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Detection of early stage pancreatic cancer using
5-hydroxymethylcytosine signatures in circulating
cell free DNA
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Pancreatic cancer is often detected late, when curative therapies are no longer possible. Here,

we present non-invasive detection of pancreatic ductal adenocarcinoma (PDAC) by

5-hydroxymethylcytosine (5hmC) changes in circulating cell free DNA from a PDAC cohort

(n= 64) in comparison with a non-cancer cohort (n= 243). Differential hydroxymethylation

is found in thousands of genes, most significantly in genes related to pancreas development

or function (GATA4, GATA6, PROX1, ONECUT1, MEIS2), and cancer pathogenesis (YAP1,

TEAD1, PROX1, IGF1). cfDNA hydroxymethylome in PDAC cohort is differentially enriched for

genes that are commonly de-regulated in PDAC tumors upon activation of KRAS and inac-

tivation of TP53. Regularized regression models built using 5hmC densities in genes perform

with AUC of 0.92 (discovery dataset, n= 79) and 0.92–0.94 (two independent test sets, n=
228). Furthermore, tissue-derived 5hmC features can be used to classify PDAC cfDNA

(AUC= 0.88). These findings suggest that 5hmC changes enable classification of PDAC

even during early stage disease.
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Pancreatic cancer often presents late and has few symptoms,
at which point only 10–20% of patients are eligible for
surgical resection1. Pancreatic ductal adenocarcinoma

(PDAC) constitute more than 90% of all pancreatic cancer cases2

with the next most common sub-type being neuroendocrine
tumors1. Tobacco smoking confers a two- to three-fold higher
risk of pancreatic cancer, while contributing to approximately
15–30% of cases1, with smokers diagnosed 8 to 15 years younger
than non-smokers3,4. Family history is contributory in ~10% of
cases, and germline mutations in genes such as BRCA2, BRCA1,
CDKN2A, ATM, STK11, PRSS1, MLH1 and PALB2 are associated
with pancreatic cancer with variable penetrance1. Translational
research using genomic and proteomic technologies has provided
molecular insights into the pathogenesis and biology of pancreatic
cancer but has yet to yield robust diagnostic biomarkers to impact
early diagnosis of disease, as reflected by a low overall 5-year
survival rate of 10%1,2.

The management of PDAC presents physicians with challenges
along the entire clinical spectrum, including early detection in
high risk individuals, early diagnosis of patients with symptoms
or imaging findings, prognostication of outcomes and prediction
of therapeutic responsiveness. Collectively, these factors have
engendered intensive efforts in translational research to identify
and validate biomarkers with sufficient clinical performance
metrics to improve decision algorithms and resultant clinical
outcomes. Current guidelines in PDAC management are limited
to two biomarker recommendations for detecting disease pre-
sence assayed in an invasive fashion from cystic fluid. First,
carbohydrate antigen 19-9 (CA 19-9) guides surgery decisions,
use of adjuvant therapy, or the detection of post-operative tumor
recurrence, however, its utility is limited because 10% of patients
do not secrete the antigen5. Second, carcinoembryonic antigen
(CEA) concentration determination from cyst fluid is used to
distinguish higher risk mucinous from non-mucinous cysts6,7.
CA19-9 levels can also be measured by a blood test, however
blood levels of CA19-9 were not found to be sensitive or specific
enough for reliable detection of pancreatic cancer8.

Among the inherited risk factors for pancreatic cancer are
genomic mutations such as BRCA2, which confers a 3.5-fold
higher risk in carriers, with the probability of a germline mutation
between 6 and 12% in PDAC patients with a first-degree relative
diagnosed with PDAC9. Molecular analyses of pancreatic cancer
genomes have further revealed activating mutations in KRAS and
inactivation of CDKN2A, TP53 and SMAD4, either through point
mutation or copy number changes at >50% population fre-
quency10–12. However, mutational heterogeneity, coupled with
lack of disease specificity due to pleiotropy render this subset of
genes incomplete for the diagnosis of patients. Molecular sub-
typing of pancreatic tumors using mutational-based data11 or
gene expression signatures13–15 have not yet seen clinical
applicability. Other forms of molecular profiling have focused on
epigenetics, namely chromatin-based post-translational mod-
ifications and the methylation status of cytosine bases in DNA.

Control of DNA state and chromatin regulation have been
observed to underpin the onset and progression of oncologic
disease16,17. DNA methylation status of cytosine bases has been
shown to associate with transcriptional regulation of gene expression.
DNA methylation in promoters is associated with gene silencing
whereas demethylation is associated with gene activation18. Gene
body methylation, on the other hand, is correlated with increased
expression19. More recently, detailed understanding of demethylation
has been enabled with precision around intermediate states during
active demethylation20,21. Specifically, discovery of TET enzyme-
mediated methyl-cytosine oxidation to 5-hydroxymethyl cytosine
(5hmC) has yielded signatures that enable definition of cellular
states22, as well as identification of cancer in cell free DNA23–25.

Molecular signatures in circulating cell free DNA (cfDNA)
based on cytosine 5-hydroxymethylation have been shown pre-
viously to potentially define the tissue of tumor origin in a variety
of disease types23. Therefore, we embarked on a case–control
study aimed at investigating whether DNA 5hmC signatures were
present in the blood of PDAC patients compared to a cohort of
non-cancer individuals. We also investigated whether these sig-
natures enable discrimination between cancer and non-cancer
patients.

We find that in our study population, PDAC patients possess
thousands of genes with an altered hydroxymethyl profile com-
pared to non-cancer individuals. Furthermore, filtering to those
genes with the most differentially hydroxymethylated states
reveals genes that have been previously implicated in pancreas
development or pancreatic cancer. This biologically significant
gene set performs well in the construction of predictive models to
discriminate PDAC from non-disease, suggesting that the mea-
surement of 5hmC in cfDNA merits further investigation for the
detection and classification of PDAC.

Results
Clinical cohort and study design. Plasma specimens from
307 subjects with or without a diagnosis of PDAC were collected
at multiple institutions in different geographic regions of the
United States. These PDAC (n= 64) and non-cancer (n= 243)
patient samples satisfied the study inclusion criteria, which
included male and female subject age of minimum 40 years old
with a tolerance of 5% of patients younger than 40 years old, as
well as confirmed pathologic diagnosis of adenocarcinoma of any
subtype at the time of biopsy or surgical resection for subjects in
the cancer cohort. The non-cancer cohort was identified as
satisfying the study inclusion criteria and patients were specifi-
cally negative for any form of cancer. Neither cohort were being
treated with medication for disease at the time of blood collection,
which was prior to any biopsy or surgical resection in the cancer
cohort. Discovery dataset consisted of 41 PDAC and 38 non-
cancer samples from and the remaining samples were used for
validation. There were no statistically significant differences in
subject age, gender or tobacco exposure between the two cohorts
used for discovery (Table 1). Early stage PDAC patients (Stages I
& II) made up 56% of the PDAC cohort.

Genomic distributions of 5hmC in PDAC and non-cancer
cohort. To gain an understanding of the genomic regions

Table 1 Clinical characteristics of non-cancer and cancer
subject cohorts.

Non-cancer Cancer

Agea

64.9 65.5
Gender (%)

Male 47.4 43.9
Smoking history Status (%)

Current 13.2 12.2
Former 42.1 39.0
None 44.7 48.8

Stage (%)
I NA 24.4
II NA 31.7
III NA 14.6
IV NA 29.3

Other values are percentages of each category in “Non-Cancer” and “Cancer” groups.
aMean of non-cancer and cancer groups.
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associated with hydroxymethylation in cfDNA, we first deter-
mined 5hmC enriched loci, as measured by increased read density
and subsequent detection as peaks by MACS226. The vast
majority of 5hmC loci occur in non-coding regions of the gen-
ome, over introns and intergenic loci some of which overlap with
SINE repetitive elements, with no preferential distribution in the
PDAC or non-cancer cohort (Supplementary Fig. 1A). However,
5hmC are not particularly enriched over these regions relative to
the genome background (Fig. 1a). Instead, 5hmC enrichment is
observed over genic features, most significantly in promoters, 5′
UTRs, 3′UTRs, exons, transcription termination sites (TTS) and
SINE repetitive elements that are located in gene-rich regions, as
measured by increased relative fold change compared to the
genome background (Fig. 1a). These results indicate that 5hmC in
cfDNA is preferentially enriched in genic regions, consistent with
previously published reports27.

Comparison of 5hmC peaks in PDAC to the non-cancer
cohort revealed significant differences. First, peaks detected per
million reads in PDAC cfDNA cohort was significantly less
than in non-cancer cohort (Fig. 1b). Decreased number of
peaks suggests global decrease in 5hmC in PDAC, consistent
with previous reports investigating tissue samples. Second,
5hmC peak enrichment was increased in PDAC over 3’UTR,
TTS and intron regions whereas it was decreased over
promoters (Fig. 1c). These global changes, observed in a
statistically significant manner in each cohort, were also
detected in various cancer stages, including early stage cancers
(Supplementary Fig. 1B).

Next, we investigated 5hmC occupancy, and its associated
changes in PDAC, with respect to chromatin state. For this
purpose, we first generated histone maps of primary tumor tissues
obtained from two different PDAC patients with chromatin
immunoprecipitation followed by sequencing. Targeting post-
translational modifications such as methylation and acetylation
on histone H3 that define various functional regions, we
segmented the chromatin into 15 chromatin states, that identify
actively transcribed and silent regions, as well as regulatory
regions, using chromHMM28 (Fig. 2a). In parallel, we profiled the
5-hydroxymethylome of primary PDAC tumor tissues from 17
PDAC patients and found that they overlapped most with the
active TSS as well as active enhancer regions (Supplementary
Fig. 2A), indicating that 5hmC marks regulatory regions with
active transcription. Comparison of 5hmC occupancy in PDAC
cfDNA and non-cancer cfDNA cohorts revealed statistically
significant differences in these chromatin regions, with decreased
5-hydroxymethylation in PDAC cohort over active TSS and
flanking TSS regions, while increased 5-hydroxymethylation was
observed over weakly transcribed regions (Fig. 2b). 5hmC
decrease over H3K4me3-marked active TSS sites was observed
across all cancer stages (Fig. 1c and Supplementary Fig. 2B and
C). These results suggest that differential 5hmC enrichment
observed over promoters (Supplementary Fig. 1B) are driven by
transcriptional activation. Overall, differential cfDNA hydroxy-
methylation over different chromatin contexts identified in tumor
tissue, suggests that elements of epigenetic dysregulation in
cancer cells can be picked up in the cfDNA 5hmC signal.
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Fig. 1 Differential enrichment of 5hmC in genomic features in PDAC cfDNA compared with non-cancer cfDNA samples. a Boxplots showing 5hmC peak
enrichment analysis (y-axis= log2 enrichment) reveal that gene-based features and SINEs are enriched in 5hmC peaks in both PDAC (n= 41) and non-
cancer (n= 38) cfDNA cohorts. Intergenic and LINEs are depleted of 5hmC peaks. b Number of 5hmC peaks detected per million reads in non-cancer
(blue, n= 38) and PDAC (orange, n= 41) cohorts. Each dot depicts an individual patient sample. c Box plots depicting statistically significant changes of
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NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18965-w ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:5270 | https://doi.org/10.1038/s41467-020-18965-w |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Identification of disease specific genes from plasma samples.
Differential analysis of 5hmC densities in genes using an adjusted
p-value (Benjamini–Hochberg method) threshold of 0.05,
revealed 5700 hyper- and 6155 hypo-hydroxymethylated genes in
PDAC compared to non-cancer samples (Fig. 3a). Further fil-
tering of this gene set using a more stringent criteria (absolute
fold change ≥1.5 and average log2 CPM ≥3.5) resulted in 577
upregulated and 217 downregulated genes. Among the genes with
increased 5hmC density in PDAC were those related to pancreas
development (GATA429, GATA629, PROX130, ONECUT131, and
MEIS232) and/or implicated in cancer (YAP133, TEAD133,
PROX134, ONECUT2, ONECUT1, and IGF1) (Fig. 3b). Inspection
of the MSigDB for cancer relevant gene sets, C6.Oncogenic sig-
natures and C4.Cancer modules, enriched among the 577 genes
with increased 5hmC densities revealed a preponderance of gene
sets that are upregulated in both KRAS and TP53 mutant cancers
(Fig. 3c). These genes were also enriched in targets of transcrip-
tion factors known to be involved in PDAC oncogenesis or
metastasis, like NFAT and FOXA (HNF3) (Table 2). In contrast,
the most significantly downregulated 217 genes in PDAC cfDNA
cohort was enriched for gene sets that are downregulated in KRAS
mutant cells as well as immune response and whole blood genes
(Fig. 3c). These results suggest that 5hmC profiling can capture
PDAC tumor relevant biological signals in plasma.

Multidimensional scaling (MDS) analysis using either the
11,855 genes with high variation in 5hmC counts (Fig. 3d) or the
794 genes filtered at the extremes of 5hmC representation in
PDAC (Fig. 3e), reveal partitioning of the PDAC samples from
the non-cancer equally well. We then tested the partitioning of a
previously published dataset23 using the differentially represented
genes we identified. This dataset, despite small cohort size, had a
similar cancer stage distribution as our discovery dataset
(Supplementary Fig. 3B). Hierarchical clustering using these 794
genes revealed partitioning of the 5hmC data from PDAC and
non-cancer cfDNA from Song et al.23 as well as the discovery
cohort (Supplementary Fig. 3A, C). Consistently, PDAC samples
in Song et al. could be separated from non-cancer samples using

these 794 genes as shown by the MDS plot (Fig. 3f). In summary,
we have been able to identify a differentially represented gene set
whose biological functions are congruent with both pancreatic
development and cancer. Furthermore, 5-hydroxymethylation
densities of these genes alone enable the distinction of PDAC
from non-cancer.

Predictive models for detection of pancreatic cancer in cfDNA.
We performed regularized logistic regression analysis in order to
determine whether gene-based features are present in the PDAC
and non-cancer cohorts that can enable the classification of
patient samples. We employed top 65% genes with the most
variable 5hmC density for model selection. Elastic net35 was
utilized as the regularization method. Other modeling approa-
ches, such as random forest, support vector machines and neural
networks, were explored in a preliminary analysis and were found
to have inferior cross-validated performance on the training data
(data not shown).

Elastic net35 regularization method requires specifying hyper-
parameters that control the level of regularization used in the fit.
These hyper-parameters were selected based on out-of-fold
performance on 30 repetitions of 5-fold cross-validated analysis
of the training data. Out-of-fold assessments are based on the
samples in the left-out fold at each step of the cross-validated
analysis. The training set yielded an out-of-fold performance
metric, area under the ROC curve (AUC), of 0.919 (Fig. 4a). The
distribution of probability scores for each sample indicated few
false negatives in the PDAC cohort and false positives in non-
cancer cohort, assuming a threshold cutoff of 3rd quartile of the
non-cancer (Fig. 4b). Inspection of features that were selected by
the predictive model revealed cancer relevant genes, such as the
cancer antigen family gene BAGE536 and transcriptional co-
repressor RUNX1T137. On the other hand, model features that
were downregulated in PDAC cfDNA compared to non-cancer
cohort were enriched for immune/blood cell relevant genes such
as SLFN14 which is important for platelet formation38 and CD22
which is expressed in B cells39 (Fig. 4c).
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Next, the trained model was tested on two independent
validation sets of patient samples. The first validation dataset was
generated by 5hmC profiling of 23 PDAC and 205 non-cancer
cfDNA samples, as described in methods section. This indepen-
dent validation dataset yielded a classification performance AUC
of 0.921 (Fig. 4d). A second validation set included pancreatic
cancer and non-cancer samples from Song et al.23 which was
profiled for 5hmC using a pull down method similar to the one
used in this study (pancreas subtype specified as adenocarcinoma,

7 pancreas cancer, 10 non-cancer). This validation set exhibited a
performance AUC of 0.943 (Fig. 4e).

Correlation of prediction performance with CA19-9. We next
investigated the performance of 5hmC-based prediction prob-
abilities with relationship to plasma levels of CA19-9 (Cancer
Antigen 19-9), which is a clinically relevant biomarker in pan-
creatic cancer. Despite being one of the most clinically utilized
PDAC biomarkers, it is well established that CA19-9 levels in
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blood have challenges associated with specificity and sensitivity.
Consistent with these previous observations, we found that
CA19-9 level was abnormally high in one non-cancer sample (200
U/ml) and was within normal range for some Stage I, Stage II and
even Stage III PDAC samples (Fig. 4f). Interestingly, high prob-
ability scores calculated by our predictive model allowed detec-
tion of these early stage, namely Stage I and Stage II PDAC
samples, that had low CA19-9 levels (8 out of 30 samples)
(Fig. 4f). On the other hand, probability scores of some PDAC
samples were low despite high CA19-9 levels. Taken together,
these results suggest that 5hmC signals can significantly improve
detection on existing methods for both sensitivity and specificity,
particularly for early stage PDAC.

Prediction performance with tissue-derived features. Next, we
wanted to explore whether we can detect tumor-originated 5hmC
features in cfDNA. For this purpose, we first profiled 5hmC in 17
PDAC tumor tissues. We then ranked all the genes based on
FPKM values in these tissue profiles and took two gene sets; one
representing the highest level of 5hmC occupancy (top 50 hyper-
hydroxymethylated genes) and another set that represents the
lowest levels of 5hmC occupancy (top 50 hypo-
hydroxymethylated genes) in PDAC tissue (Fig. 5a). PDAC
tissue-derived top 50 hyper-hydroxymethylated genes can sepa-
rate non-cancer cfDNA from PDAC cfDNA samples well
(Fig. 5b, top panel). In contrast, non-cancer and PDAC cfDNA
samples did not cluster separately when top 50 hypo-
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hydroxymethylated gene set was used as features (Fig. 5b, bottom
panel). Consistent with these findings, a prediction model built
using hyper-hydroxymethylated gene set performed well with an
AUC of 0.88 in classifying PDAC and non-cancer cfDNA sam-
ples correctly (Fig. 5c, coral line), unlike the model that used
hypo-hydroxymethylated gene set as features, which had an AUC
of 0.57 (Fig. 5c, dotted coral line). While the model trained with
cfDNA 5hmC profiles performed best with an AUC of 0.919
(Fig. 5c, teal line), inspection of normalized 5hmC signal (RPKM)
from 37 features selected in cfDNA model demonstrates that
PDAC cfDNA signal is overall admixed between non-cancer
cfDNA and PDAC tissue (Fig. 5d). Taken together, our results
indicate that PDAC tumor tissue-derived features are useful in
classification of PDAC in cfDNA, suggesting that tumor-derived
epigenomic signals are retained in the cfDNA compartment.

Discussion
Pancreatic cancer is the deadliest form of cancer with 10 percent
five-year survival rate40. A major factor behind such abysmal
survival rate is the difficulty in diagnosing patients early when
tumors can be surgically removed. This study was focused on the
discovery of hydroxymethylation-based biomarkers in cfDNA
that may facilitate the development of molecular diagnostic tests
to detect pancreatic cancer at not only late but also early stages.
5hmC-based methods were previously reported to have potential
for cancer detection from plasma samples, particularly in the
context of lung cancer, hepatocellular carcinoma23, colon and
gastric cancer25. Furthermore, differential 5hmC profiles, albeit
from limited number of pancreatic cancer patients, suggested
such an approach could be possible for pancreatic cancer23. Early
stage detection from plasma have proved to be difficult for
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approaches that depend solely on tumor originating DNA, such
as mutational analysis, due to minute levels of circulating tumor
DNA present at early stage disease. Methods such as DNA
methylation or hydroxymethylation profiling, on the other hand,
has the potential to leverage all signals in the plasma, including
the ones that originate from immune cells, a major contributor of
cfDNA41, which can, in turn, improve detection for early stage
cancers. Indeed, DNA methylation-based methods have recently
shown promise in cancer detection42,43. Our data show that
pancreatic cancer detection at early stages is possible with 5hmC-
based methods.

Our data highlight the ability to detect differentially hydro-
xymethylated genes whose underlying biology shows association
with both pancreas and cancer development as well as established
trends in chromatin mark maps and other functional regions of
the genome. Furthermore, regularized regression was used to
build a predictive model from a comprehensive gene set that is
highly variable, yielding an AUC of 0.919 along with two inde-
pendent external dataset validations with AUC of 0.921
and 0.943.

The 5hmC signal was readily found to overlap in gene-centric
functional regions (enrichment in promoter, exons, UTR and
TTS), as well as transposable elements like SINEs (enriched) and
LINEs (depleted) (Fig. 1a). Globally, PDAC cfDNA cohort had
decreased number of peaks compared to non-cancer cfDNA
cohort (Fig. 1b), consistent with previous reports of decreased
5hmC in several types of cancer, including pancreatic cancer44.
Indeed, decreased 5hmC was recently linked to malignant
transformation in KRAS mutant pancreatic cells upon deactiva-
tion of p53, which are commonly observed in PDAC patients45.
Hydroxymethylcytosine changes in functional regions have also
been reported in cfDNA from colorectal25, esophageal24,46 and
lung cancer24. Consistent with these reports, we observed
decreased number of peaks in PDAC cfDNA relative to non-
cancer cfDNA. Furthermore, we report PDAC specific gains or
losses in hydroxymethylation in functional regions in our data.
PDAC specific 5hmC increase in 3’UTR, TTS and exons
and 5hmC decrease in promoters detectable in cfDNA (Fig. 1c).
These changes were also observed in various pancreatic
cancer stages (Supplementary Fig. 1). In embryonic stem cells, 5-
hydroxymethylation decreases in the promoter region have been
shown to associate with elevated gene transcription27. An increase
in disease relevant transcription is implicitly supported in our
PDAC data by the 5hmC increase in gene-centric features men-
tioned earlier, as well as an apparent decrease of 5hmC in pro-
moter regions (Fig. 1c). Taken together, disease specific
remodeling of active demethylation in PDAC patients is captured
via changes in 5hmC representation.

Dynamic changes in chromatin have been shown to control
cell development and transition of cells with oncogenic poten-
tial47. Intersection of our 5hmC data with various chromatin
states determined by ChIPseq in PDAC primary tumor tissues
revealed 5hmC localization in active chromatin regions, most
significantly active TSS and active enhancer regions (Fig. 2a).
Consistent with 5hmC changes over promoters, 5hmC decrease
in PDAC cfDNA in active TSS regions also suggests disease
specific increases in gene transcription via chromatin modifica-
tions, given the permissive transcriptional state associated with
H3K4me348. Furthermore, we observed 5hmC decrease in weak
enhancer regions identified by H3K27ac and H3K4me1 (Fig. 2a).
While 5hmC patterning around known functional elements of the
genome suggests a broader interplay between hydroxymethyla-
tion and the epigenetic control of transcriptional processes, these
results also indicate that 5hmC in cfDNA can potentially be
utilized for non-invasive monitoring of epigenomic dysregulation

in PDAC. Additional work will reveal the extent to which models
predictive of PDAC can be built from a combination of gene-
specific features, genomic loci with different chromatin states and
transposable elements detected in cfDNA.

In this study, we employed aggregate quantification of hydro-
xymethylation at gene level in PDAC, and yet, were able to find
genes and other functional regions with changes in 5hmC signals
that highlighted pathways implicated in pancreatic cancer
(Fig. 3c). The majority of PDAC cancers harbor activating
mutations in KRAS (~90%) and inactivating mutations in TP53
(~70%)49. Gene set enrichment analysis for the genes with
increased 5hmC representation in gene body revealed several
gene sets that are upregulated when KRAS is up or when p53 is
down (Fig. 3c left panel). Furthermore, among genes with
increased 5hmC were targets of transcription factors NFAT and
FOXA (HNF3) (Table 2), previously reported to be involved in
promoting pancreatic cancer initiation50 and metastasis51,
respectively, via enhancer reprogramming. Investigation of genes
with decreased 5hmC in PDAC cfDNA as compared to non-
cancer cfDNA indicated enrichment of genes downregulated
when KRAS is up. Genes related to whole blood and immune
response were enriched among the genes with decreased 5hmC in
PDAC cfDNA (Fig. 3c right panels). This would be consistent
with an increase in (tumor) tissue derived DNA in cfDNA in
PDAC patients, diluting immune and blood cell derived DNA
that make up the majority of cfDNA in non-cancer individuals41.
These results, taken together, suggest that PDAC tissue derived
signals can be detected in cfDNA from cancer patients
using 5hmC.

Inspection of individual genes that were either significantly
increased or decreased in 5hmC density revealed genes implicated
in normal pancreas development, for instance the transcription
factors GATA4, GATA6, PROX1, ONECUT1/2, in addition to
genes whose increased expression is implicated in cancer, such as
YAP1, TEAD, PROX1, ONECUT2, ONECUT1 and IGF1. The
relative 5hmC increase in transcription factor genes like GATA4,
GATA6, PROX1, ONECUT1/2, MEIS2, which were previously
reported to be involved in early pancreatic development29–31,
suggest a reversion to a stem-like state in PDAC samples.

Genes with the most significant increase in 5hmC in PDAC
cfDNA are enriched in annotated relevant biology which can be
used to build regularized regression models with a high perfor-
mance (training AUC of 0.919 with external dataset validation
AUCs of 0.921 and 0.943). This gives us good confidence that our
models are measuring underlying biological signals relevant to
PDAC. One such signal is the cancer antigen BAGE that is
selected among the 37 features in our model.

Despite the large number of differentially hydroxymethylated
genes identified in PDAC cfDNA compared to non-cancer
cfDNA, the regularized regression model with only 37 genes was
sufficient to perform well for classification of cfDNA. However,
13,180 differentially hydroxymethylated genes detected in PDAC
cfDNA compared to non-cancer cfDNA suggest that other bio-
logical signals may also reside in our dataset. Future work is
needed to understand the impact of other biological factors on
differential hydroxymethylation in PDAC cfDNA.

Smoking status is a known risk factor for PDAC up to 20 years
post smoking cessation and DNA methylation changes have been
associated with tobacco-based toxins52. In our prospective
case–control designed study, ever smokers constituted 51.2% and
55.3% of PDAC and non-cancer cohorts respectively, indicating
that ever smokers are well represented in each cohort. Conse-
quently, we do not believe that smoking association in our PDAC
cohort could account for the significantly hydroxymethylated
genes found. Indeed, statistical adjustment for genes affected by
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smoking results in comparable performance for predictive models
(data not shown). However, a more extensive future study
focused on sub-partitioning PDAC and non-cancer patient into
never and ever smokers with pack-year characteristics will enable
us to address the impact of smoking on the hydroxymethylome in
PDAC patients. Furthermore, high specificity is crucial to achieve
in the clinical setting for detection of cancers with low incidence
rate such as pancreatic cancer. Pancreatic cancer risk parameters
combined into a clinically relevant, intent-to-test population-
based study, will allow testing of our findings beyond our current
case–control cohort study, which numbers less than 100 partici-
pants. Further consideration of disease-related clinical parameters
will enable us to explore hydroxymethylcytosine features with the
aim of yielding refined signals capable of earlier diagnosis
of PDAC.

Methods
Clinical cohorts and study design. A case–control study was performed using
plasma obtained from subjects without (termed non-cancer) and with pancreatic
cancer. Patients were enrolled from participating sites in the United States at which
informed consent was obtained and biospecimens collected as approved by the
Institutional Review Boards (IRBs) responsible at each site (Sterling IRB or WIRB,
Supplementary Table 1). The study protocol submission, IRB approval and spe-
cimen handling across all sites were managed by MT Group (Van Nuys, CA), who
provided clinical research specimen handling services.

Cancer cohort. Plasma samples for the cancer cohort were obtained from subjects
who had undergone management for pancreatic cancer in the United States, and
also provided consent for use of blood specimens for archival storage and retro-
spective analyses.

Criteria for subject eligibility for inclusion in the analysis included male and
female subject age of minimum 40 years old with a tolerance of 5% of patients
younger than 40 years old, with additional requirements for the cancer cohort
including: (1) no cancer treatment, e.g., surgical, chemotherapy, immunotherapy,
targeted therapy, or radiation therapy, prior to study enrollment and blood
specimen acquisition; and (2) a confirmed pathologic diagnosis of adenocarcinoma
inclusive of all subtypes.

Non-cancer cohort. Subject exclusion criteria for the non-cancer cohort also
included any of the following: prior cancer diagnosis within prior six months;
surgery or invasive procedure requiring general anesthesia within prior month;
non-cancer systemic therapy associated with molecularly targeted immune mod-
ulation; concurrent or prior pregnancy within previous 12 months; history of organ
tissue transplantation; history of blood product transfusion within one month; and
major trauma within six months. Clinical data required for all subjects included
age, gender, smoking history, and both tissue pathology and grade, and were
managed in accordance with the guidance established by the Health Insurance
Portability and Accountability Act (HIPAA) of 1996 to ensure subject privacy.

Plasma collection. Plasma was isolated from whole blood specimens obtained by
routine venous phlebotomy at the time of subject enrollment. For both cancer and
non-cancer control subjects, whole blood was collected in Cell-Free DNA BCT®
tubes according to the manufacturer’s protocol (Streck, La Vista, NE) (https://www.
streck.com/collection/cell-free-dna-bct/). Tubes were maintained at 15 °C to 25 °C
with plasma separation performed within 24 h of phlebotomy by centrifugation of
whole blood at 1600 x g for 10 min at RT, followed by transfer of the plasma layer
to a new tube for centrifugation at 16,000 x g for 10 min. Plasma was aliquoted for
subsequent cfDNA isolation or storage at −80 °C.

cfDNA isolation. cfDNA was isolated using the QIAamp Circulating Nucleic Acid
Kit (QIAGEN, Germantown, MD) following the manufacturer’s protocol excepting
the omission of carrier RNA during cfDNA extraction. Four milliliter plasma
volumes were lysed for 30 min prior to collection of nucleic acids. Eluates were
collected in a volume of 60 µl buffer. All cfDNA eluates were quantified by Bioa-
nalyzer dsDNA High Sensitivity assay (Agilent Technologies, Santa Clara, CA) and
Qubit dsDNA High Sensitivity Assay (Thermo Fisher Scientific, Waltham, MA)
was employed to ensure the absence of contaminating high molecular weight DNA
emanating from white blood cell lysis.

Tissue and genomic DNA processing. All tissue samples were stored in H media
for the interval between surgical resection and laboratory processing. Each sample
was weighed and aliquoted into sections of approximately 35 mg. Each resulting
subsection was briefly incubated on dry ice, then homogenized in 500 µl RLT
Buffer Plus using a Tissue Lyser LT (QIAGEN Germantown, MD) at 50 Hz for two
minutes. Resulting homogenates were stored at −80 C until DNA extraction.

Genomic DNA was extracted using DNeasy Blood & Tissue Kit (QIAGEN Ger-
mantown, MD) according to the manufacturer instructions. Genomic DNA eluates
were quantified using the Qubit dsDNA High Sensitivity assay (Thermo Fisher
Scientific, Waltham, MA) and stored at −20 °C until further processing. Prior to
sequencing library construction, genomic DNA was fragmented to a modal 150
base pair size using an ME220 focused ultrasonicator (Covaris, Woburn, MA),
Modal fragmented DNA sizes were verified using the TapeStation 2200 dsDNA
high sensitivity assay (Agilent Technologies, Santa Clara, CA) and quantified as
described above prior to commencing library construction.

5-hydroxymethyl Cytosine (5hmC) enrichment assay. 35cfDNA was normalized
to 10 ng total input for each assay and ligated to sequencing adapters. 5hmC bases
were biotinylated via a two-step chemistry and subsequently enriched by binding to
Dynabeads M270 Streptavidin (Thermo Fisher Scientific, Waltham, MA). All
libraries were quantified by Bioanalyzer dsDNA High Sensitivity assay (Agilent
Technologies, Santa Clara, CA) and Qubit dsDNA High Sensitivity Assay (Thermo
Fisher Scientific, Waltham, MA) and normalized in preparation for sequencing.

DNA sequencing and alignment. DNA sequencing was performed according to
manufacturer’s recommendations with 75 base-pair, paired-end sequencing using a
NextSeq550 instrument with version 2 reagent chemistry (Illumina, San Diego,
CA). Data were collected using NextSeq System Suite 2.2.04. Twenty-four libraries
were sequenced per flowcell. Raw data processing and demultiplexing was per-
formed using the Illumina BaseSpace Sequence Hub to generate sample specific
FASTQ output. Sequencing reads were aligned to the hg19 reference genome using
BWA-MEM with default parameters53. Sequencing data quality was assessed using
picard54.

Peak detection. BWA-MEM read alignments were employed to identify regions or
peaks of dense read accumulation that mark the location of a hydroxymethylated
cytosine residue. Prior to identifying peaks, BAM files containing the locations of
aligned reads were filtered for poorly mapped (MAPQ < 30) and not properly
paired reads using samtools and HTSlib55. 5hmC peak calling was carried out using
MACS2 (https://github.com/taoliu/MACS) with a p-value cut off= 1.00e−5.
Identified 5hmC peaks residing in “blacklist regions” as defined elsewhere (https://
sites.google.com/site/anshulkundaje/projects/blacklists) and residing on chromo-
somes X, Y, and mitochondrial genome were also removed using bedtools56.
Computation of genomic feature enrichment overlap 5hmC peaks were performed
using HOMER software (http://homer.ucsd.edu/homer/) with default parameters.

Chromatin immunoprecipitation. Chromatin immunoprecipitations of
H3K4me1, H3K4me3, H3K27ac, H3K36me3, H3K9me3, and H3K27me3 in pri-
mary PDAC tumor tissues were performed at Active Motif (Carlsbad, CA). Briefly,
tumor tissues were homogenized, then sonicated and subjected to chromatin
immunoprecipitation with antibodies specific to chromatin modifications men-
tioned above (anti-H3K4me1 Active Motif 39297, 4 μl per IP; anti-H3K4me3
Active Motif 39159, 3 μl per IP; anti-H3K9me3 Abcam ab8898, 5 μl per IP; anti-
H3K27ac Active Motif 39133, 4 μg per IP; anti-H3K27me3 Active Motif 39155,
4 μg per IP; anti-H3K36me3 Active Motif 61101, 4 μg per IP). Immunoprecipitated
DNA was isolated, then subjected to the library preparation and was subsequently
sequenced. Reads were mapped using BWA-MEM, then filtered for quality reads as
described above. Peaks for each histone modification was determined using
MACS2 with default parameters for H3K4me1, H3K4me3, and H3K27ac;
while –broad option was used for H3K9me3, H3K27me3, and H3K36me3.
ChromHMM was run with all 6 histone ChIPseq mentioned above28. For com-
parisons between PDAC and non-cancer, two-sided Wilcoxon test was used, and
for across stages comparison, two-sided Kruskal–Wallis test was employed.
Genomic regions were visualized using IGV57.

Differential representation analysis. For the purpose of reliably identifying gene
bodies with differential representation between the PDAC and the non-cancer
groups, we closely followed the RNA-Seq workflow outlined in Law et al.58,
including much of the preliminary QC steps, using R59. In brief, the analysis
includes data pre-processing by adopting the following workflow: (i) transforming
the data from raw counts to log2(counts per million), (ii) removing genes that are
weakly represented, (iii) normalizing the gene representation distributions, and (iv)
performing unsupervised clustering of samples. To accomplish differential repre-
sentation analysis, we applied the following steps: (i) creating a design matrix to
contrast PDAC versus non-cancer cohorts, (ii) removing heteroscedasticity from
the data, (iii) fitting regression models for the comparison of interest, PDAC vs
non-cancer, (iv) examining the number of differentially represented genes. In most
of these analysis steps the default settings were used when appropriate. To remove
weakly represented genes, we excluded genes that did not have greater than 3
counts per million reads in at least 20 samples. This filter excludes roughly 12% of
the genes. For the identification of the significantly differentially represented
regions, we used the method of Benjamini and Hochberg60 to obtain p-values
adjusted for multiple comparisons. In this report, we use adjusted p-value and false
discovery rate (FDR) interchangeably.
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Predictive modeling. For the purpose of assessing the feasibility of building
classifiers that can discriminate between PDAC and non-cancer samples based on
the 5hmC representation of gene bodies, we used elastic net, which is commonly
used in the classification context, where the number of examples are few and the
number of features are large. See Friedman et al.35 for a description of the general
Elastic net procedure. Software implementation of these methods can be found at
https://cran.r-project.org/web/packages/glmnet/index.html. Weakly represented
genes were excluded from analysis as described in the section on “Differential
representation analysis”.

All training and fitting were done on 80% of the samples selected at random in a
balanced way to keep the ratio of the number of PDAC to non-cancer samples
similar in both the training and testing subsets. Before any fitting, genes were
filtered to include the top 65% of the most variable genes for model fitting task. The
filter was designed using training samples only and was done in a way to ensure
that genes of all levels of 5hmC representation were included.

Hyperparameters of the regularization model were selected based on out-of-fold
performance on 30 repetitions of 5-fold cross-validated analysis of the training
data. Out-of-fold assessments are based on the samples in the left-out fold at each
step of the cross-validated analysis. The out-of-fold performance of the models
fitted with hyperparameter values set at the optimal values might yield a slightly
optimistic assessment of performance. The performance of these models applied to
the test set should provide less biased estimate of performance, although
generalizability to external datasets is not always guaranteed.

The hyperparameter values that lead to the best out-of-fold performance were
then used to fit the final models which were fitted to the entire set of samples,
including both training and testing subsets. The performance of these final models
can thus only be evaluated based on their performance on external datasets. These
do provide a sense of the generalizability of the performance observed in the local
training and testing datasets.

To evaluate the effect of feature selection on prediction performance, we
repeated the training and evaluation task based on a filtered set of genes that
included genes found to be significantly differentially represented, having a 1.5-fold
differential 5hmC representation, and a level of representation exceeding the
median level (log2 CPM ≥ 3.5). This filter was designed based on training data
statistics only.

CA19-9 detection. CA 19-9 was detected from plasma by electrochemiluminescent
immunoassay (Roche) at Arup Laboratories.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Processed gene counts and BED files data from this study can be accessed from NCBI
Gene Expression Omnibus under accession number GSE152137. The Fastq files can be
made available upon written request for submission to the study institutional review
boards at the participating sites (Sterling IRB or WIRB) for approval, please contact the
corresponding author with requests. The remaining data is available in the Article,
Supplementary Information.
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