla-
tion450 BeadChip with 1821 samples in total. Second, for
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DT with multiple methylation beta values, the median was
calculated and assigned as the methylation value of that
particular DT. To assess the change in DT abundances
between sample groups, Student’s t-test was adopted, and
the Z-score and fold change were calculated. Correspond-
ing epigenetic regulation data of DT could be assessed by
different types of search strategies within the ‘Home’ page
or the menu of ‘Genetic/Epigenetic Variability’ (as shown
in Figure 2).

Additionally, the genetic polymorphism data of all DTs
was searched in PubMed by combining the keywords ‘gene
polymorphism’/‘gene variability’/‘genetic variant’/‘gene
mutation’/‘genetic polymorphism’ with the name/synonym
of each DT/PDT. The discovered literatures were checked
manually to identify genetic polymorphism information of
the DTs. The collected data included the polymorphism
types (single nucleotide polymorphism, deletion mutation,
insertion mutation, etc.); the polymorphism sites in human
chromosome; the minor allele frequency; the drugs affected
by the polymorphism together with the corresponding dis-
ease; and the detail phenotypes correlated with this poly-
morphism (drug responses, survival, disease risk, adverse
reactions, etc.). All in all, 23 947 DNA methylations, 92 his-
tone modifications, 7225 ncRNA regulations and 1,278 ge-
netic polymorphisms of 251 DTs and 129 PDTs were col-
lected and were provided in the VARIDT.

Disease-, species- and tissue-specific protein abundances of
DTs

Protein abundance of DT was always a critical issue in var-
ious aspects of drug development, such as clinical pharma-
cokinetics, adverse reaction assessments and drug-drug in-
teractions (60). Particularly, the gene homology and differ-
ential abundance of DT between model organism and hu-
man should be considered before moving from preclinical to
clinical (7); tissue-specific DT abundances determined the
varied drug concentrations among different tissues, which
were thus essential for maintaining the delicate balance be-
tween drug efficacy and safety (8); disease-associated vari-
ations in DT abundances could influence the drug pharma-
cokinetics and thus lead to drug toxicity (9). Since these
variabilities in DT abundance were crucial in biomedical re-
searches, the relevant data should be accumulated and fur-
ther analyzed to promote modern drug discovery (60).

The disease-specific DT abundance data were collected
by the following processes. First, 2812 series records of hu-
man microarray generated using the platform of HG-U133
Plus 2.0 were identified from Gene Expression Omnibus
(59), and the tissue distribution together with the related
disease indication were also collected. By comparing to the
tissue and disease of the DTs in VARIDT, 436 series records
of 108 diseases and 61 tissues covered by VARIDT were se-
lected to analyze the expression profile of DTs. Second, nor-
malization and log-transformation were used to preprocess
all the collected records (61), which resulted in 21 781 sam-
ples. Third, the expression data from the same tissue and the
same disease were integrated and further processed by per-
fect match correction, quantile, robust multiarray average
and median polish (62). Fourth, a comparison between the
cases and controls across samples was conducted by defin-

ing a baseline of DT expression that had median intensi-
ties and then all the samples were normalized to that base-
line (63). To assess the variation in DT abundances between
the different sample groups, Student’s t-test was applied,
and the Z-score and fold change were calculated. The an-
alyzed groups in the VARIDT included: (i) DT expression
in the normal tissue adjacent to the diseased tissue of pa-
tients (blue color), (ii) DT expression in the diseased tissue
of patients (red color), (iii) DT expression in the normal tis-
sue of healthy individuals (green color) and (iv) DT expres-
sion in tissue other than the diseased tissue of patients (or-
ange color). Finally, DT expression plot across all samples
was drawn based on ggplot2 in the R environment, and a
box plot illustrating the abundance variations between two
studied groups was further generated based on the pandas
module in Python 3.7.4. The plots drawn above could not
only be viewed online (illustrated in Figure 3) but were also
freely downloadable from website.

Species- and tissue-specific data of the DT abundances
were collected by the following process. First, three bench-
mark microarray datasets containing the expression in-
formation across various tissues of human (GSE2361),
mouse (GSE10246) and rat (GSE63362) were downloaded
from Gene Expression Omnibus (59). Second, for the DT
with multiple expression intensities (detected by multiple
probes), the median of these intensities was calculated and
assigned as the expression value of that DT. Finally, a DT
expression plot across all tissues was drawn by ggplot2 in
the R environment, which could also be viewed online and
was directly downloadable from the website. Overall, the
VARIDT covered and provided the differential abundance
profiles of 257 DTs and 115 PDTs in 21,781 patients and
healthy individuals of 61 tissues and 108 diseases. Addition-
ally, the expression profiles of 245 DTs and 101 PDTs in
67 tissues of Homo sapiens and the model organisms (Mus
musculus and Rattus norvegicus) were collected and pro-
vided. All the data could be directly downloaded from the
VARIDT website.

Exogenous factors modulating the activity/expression of DTs

The activity or expression of DTs could be inhibited or in-
duced by exogenous factors, which, in turn, affected the
pharmacokinetics, efficacy and safety of drugs or the tis-
sue level of drugs/substrates that were transported by the
corresponding DTs (42). These exogenous factors that were
reported by the previous publication (64) included the fol-
lowing: (i) environmental factors (bio/mycotoxin, pesti-
cide residue, etc.); (ii) medications (investigative chemical,
drug, pharmaceutical excipient, etc.); and (iii) dietary con-
stituents (natural product, beverage, etc.). Since these ex-
ogenous factors were expected to facilitate the understand-
ing of the mechanism underlying DT-mediated drug-drug
interactions (60,65) and improve individual health care (13),
it was critical to collect such factors and to clarify their ef-
fect on modulating the activity or expression of DTs.

Thus, the exogenous factors that modulated DT activ-
ities were systematically reviewed by searching literatures
in PubMed based on the combination of the keywords
‘exogenous factor’, ‘environmental factor’, ‘biotoxin’, ‘my-
cotoxin’, ‘pesticide residue’, ‘dietary constituent’, ‘medica-
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Figure 2. A typical page in VARIDT providing the epigenetic regulation information of DT. The DNA methylations, histone modifications and ncRNA
regulations were collected and provided for each DT. Location, prevalence, resulting alterations in RNA/protein expression and detail description of each
epigenetic phenomenon, experimental method (immunohistochemistry, microarray, etc.) and material (disease cell line, tissue, etc.) used to validate each
phenomenon, together with the studied phenotype (species, habit, treatment, age, organ, disease, etc.) were described for each DT.

tion’, ‘inducer’, ‘inhibitor’, ‘drug’, ‘natural product’ and the
name of each DT/PDT. The discovered literatures were
evaluated manually to find any exogenous factor affecting
DTs. The collected data included the name of exogenous
factor, the modulation types (inducer, inhibitor, etc.), the
modulation activity (measured by IC50 or Ki value) and the
affected cell systems. All in all, the VARIDT provided a to-
tal of 1225 exogenous factors that modulated the activity or
expression of 148 DTs and 25 PDTs.

Data standardization and their access and retrieval

To make the access and analysis of VARIDT data con-
venient for all users, the collected raw data were carefully
cleaned up and then were systematically standardized. For
example, all the diseases in the VARIDT were standard-
ized using the latest version of International Classifica-
tion of Diseases (ICD-11, officially released by the World
Health Organization), which was expected to serve compre-
hensive health management; the functional family of each

DT was standardized according to the phylogenetic clas-
sification of TCDB (28) by assigning the family/subfamily
names; the affinities of experimentally assessed kinetic pa-
rameters (Km value) for drugs transported by their corre-
sponding DTs were unified to the unit of micromolar; 815
(98.0%) out of the 832 drugs that were transported by DTs
were with their structures available, and all these structures
were drawn using ChemDraw and were standardized in the
SDF format (both 2D and 3D); further information about
each DT and its corresponding drug(s) could be accessed
via the crosslinks to UniProtKB (22), TCDB (28), db-
SNP (66), Drugs@FDA (67), ClinicalTrials.gov (68), ICD-
11 (69), PubChem (70), ChEBI (71), TTD (27), NCBI Gene
(72), CAS Registry Number (73) and so on.

VARIDT had been smoothly running for months and
been tested from different sites around the world, such as
the United States, United Kingdom, Germany, Singapore
and China. All data could be viewed, accessed and down-
loaded (Figure 4) without any login requirement at: https:
//db.idrblab.org/varidt/ and http://varidt.idrblab.net/.

https://db.idrblab.org/varidt/
http://varidt.idrblab.net/
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Figure 3. A typical page in VARIDT providing the disease-specific protein abundances of DT. In total, the abundance profile of 96 disease classes defined
by ICD-11 was provided for each DT. Abundance variation between groups, Z-score and fold change were calculated. Blue group: DT expression in the
normal tissue adjacent to the diseased tissue of patients; Red group: DT expression in diseased tissue of patients; Green group: DT expression in the normal
tissue of healthy individuals.

INTERPLAY ANALYSIS AMONG MULTIPLE ASPECTS
OF VARIABILITY

Although the data of each aspect of DT variability collected
above were essential for clinical studies (1,12), the interplays
among the different aspects had emerged to be increasingly
important due to the extremely complex mechanism under-
lying drug metabolism (17,18,20). Taking multidrug resis-
tance (MDR) as an example, the loss of the human uptake
DT organic cation transporter OCT2 was reported to be
responsible for the MDR of chemotherapy (21). Because
the DNA hypermethylation and histone hyperacetylation
played important roles in repressing OCT2, co-medication
with exogenous inhibitor of either DNA methylation (5)
or histone deacetylase (21) was found to effectively re-
verse the MDR (5,21). In other words, the collective con-
sideration (interplay) of multiple variability data (epige-

netic regulations vs exogenous chemicals) of OCT2 could
help to discover new chemotherapeutic regimens. Similar to
OCT2, the expressions of many other DTs (such as PCFT
(74), OCT1 (75), SLCO1B1 (56), BCRP (76,77) and MRP1
(78)) in VARIDT were altered by their epigenetic/genetic
variability, which resulted in drug resistance to mesothe-
lioma (74), cholangiocarcinoma (75), hyperlipidemia (56),
lung cancer (76) and renal cell carcinoma (78), respectively.
Therefore, the multiple variability data in the VARIDT of
these DTs might be able to inspire new strategy to deal with
the corresponding resistance.

In order to ensure the multiplicity of DT variability in
VARIDT, the corresponding data were carefully collected
according to the description that was provided in previous
sections. As a result, 244 (91.7%) out of 266 DTs and 91
(60.7%) out of 150 PDTs were described in VARIDT with
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Figure 4. The page designed to download the full data of the VARIDT.

multiple variability data. Moreover, the number of variabil-
ity data for each aspect was from hundreds to tens of thou-
sands, which made it possible to identify the differential fea-
tures or to generalize the common characteristics from these
DT-related ‘big data’.

PERSPECTIVES

With increasing movements of modern therapeutics toward
stratified and personalized medicines (79), extensive effort
has been made to describe the connection among differ-
ent aspects/sub-aspects of DT variability (17), understand
drug-drug interactions (9), optimize therapeutics (6) and
overcome drug resistance (80). Thus, the VARIDT and
other databases may be further expanded to incorporate
newly derived data and novel knowledge to cater the need
for the development of novel therapeutics.
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