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Simple Summary: In the modern era of the anthropocene, an increase in the accumulation of
greenhouse gases in the atmosphere has resulted in the global rise of the Earth’s temperature. This
has resulted in the habitat shift of various plant and animal species. Plant species that are endemic
show a narrow distribution range and inhabit higher elevations are highly susceptible to the impacts
of global warming. The present study discusses the habitat distribution of Valeriana wallichi, an
endangered medicinal herb. We also predicted the impact of climate change on its distribution range
and niche dynamics. Results reveal significant contraction in the possible habitats of this herb under
future climatic scenarios, with RCP 8.5 for 2070 showing the highest habitat loss. Niche equivalency
and similarity tests describe that the habitats could be compared but not identical between current and
future climatic scenarios. From the current study, we conclude that the habitats of Valeriana wallichii
are highly vulnerable to climate shifts. This study can not only be used to alleviate the threat to
this plant by documenting the unexplored populations, restoring the degraded habitats through
rewilding and launching species recovery plans in the natural habitats but could also be used by
various conservation biologists to recover the declining status of various highly valued species across
the globe.

Abstract: An increase in atmospheric greenhouse gases necessitates the use of species distribution
models (SDMs) in modeling suitable habitats and projecting the impact of climate change on the
future range shifts of the species. The present study is based on the BIOMOD ensemble approach
to map the currently suitable habitats and predict the impact of climate change on the niche shift of
Valeriana wallichii. We also studied its niche dynamics using the ecospat package in R software. Values
of the area under curve (AUC) and true skill statistics (TSS) were highly significant (>0.9), which
shows that the model has run better. From 19 different bioclimatic variables, only 8 were retained after
correlation, among which bio_17 (precipitation of driest quarter), bio_1 (annual mean temperature),
and bio_12 (annual mean precipitation) received the highest gain. Under future climate change,
the suitable habitats will be significantly contracted by −94% (under representative concentration
pathway RCP 8.5 for 2070) and −80.22% (under RCP 8.5 for 2050). There is a slight increase in habitat
suitability by +16.69% (RCP 4.5 for 2050) and +8.9% (RCP 8.5 for 2050) under future climate change
scenarios. The equivalency and similarity tests of niche dynamics show that the habitat suitability for
current and future climatic scenarios is comparable but not identical. Principal Component Analysis
(PCA) analysis shows that climatic conditions will be severely affected between current and future
scenarios. From this study, we conclude that the habitats of Valeriana wallichii are highly vulnerable
to climate shifts. This study can be used to alleviate the threat to this plant by documenting the
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unexplored populations, restoring the degraded habitats through rewilding, and launching species
recovery plans in the natural habitats.

Keywords: BIOMOD ensemble approach; distribution modeling; range change; rewilding; species
recovery; natural habitats

1. Introduction

The ever-growing increase in the concentration of greenhouse gases has threatened
the existence of different plant species and has altered the function and stability of different
ecosystems across the globe. However, the fragile landscapes within the Himalayan biodi-
versity regions show greater susceptibility to the climate change scenarios and therefore
elevate the ongoing concern about impacts on the biodiversity in these regions [1–5]. The
major consequence of climate change is habitat range shifts at species or ecosystem level,
which affects natural selection, generates co-evolutionary interactions, and destabilizes
the ecosystem functional traits. Various model projections generated by predicting the
impact of climate change reveal that gradient-based mountain ecosystems receive the
consistent upward shift of the species and could be the most vulnerable of all the terrestrial
ecosystems [6–8]. It is predicted that on account of global warming due to increased Earth
temperature and change in precipitation pattern, suitable habitats of several high mountain
plant species would be drastically reduced or will disappear by the end of the twenty-first
century [9–11].

In the contemporary world of the anthropocene, the impact of human-mediated eco-
logical and socio-economic changes (anthropogenic activities, infrastructure development,
climate change, and alien species invasion) [12,13] are deep and complex; however, the
effects of these on ecosystems in the majority of cases, remain unpredictable [14]. Mapping
ecological niches and anticipating the influence of global warming on the potential habitat
of endangered plant species is extremely important for monitoring, management, and
rehabilitation of their dwindling populations and natural habitats [15]. Habitat distribution
modeling help to forecast the distribution range, especially the realized niche, by using
the information records obtained through extensive field surveys in concurrence with
topographic and bioclimatic variables [16,17]. Threatened and endemic species, which are
ecological specialists and show smaller geographic distribution range, small population
size, and low reproductive capacity, are highly vulnerable to such alterations and are
at greater risk of extinction [18,19]. Thus, their conservation should be prioritized and
accomplished through the application of different ecological principles within or near their
natural habitats [20].

The use of several species distribution models (SDMs) in forecasting habitat suitability
has become an important ecological tool [19,21]. SDMs have been widely used in restoring
degraded habitats [22–25], introduction of native germplasm, or selecting appropriate sites
for species conservation and management [26–28]. Recent developments in SDMs show di-
verse implications to solve the conservation-related challenges by generating suitable niche
models and predicting range estimates [29], network design and prioritization of protected
areas [30,31], and projecting the impact of climate change on reproduction and future dis-
tributions [25,31]. SDMs combine species occurrence data with ecological/environmental
variables (temperature, precipitation, elevation, geology, and vegetation) to create a model
that represents the distribution of species with respect to different environmental vari-
ables [26]. The application of the BIOMOD ensemble approach holds a rational stride in
species distribution modeling, as it makes the combined use of nine different algorithms. It
evaluates the species distribution pattern and its potential alterations under future climate
changes [32–34]. To optimize the prediction of habitat suitability, BIOMOD incorporates a
variety of statistical and machine learning methodologies [35,36].
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Valeriana wallichii is an evergreen herb. It emits a pleasant odor, due to which this
species derives its local name “Mushkbala”. The sporophytic body consists of an un-
derground rhizome and leafy offshoots. With an onset of the flowering peduncles arise
from the offshoots. The flowering season extends from the second to third week of May.
Peak flowering time is from February to March [37]. It is a highly valued medicinal and
aromatic shrub having immense use in the folk medicine and pharmaceutical sector and is
extensively used as a sedative, stomachic, anti-spasmodic, nervine, stimulant, carminative,
and analeptic [37]. Incessant over-exploitation of this species has led to the progressive
dwindling of its natural populations, and as such, it has been listed among threatened
species by IUCN [37]. Modeling the current suitable areas and anticipating the influence
of climate shifts on habitat suitability in future climatic scenarios can be an important
ecological tool to restore the diminishing populations of this Himalayan angiosperm. In
the current study, we used the BIOMOD ensemble approach to:

(i) Study the role of different bioclimatic variables on the habitat distribution of
V. wallichii;

(ii) Model the current distribution range of V. wallichii in the Himalayan biodiversity hotspots;
(iii) Model the climate change-driven shifting patterns in the distribution of V. wallichii at

different spatiotemporal scales;
(iv) Predicting the extent and rate of potential range expansion/contraction of V. wallichii

and evaluating the niche dynamics using the models generated to formulate different
management strategies.

2. Materials and Methods
2.1. Distribution Data

Extensive field surveys were conducted from the northwestern and western mountain
ranges of the Indian Himalayas. A total of 42 new populations were inventoried from
the Jammu and Kashmir, Ladakh, and Uttarakhand regions of India (Table 1). Their geo-
graphical coordinates were recorded with the help of GPS (Magellan eXplorist 30H and
Magellan Professional Mobile Mapper (990603-50)). The distribution data were further
supplemented with data obtained from the GBIF portal (Global Biodiversity Information
Portal) and Botanical Information and Ecology Network (BIEN) (accessed on 18 April 2021).
A total of 276 geo-referenced presence records were obtained and were reduced to 51 oc-
currence points after clipping for the study area (i.e., Himalaya). Each of the occurrence
records was thoroughly checked for accuracy before usage. A total of 37 geo-referenced
points were retained after spatial thinning and used for modeling the habitat distribution
of Valeriana wallichii.

Table 1. Geographical coordinates and altitude of different study areas.

Site No. Site Coordinates Altitude

1 Manyal Gali, J&K 33◦33′ N 74◦22′ E 1903 m.a.s.l
2 Dera Ki Gali, J&K 33◦35′ N 74◦21′ E 2126 m.a.s.l
3 Bafliaz, J&K 33◦21′ N 74◦21′ E 1566 m.a.s.l
4 Noorichamb, J&K 33◦36′ N 74◦25′ E 1834 m.a.s.l
5 Bakori, J&K 33◦21′ N 74◦31′ E 1637 m.a.s.l
6 Budhal, J&K 33◦22′ N 74◦38′ E 1781 m.a.s.l
7 Patnitop, J&K 33◦05′ N 75◦19′ E 2072 m.a.s.l
8 Batote, J&K 33◦01′ N 75◦39′ E 1656 m.a.s.l
9 Amiranagar, J&K 33◦00′ N 75◦05′ E 1498 m.a.s.l

10 Neota, J&K 33◦02′ N 75◦03′ E 1327 m.a.s.l
11 Drudhoo, J&K 33◦15′ N 75◦45′ E 1366 m.a.s.l
12 Nai Basti, J&K 33◦01′ N 75◦39′ E 1370 m.a.s.l
13 Dranga, J&K 33◦01′ N 75◦40′ E 1383 m.a.s.l
14 Narnoo 1, J&K 33◦0′ N 75◦40′ E 1378 m.a.s.l
15 Narnoo 2, J&K 33◦06′ N 75◦40′ E 1459 m.a.s.l
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Table 1. Cont.

Site No. Site Coordinates Altitude

16 Kursari 1, J&K 33◦0′ N 75◦41′ E 1468 m.a.s.l
17 Kursari 2, J&K 33◦0′ N 75◦41′ E 1434 m.a.s.l
18 Kursari 3, J&K 33◦0′ N 75◦41′ E 1459 m.a.s.l
19 Kursari 4, J&K 33◦0′ N 75◦41′ E 1468 m.a.s.l
20 Khelani, J&K 33◦03′ N 75◦38′E 1274 m.a.s.l
21 Gatha, J&K 32◦59′ N 75◦42′ E 1480 m.a.s.l
22 Randa, J&K 32◦59′ N 75◦43′ E 1583 m.a.s.l
23 Wazir Kotli, J&K 32◦58′ N 75◦43′ E 1606 m.a.s.l
24 Singhasan Pull, J&K 32◦59′ N 75◦43′ E 1645 m.a.s.l
25 Kapra, J&K 33◦07′ N 75◦24′ E 1740 m.a.s.l
26 Powerhouse, J&K 32◦56′ N 75◦43′ E 1885 m.a.s.l
27 Bhadrote, J&K 32◦56′ N 75◦43′ E 1898 m.a.s.l
28 MushDev Nallah, J&K 32◦56′ N 75◦45′ E 1941 m.a.s.l
29 Atalgarh, J&K 32◦56′ N 75◦45′ E 1941 m.a.s.l
30 Haliyan 1, J&K 32◦55′ N 75◦42′ E 1774 m.a.s.l
31 Haliyan 2, J&K 32◦58′ N 75◦42′ E 1706 m.a.s.l
32 Haliyan 3, J&K 33◦01′ N 75◦41′ E 2664 m.a.s.l
33 Panaja, J&K 32◦57′ N 75◦43′ E 1763 m.a.s.l
34 Qilla Mohalla, J&K 32◦58′ N 75◦42′ E 1718 m.a.s.l
35 Almora, Uttrakhand 29◦37′ N 79◦32′ E 1870 m.a.s.l
36 Chakrata, Uttrakhand 33◦33′ N 74◦24′ E 1781 m.a.s.l
37 Kund, J&K 33◦33′ N 74◦23′ E 2159 m.a.s.l
38 Cha, J&K 33◦33′ N 74◦24′ E 2440 m.a.s.l
39 Tungwali, J&K 33◦34′ N 74◦24′ E 2858 m.a.s.l
40 Sapanwali, J&K 33◦33′ N 74◦23′ E 2263 m.a.s.l
41 Azamtabad, J&K 33◦33′ N 74◦23′ E 2124 m.a.s.l
42 Thajwas, J&K 33◦16′ N 75◦17′ E 3108 m.a.s.l

m.a.s.l. meters above sea level.

2.2. Bioclimatic Variables and Their Importance

For modeling the habitat distribution of V. wallichii, nineteen different bioclimatic
variables with 30 arc seconds spatial resolution data were obtained from Worldclime data
set v1.4 (https://www.worldclim.org accessed on 21 May 2021). As bioclimatic variables
are highly subjected to auto-correlation, we performed Pearson’s correlation among various
bioclimatic variables. Those variables that depict the coefficient of correlation (r) values
higher than 0.75 were simplified and reduced to one variable. After correlation analysis of
19 bioclimatic variables, only eight were retained and used for modeling the distribution of
Valeriana wallichii (Tables 2 and 3).

The relative influence of each bioclimatic variable in determining the distribution
of selected plant species, we employed the permutation approach [36]. Predictions are
created using a specific algorithm after changing only one target variable while the rest
of the variables are maintained fixed in this approach. The variable importance estimates
are calculated as one minus correlation score (1—correlation score) between the original
prediction and the prediction made with a permuted variable [2]. As a result, high values
show that the predictor variable is more relevant in the model, while a value of 0 denotes
that the variable has no significance in the model.

https://www.worldclim.org
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Table 2. Pearson’s correlation among nineteen different bioclimatic variables.

Bioclimatic Variables bio_1 bio_2 bio_3 bio_4 bio_5 bio_6 bio_7 bio_8 bio_9 bio_10 bio_11 bio_12 bio_13 bio_14 bio_15 bio_16 bio_17 bio_18 bio_19

bio_1 1
bio_2 0.63
bio_3 0.52 0.56
bio_4 −0.39 −0.05 −0.78
bio_5 0.91 0.71 0.24 0
bio_6 0.94 0.51 0.67 −0.63 0.75
bio_7 −0.08 0.25 −0.63 0.91 0.31 −0.38
bio_8 0.46 0.18 0.39 −0.4 0.32 0.53 −0.32
bio_9 0.92 0.5 0.32 −0.27 0.88 0.84 0.01 0.23
bio_10 0.92 0.67 0.25 −0.02 0.99 0.77 0.26 0.34 0.88
bio_11 0.95 0.55 0.68 −0.63 0.76 0.99 −0.35 0.51 0.85 0.78
bio_12 0.33 −0.26 0.42 −0.7 0 0.48 −0.7 0.41 0.24 0.06 0.48
bio_13 0.18 −0.28 0.48 −0.74 −0.15 0.39 −0.78 0.38 0.06 −0.1 0.37 0.91
bio_14 0.04 −0.08 −0.66 0.59 0.27 −0.14 0.59 −0.2 0.2 0.28 −0.14 −0.38 −0.65
bio_15 0.06 −0.21 0.57 −0.77 −0.25 0.31 −0.81 0.35 −0.06 −0.23 0.29 0.72 0.91 −0.84
bio_16 0.21 −0.26 0.5 −0.73 −0.12 0.41 −0.77 0.36 0.1 −0.06 0.4 0.93 0.99 −0.63 0.89
bio_17 0.26 −0.23 −0.36 −0.01 0.27 0.19 0.1 −0.04 0.43 0.26 0.21 0.16 −0.13 0.66 −0.32 −0.12
bio_18 0.29 −0.06 0.6 −0.68 −0.02 0.44 −0.68 0.48 0.12 0.03 0.45 0.9 0.88 −0.6 0.76 0.9 −0.2
bio_19 0.32 −0.03 −0.32 0.07 0.38 0.19 0.25 −0.11 0.51 0.36 0.23 0.04 −0.29 0.68 −0.46 −0.26 0.94 −0.25 1
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Table 3. Bioclimatic variables selected for modeling the distribution of Valeriana wallichii in the
present study.

Variable Description

BIO-1 (Annual Mean Temperature)
BIO-2 (Mean Diurnal Range)
BIO-3 (Isothermality)
BIO-7 (Temperature Annual Range)
BIO-8 (Mean Temperature of Wettest Quarter)

BIO-12 (Annual Mean Precipitation)
BIO-14 (Precipitation of Driest Month)
BIO-17 (Precipitation of Driest Quarter)

2.3. Modeling Technique

Nine different algorithms implemented in the biomod2 package integrated within
R statistical software (v 4.0.3; R Development Core Team 2021) were used to perform
species distribution modeling and ensemble forecasting. These modeling algorithms work
on the basis of both absence and presence data sets; however, it is difficult to obtain the
actual absence data. We generated 10,000 pseudo-absences within the study area following
Barbet-Massin et al. [38] and Guisan et al. [39]. The models were created with training sets
of 80% and 20% data for the validation set. We repeated the method three times in total,
yielding 27 models for each time period and climate scenario. The model’s performance
was assessed using two types of assessment metrics: the area under the curve (AUC) of
receiver operating characteristics (ROC) and true skills statistics (TSS) [40,41]. AUC values
range from 0 to 1, with 0.5–0.7 suggesting poor model performance, 0.7–0.9 indicating
acceptable model performance, and >0.9 indicating outstanding model performance [42].

Similarly, the TSS measure ranges from −1 to +1, with TSS values below 0.40 sug-
gesting poor model performance, 0.40 to 0.75 indicating suitable model performance, and
0.75 and above indicating higher model performance [40,43]. We constructed the final
ensemble model for each climatic scenario and time period combination using committee
averaging and weighted mean approaches individually [41]. To generate the final ensemble
models, we only maintained models with TSS scores larger than or equal to 0.8. As a result,
we obtained a total of five ensemble predictions for current climatic suitability, and four
future predicted habitat suitabilities for the two time periods (2050 and 2070), reflecting
two concentration paths (RCP 4.5 and 8.5).

2.4. Species Range Change

We used the BIOMOD-Range Size function in the biomod2 package to quantify and
represent the range change over future climatic scenarios for Valeriana wallichii. This
production function exhibits two outputs: A table containing a brief description related
to statistics of species range change and a spatial map that shows the probable areas
where the species will show habitat gain or loss in the future climate scenarios. “Gain”
corresponds to the number of pixels that are predicted to be occupied by species under
future climate scenarios and currently not occupied by the studied species; “Loss” shows
the number of pixels anticipated to be lost by the studied species, “Stable” denotes the
number of pixels currently occupied by the studied species while “Absent” represents
the number of pixels that are not currently occupied by the studied species, “Percentage
loss” was calculated as (Loss/(Loss + Stable)); “Percentage gain” was determined by using
the formula (Gain/(Loss + Stable)) and “Range change” was calculated by percentage
gain—percentage loss.

2.5. Niche Overlap

Modified principal component analysis (PCA-env) was used for determining the niche
overlap of the plant species under current and future climatic scenarios [44]. Bioclimatic
variables are changed into two-dimensional space defined by two principal components.
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The two-dimensional environmental space is then projected onto grid cells with a diameter
of 100 × 100 and bounded by minimum and maximum PCA values in the background.
Smooth key density function was used to overcome sampling bias due to the lower number
of occurrence data points [45]. Schoener’s D metric was used to determine the extent
of niche overlap. It varies from 0, representing no overlap, to 1, representing complete
overlap. In order to understand the importance of niche overlap in the geographic area,
niche equivalency and similarity tests were performed [44]. Niche equivalence test was
performed by the comparison of niche overlap (D) values for current and future climatic
scenarios and comparing it to the overlap of the null distribution. If the overlap values
are significantly lower than niche values, then the null hypothesis of niche equivalency
is rejected [44]. The niche similarity test determines if the niches of two entities being
examined are more or less similar than projected by chance. It also takes into account the
bioclimatic variables of the background space across the study area. [46]. The niche analysis
was carried out by using the R software-based package “ecospat” [47].

3. Results
3.1. Model Evaluation and Variable Contribution

The present study suggests that the final ensemble model produced for Valeriana
wallichii in terms of committee averaging had AUC values equal to 0.99 and TSS values
equal to 0.93. Likewise, in terms of weighted means, the ensemble models produced had
AUC values equal to 0.99 and TSS values equal to 0.92. The values in terms of committee
averaging and weighted means demonstrate that the final model is robust in predicting
the distribution of the Valeriana wallichii. While comparing the predictive accuracy at the
individual algorithm level, the model showed GBM, RF, GLM showed the highest accuracy,
followed by ANN, FDA, MAXENT Phillips, CTA and SRE (Figure 1).

Figure 1. True skill statistics (TSS) and receivers operating characteristic curve (ROC) values of
different model algorithms.

The selected bioclimatic variables showed variations across different algorithms in
Valeriana wallichii. The bioclimatic variables that were highly influential and represented
the highest gain in determining the potential habitat distribution of the species were
precipitation of driest quarter (bio_17), having importance scores that range from 0.06 to
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0.82 followed by annual mean temperature (bio_01) with importance scores ranging from
0.06 to 0.80 (Table 4).

Table 4. Algorithm-wise importance scores of the different bioclimatic variables that were retained
for modeling of Valeriana wallichii.

Bioclimatic Variable GLM GBM GAM CTA ANN SRE FDA RF MAXENT. Phillips Mean

bio_01 0.80 0.14 0.66 0.27 0.60 0.48 0.39 0.06 0.69 0.45
bio_02 0.59 0.02 0.70 0.00 0.43 0.34 0.02 0.03 0.27 0.27
bio_03 0.19 0.08 0.61 0.09 0.16 0.21 0.01 0.05 0.12 0.17
bio_07 0.37 0.08 0.65 0.07 0.20 0.19 0.06 0.04 0.29 0.22
bio_08 0.09 0.01 0.41 0.02 0.38 0.22 0.26 0.02 0.54 0.22
bio_12 0.49 0.02 0.65 0.08 0.59 0.34 0.08 0.02 0.49 0.31
bio_14 0.07 0.06 0.55 0.21 0.13 0.23 0.15 0.11 0.30 0.20
bio_17 0.54 0.13 0.82 0.64 0.78 0.36 0.25 0.06 0.57 0.46

3.2. Current and Future Habitat Distribution

Under current climatic conditions, the ensemble model showed that the northwestern
regions of India (Jammu and Kashmir, Uttarakhand and Himachal Pradesh), northwestern
areas of Pakistan (Khyber Pakhtunkhwa, Swat valley and Muzaffarabad), and southwestern
parts of Nepal (Dhangadhi, Silgarhi, Tapoban) show highly suitable areas for the growth
of Valeriana wallichii whereas southwestern parts of Nepal shows moderately low habitat
suitability. In addition, the southeastern parts of Bhutan and Sikkim show moderately low
habitat suitability, and southeastern parts of Arunachal Pradesh and northwestern parts of
Assam show low suitability areas for the growth of Valeriana wallichii (Figure 2). Future
climate change scenarios for Valeriana wallichii predicted that there would be a significant
decrease in habitat suitability, and this plant species will show a significant contraction in
their possible suitable habitats. Although some of the currently suitable areas continually
will remain suitable under future climatic conditions also. These regions include most of
the western Himalayas, i.e., the northern part of Pakistan, northwestern part of Jammu and
Kashmir, Himachal Pradesh and Uttarakhand, the southern part of Nepal, Bhutan, and
Sikkim. Some areas such as the southeastern parts of Arunachal Pradesh and northwestern
parts of Assam show moderate to low habitat suitability under RCP 4.5, and high suitability
under RCP 8.5 but are currently unsuitable and are predicted to be suitable under future
climatic conditions (Figure 3A–D).

3.3. Species Range Shift under Future Climatic Conditions

The projections for future habitat suitability of Valeriana wallichii displayed that the
species will undergo severe range contraction under future climatic scenarios. Specifically,
by assuming its dispersal throughout Himalayan biodiversity hotspots, the proportion to its
current suitable habitats is projected to be lost under future climate scenarios. The suitable
habitat of Valeriana wallichii could be reduced by about 57.231% (under RCP4.5, 2050),
88.251% (under RCP4.5, 2070), 89.178% (RCP8.5, 2050), and by about 97.878% under RCP8.5
for the year 2070 when compared to current habitat suitability (in terms of committee
averaging). In terms of weighted mean, the suitable habitat will be reduced by about
54.123% (under RCP4.5, 2050), 84.765% (under RCP4.5, 2070), 81.998% (under RCP8.5,
2050), and by about 97.050% under RCP8.5 for the year 2070. The areas that are likely to
become unsuitable in the future are located mostly toward northwestern parts of Nepal,
eastern parts of Uttarakhand, some areas of Himachal Pradesh, and Jammu and Kashmir.
In comparison to this, the currently unsuitable areas become suitable under future climate
scenarios with a range expansion in terms of committee averaging of 16.692% (under
RCP4.5 2050), 8.564% (under RCP4.5 2070), 8.953% (under RCP8.5 2050), and 3.808% (under
RCP8.5 2070) (Table 5). Likewise, some of the currently unsuitable areas become suitable
under future climate in terms of weighted mean with a range expansion of 18.545% (under
RCP4.5 2050), 9.630% (RCP4.5 2070), 10.080% (RCP8.5 2050), and 6.352% (under RCP8.5
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2070) and include mainly the northern part of Pakistan, northern parts of Jammu and
Kashmir, Himachal Pradesh, Uttarakhand and western parts of Nepal. (Figure 4A–D).

Figure 2. Current distribution pattern of Valeriana wallichii in Himalayan biodiversity hotspots. (The
scale from 0 to 1000 represents the habitat suitability class where 0 depicts the absence of the species,
200–400 show least suitable areas, 400–600 show marginally suitable areas, 600–800 show moderately
suitable areas, while 800–1000 show highly suitable areas).

Table 5. Summary of the range change statistics for Valeriana wallichii under climate change scenarios
compared to current climatic conditions.

Scenario Ensemble Type Loss Absent Stable Gain Percent Loss Percent Gain Range Change (%)

RCP4.5 2050 Committee averaging 22,334 895,491 16,690 6514 57.231 16.692 −40.539
RCP4.5 2070 Committee averaging 34,439 898,663 4585 3342 88.251 8.564 −79.687
RCP8.5 2050 Committee averaging 34,801 898,511 4223 3494 89.178 8.953 −80.225
RCP8.5 2070 Committee averaging 38,196 900,519 828 1486 97.878 3.808 −94.070
RCP4.5 2050 Weighted mean 25,408 885,378 21,537 8706 54.123 18.545 −35.578
RCP4.5 2070 Weighted mean 39,793 889,563 7152 4521 84.765 9.630 −75.135
RCP8.5 2050 Weighted mean 38,494 889,352 8451 4732 81.998 10.080 −71.918
RCP8.5 2070 Weighted mean 45,560 891,102 1385 2982 97.050 6.352 −90.698
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Figure 3. Future habitat distribution of Valeriana wallichii under projected climate change (A,B): show-
ing the impact of climate change under representation concentration pathway 4.5 for two time periods,
i.e., 2050 and 2070 (C,D): showing the impact of climate change under representation concentration
pathway 8.5 for two time periods, i.e., 2050 and 2070.
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Figure 4. Distribution maps showing range change area of Valeriana wallichii under future climatic
scenarios (A,B): under representative concentration pathway 4.5 and 8.5 for year 2050 (C,D): under
RCP 4.5 and 8.5 for year 2070. Olive color in the scale represents the areas where newly suitable areas
appear in the future climate scenarios, black color represents the areas where the habitat suitability is
lost in the future, purple color represents the regions that maintain the habitat suitability in the future
climatic conditions, and red color shows the regions where the species is absent.

3.4. Niche Dynamics

Niche comparison results of Valeriana wallichii between the current and future climatic
unveiled that niche overlap ranged from 42% (Schoener’s D = 0.42 (min)) for current
vs. RCP8.5 2070 to 66% (Schoener’s D = 0.66 (max)) for current vs. RCP4.5 2050. In
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addition, an overlap of 60% for current vs. RCP4.5 2070 (Schoener’s D = 0.60) and overlap
of 65% for current vs. RCP8.5 2050 (Schoener’s D = 0.65) were found, respectively. While
measuring the properties of environmental habitat, the principal component analysis (PCA-
env) revealed that principal component 1 (PC1) retained a maximum variation of 45.76% in
the case of current vs. RCP 8.5-2050 in comparison to the current vs. RCP4.5 2070, which
retained a minimum variation of 43.08%. Similarly, the minimum variation retained for
principal component 2 (PC2) is 25.59% for current vs. RCP4.5 2070 compared to a maximum
of 33.6% for current vs. RCP4.5 2050. For niche equivalency, the null hypotheses for each
of the pairwise comparisons between the species environmental niche were not rejected
for current and future climatic scenarios in any of the pairwise comparison, i.e., p > 0.05.
Niche similarity test was rejected for the null hypothesis in case of current vs. RCP4.5
2050 (p-value = 0.198), current vs. RCP8.5 2050 (p-value = 0.0297), current vs. RCP8.5 2070
(p-value = 0.0495) respectively (Table 6; Figure 5A–D).

Table 6. Niche comparisons and first two principal components between current and future projected
distribution of the Valeriana wallichii.

Pair PC1 (%) PC2 (%) Overlap (D) Equivalency Test
(p-Value)

Similarity Test
(p-Value)

Current vs. RCP 4.5 2050 45.11 33.6 0.66 0.45545 0.0198
Current vs. RCP 4.5 2070 43.08 25.59 0.60 0.55446 0.05941
Current vs. RCP 8.5 2050 45.76 32.77 0.65 0.52475 0.0297
Current vs. RCP 8.5 2070 44.65 33.28 0.42 0.46436 0.0495

Figure 5. Cont.
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Figure 5. Change in the niche dynamics of Valeriana wallichii under current and future climatic scenar-
ios. (A) Current vs. representative concentration pathway 4.5 for 2050 (B) Current vs. representative
concentration pathway 4.5 for 2070 (C) Current vs. representative concentration pathway 8.5 for
2050 (D) Current vs. representative concentration pathway 8.5 for 2070. The contribution of various
bioclimatic variables is provided by correlation circle and depicts the variation percentage of each
axis. Blue color represents the density of species in current while red color shows the density of target
species in future. Equivalency and similarity results are shown by bar plots, while the red arrow
shows the change in the niche between current and future climate scenarios.

4. Discussion

Modeling current habitats and forecasting the future species distribution range is
an important step toward the species recovery plans in their natural habitats. The use
of habitat distribution modeling to determine the dispersal range and impact of climate
change on future habitat suitability is crucial to devise appropriate management practices
for the conservation and sustainability of the habitat of species in the future [48,49]. This
not only provides the key determinants of geographical range area [50] but also enables us
to understand the interrelationship among species distribution range and extinction [51,52].
Over the past several decades, increased global Earth temperature has resulted in the
extinction of a wide range of plant species [53,54], while a large number show shifts in their
ecological niches [53,55]. The impacts of climate change are experienced by all types of
ecosystems across the globe; however, the uphill habitats within the Himalayan biodiversity
hotspots are highly vulnerable to the potential climate change impacts, the prime concern
among which is the alteration in habitat suitability and niche expansion/contraction [56,57].
The present study is the first effort to map the current habitats and predict the impact of
climate change on habitat suitability in the future using the BIOMOD ensemble approach
in Valeriana wallichi, a threatened medicinal herb. BIOMOD ensemble was preferred over
a single algorithm modeling data set because it combines different machine learning and
statistical algorithms to increase the accuracy of the model run estimations [58,59]. To
determine the performance of the model run, two types of evaluation metrics were used,
AUC and TSS [60,61]. In the present study, the values of both these metrics were greater
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than 0.9. Moreover, the actual geographical distribution recorded during the present study
coincides with the current potential habitats modeled in the present study, which signifies
the robustness of the model run.

While modeling the endemic and threatened plant species, the application of an appro-
priate number and combination of bioclimatic variables is necessary [62–65]. Bioclimatic
variables are not the sole determinants of the ecological niches. Different topographic
and edaphic factors also interact with the biotic components of the ecosystem and show
a significant impact on their distribution range [66,67]. However, when the modeling of
species is performed in larger geographical areas, climatic conditions significantly deter-
mine habitat suitability [68]. Our study predicted that both precipitation (bio_17) and
temperature (bio_1)-based variables show a greater impact on the habitat suitability of
Valeriana wallichii. These results are supported by the findings of other workers who have
reported a significant contribution of different precipitation and temperature-based climatic
variables in governing the habitat distribution of different Himalayan plants [69–72]. Both
precipitation and temperature-based bioclimatic variables are vital for the development
and morphogenesis of the Valeriana wallichii because it is an evergreen herb. Precipitation
maintains the available moisture within the soil for rhizome, while the temperature-based
variable is important in the growth and development of aerials shoots.

In India (Jammu and Kashmir, Himachal Pradesh, Uttarakhand), northwestern areas
of Pakistan (Khyber Pakhtunkhwa, Swat valley and Muzaffarabad) and southwestern parts
of Nepal (Dhangadhi, Silgarhi, Tapoban) show highly suitability areas for the growth of
Valeriana wallichii, whereas southwestern parts of Nepal shows moderately low habitat
suitability. The greater distribution range of Valeriana wallichii toward the western and
northwestern regions could be due to the availability of sub-alpine regions with greater
habitat suitability. In addition, southeastern parts of Bhutan and Sikkim show moderately
low habitat suitability, and southeastern parts of Arunachal Pradesh and northwestern
parts of Assam show low suitability areas for the growth of Valeriana wallichii. These
predictions are supported by the results of different workers who reported a similar kind
of distribution pattern for high-altitude medicinal plants of Himalayan regions [73,74]. The
habitat suitability of the species in fragile Himalayan landscapes is extremely vulnerable
to the impacts of climate change [56]. For the future climate change scenarios under
RCPs 4.5 and 8.5 (2050 and 2070), our ensemble model indicated that there occurs a
significant contraction in the habitat suitability of these plant species. The large area from
current suitable habitats will become less or not suitable in the future, and some regions
with climatically less or not suitable areas will show higher climatic suitability. These
observations are in agreement with the results of Wei et al. [6], who also reported similar
kinds of range change for other medicinal herbs in the alpines of Himalaya. Future climatic
scenarios show a significant contraction of suitable habitats under all RCPs and time periods.
Northwestern Himalayas receive higher climate change trends as compared to eastern
Himalayas [75–77]. Under the increased global Earth temperature, the precipitation of the
driest quarter will be significantly reduced, which will ultimately lead to the fluctuations
in the annual mean temperature, the two main determinants in the possible distribution
of Valeriana wallichii. Significant habitat contraction in the northwestern and western
Himalayas could be attributed to the change in these climatic variables. Under the future
climatic projections, the likelihood of these plant species to move and inhabit the areas that
lie at greater elevations may reflect the niche shift of the species due to the projected increase
in the Earth’s temperature in the future. These predictions can be related to the modeling
studies carried out by various researchers on different Himalayan plant species [78,79].
Based on these findings, it is clear that species may face comparable but not identical
environmental circumstances throughout current and future climate forecasts [80–82].

5. Conclusions

The current study is the first attempt to study the impact of climate change on habitat
distribution and niche dynamics of Valeriana wallichii, a highly valued medicinal herb. The
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outcome of the present study credence to the SDMs’ anticipated outcomes, indicating that
the current highly appropriate habitat will be constricted in the future while expanding
to other areas of the study area that are currently less suited. The evaluation of the niche
equivalence test clearly shows that the species’ environmental niche will not remain pre-
cisely the same under current and future climatic scenarios. Similarly, the niche similarity
test indicated a considerable degree of overlap between the species under present and
future environmental circumstances.
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