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It has been suggested that neurons can represent sensory input using probability

distributions and neural circuits can perform probabilistic inference. Lateral connections

between neurons have been shown to have non-random connectivity and modulate

responses to stimuli within the classical receptive field. Large-scale efforts mapping local

cortical connectivity describe cell type specific connections from inhibitory neurons and

like-to-like connectivity between excitatory neurons. To relate the observed connectivity

to computations, we propose a neuronal network model that approximates Bayesian

inference of the probability of different features being present at different image

locations. We show that the lateral connections between excitatory neurons in a circuit

implementing contextual integration in this should depend on correlations between unit

activities, minus a global inhibitory drive. The model naturally suggests the need for two

types of inhibitory gates (normalization, surround inhibition). First, using natural scene

statistics and classical receptive fields corresponding to simple cells parameterized

with data from mouse primary visual cortex, we show that the predicted connectivity

qualitatively matcheswith that measured inmouse cortex: neurons with similar orientation

tuning have stronger connectivity, and both excitatory and inhibitory connectivity have

a modest spatial extent, comparable to that observed in mouse visual cortex. We

incorporate lateral connections learned using this model into convolutional neural

networks. Features are defined by supervised learning on the task, and the lateral

connections provide an unsupervised learning of feature context in multiple layers.

Since the lateral connections provide contextual information when the feedforward

input is locally corrupted, we show that incorporating such lateral connections into

convolutional neural networks makes them more robust to noise and leads to better

performance on noisy versions of the MNIST dataset. Decomposing the predicted lateral

connectivity matrices into low-rank and sparse components introduces additional cell

types into these networks. We explore effects of cell-type specific perturbations on

network computation. Our framework can potentially be applied to networks trained

on other tasks, with the learned lateral connections aiding computations implemented

by feedforward connections when the input is unreliable and demonstrate the potential

usefulness of combining supervised and unsupervised learning techniques in real-world

vision tasks.

Keywords: contextual modulation, convolutional neuronal network, canonical cortical microcircuit, inhibitory cell

types, extraclassical receptive field, lateral connectivity, natural scene statistics, Bayesian inference
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1. INTRODUCTION

The visual response of a neuron [traditionally characterized by
its classical receptive field (RF)] can be contextually modulated by
visual stimuli outside the classical RF (Albright and Stoner, 2002).
Such contextual effects are thought to be mediated in part by
lateral connections between neurons in the same visual area/layer
(providing near-surround modulation), as well as top-down
feedback connections between neurons in different areas/layers
(providing near and far-surround modulation) (Angelucci and
Bressloff, 2006; Angelucci et al., 2017). Recent studies show
non-random lateral connectivity patterns in the primary visual
cortex (V1) of the mouse. Excitatory neurons with similar
orientation tuning connect to each other with higher probability
than to those tuned to the orthogonal orientation (Ko et al.,
2011; Cossell et al., 2015; Lee et al., 2016). An even higher
rate of connectivity is observed when their responses to
natural scenes are well-correlated (Ko et al., 2011, 2013).
This type of connectivity is consistent with a like-to-like,
Hebbian wiring principle (Litwin-Kumar and Doiron, 2014;
Sadeh et al., 2015a,b; Miconi et al., 2016; Zenke and Gerstner,
2017; Ocker and Doiron, 2018). In contrast, Bock et al.
(2011) showed that inhibitory neurons receive non-specific,
broadly tuned input from excitatory neurons. More recently,
evidence for specific tuning of inhibitory neurons has also
been presented (Znamenskiy et al., 2018). Connections from
inhibitory neurons have been shown to be cell-type specific
using both morphology-based (Jiang et al., 2015) and transgenic
line-based cell-type identification (Pfeffer et al., 2013).

How does this observed lateral connectivity relate to proposed
computations in cortical circuits? We present a normative
network model in which every single pyramidal neuron
implements Bayesian inference, combining evidence from its
classical RF and from the near surround to estimate the
probability of a feature being present1. We assume that the
classical RF is formed by feedforward connections and the near
surround effects of extra-classical RFs are mediated by lateral
connections. We map feature probabilities to the steady-state
firing rate of network neurons and show that the resultant lateral
connections implementing this computation should depend on
the covariances between unit activities. We limit ourselves to
lateral connections between neurons with non-overlapping RFs
in this study. Using natural image statistics (Martin et al.,
2001) and electrophysiological data from mouse V1 (Durand
et al., 2016), we show that the resulting lateral connectivity
matrix qualitatively matches the experimentally reported like-to-
like nature and distance dependence of connectivity in mouse
visual cortex. We show that adding these lateral connections
in an unsupervised manner to feedforward neural networks
improves their performance on noisy image reconstruction and
classification tasks. The computation naturally incorporates both
divisive and subtractive inhibition. Inspired by the idea presented

1Several proposals for how neurons might represent probabilities have been

presented (Pouget et al., 2013), the simplest of which directly relate neural activity

to the probability of a feature being present in the neuron’s classical RF (Barlow,

1969; Anastasio et al., 2000; Rao, 2004).

in Zhu and Rozell (2015) to model inhibitory interneurons
in efficient sensory coding models using matrix decomposition
techniques, we decompose the lateral connectivity matrices
obtained with our model into low-rank and sparse components
and relate these to different cell types. This enables us to explore
the effects of cell-type specific perturbations on computations in
artificial networks designed for reconstruction and classification
tasks, suggesting a path to making them more biologically
plausible (Marblestone et al., 2016).

2. RESULTS

2.1. The Model
We assume a simple neural code for each excitatory neuron:
the steady-state firing rate of the neuron maps monotonically to
the probability of the feature that the neuron codes for being
present in the image [similar to codes assumed in previous
studies (Barlow, 1969; Anastasio et al., 2000; Rao, 2004)].
We have

f nk,x = g
(

p(Fnk |ix)
)

(1)

where f n
k,x

represents the firing rate of a neuron coding for feature
Fk at location n in image x, p(Fn

k
|ix) represents the probability

of presence of the corresponding feature and g is a monotonic
function. For simplicity, we assume a linear mapping between the
probability of feature presence and firing rate (g(y) = y) in the
rest of the paper, as the qualitative conclusions are not dependent
on this choice.

We note here that our model does not learn a dictionary of
features, and works for arbitrary features, with a given set of
constraints and approximations presented which we will mention
throughout the construction of the model and summarize in the
Discussion section. The application to more complex features is
described with the incorporation of the model in convolutional
neuronal networks, but to link to the biological structure we will
start with simple features characteristic of early vision.

An example of such a feature superimposed on a natural image
is shown in Figure 1A. We subdivide the image into multiple
patches corresponding to the size of the classical RF. We define
the classical RF response of the neuron (with g(y) = y) as

cnk,x = p(Fnk |i
n
x) (2)

where inx denotes the image patch at location n. We require that
the sum of probabilities of all features in a patch is one, for every
image, thereby implying a normalization of classical RF responses
in a spatial region equal to the size of a patch so that 2

∑

k

cnk,x = 1 ∀n, x (3)

We show that a network of neurons can directly implement
Bayes rule to integrate information from the surround

2In practice, we add a small constant ǫ to the sum on the left before normalizing.

This is equivalent to a null feature for when no substantial contrast is present in

patch n.
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FIGURE 1 | Contextual integration model. (A) Sample image from the BSDS dataset, with a superimposed classical receptive field (CRF1), and highlighting a surround

patch (CRF2) with good predictive power about the feature in CRF1. (B) Classical receptive fields (small black and green squares) are the result of feedforward

connections, while extra-classical receptive fields (larger green square) are assumed to be the result of lateral or feedback connections as shown on the left. The

computation in Equation (4) requires a local circuit (expanded and shown on the right) with multiplicative lateral connections and two forms of inhibition: one for local

normalization and one mediating the surround inhibition. This local circuit structure is assumed to be repeated at each spatial location (shown with blue squares).

(see Supplementary Information for the derivation). Intuitively,
the activity of a neuron representing a feature is influenced by
the probability that another feature is present in a surrounding
patch and by the statistics of co-occurrence of these features.
In such a network, the activity of a neuron representing
feature j in patch m, given image x, can be shown to be (see
Supplementary Information)

fmj,x =
1

Nm
x

cmj,x

N
∏

n6=m

(

1+
∑

k

Wmn
jk cnk,x

)

(4)

In Equation (4), Nm
x represents a normalization coefficient

(see Supplementary Information). The term Wmn
jk

represents a

weight from the neuron coding for feature k in patch n to the
neuron coding for feature j in patchm and can be estimated as:

Wmn
jk =

〈

cmj,xc
n
k,x

〉

x
〈

cmj,x

〉

x

〈

cn
k,x

〉

x

− 1 (5)

where x spans the set of images used and 〈.〉x represents the
average over all images in the set. Thus, lateral connections
between neurons with non-overlapping RFs in our network are
proportional to the relative probability of feature co-occurrences
above chance in the set of images used.

While the formalism can be applied to any scene statistics,
we focus here on the analysis of natural scenes. Equation (4)
encapsulates a local computation of contextual integration by
a network of excitatory neurons through functional lateral
connections given by Equation (5).

2.2. Computation of Synaptic Weights
We generate a dictionary of simple cell like features by
constructing a parameterized set of Gaussian filters from

mouse V1 electrophysiological responses (Durand et al., 2016)
(see Methods). We used natural images from the Berkeley
Segmentation Dataset (Martin et al., 2001). To relate the activity
of the neurons to the probability of a feature Fk being present
in an image as in Equation (1), we convolve the image [after
conversion to grayscale, normalizing to have a maximum value
of 1 and subtraction of the average for each filter (Hyvärinen
et al., 2001)] with the respective filters, rectify and normalize
the convolved output in accordance with Equation (3) to get
cn
k,x

and estimate the connectivity using classical RF responses
as in Equation (5). We assume translational invariance and
limit the relative spatial position to three times the size of the
classical RF (resulting in weights on a 43 × 43 grid) as the
relative co-occurrence probabilities decrease significantly beyond
this scale.

The resulting connectivity matrix W(j, k,1x,1y) is 4
dimensional, with the dimensions: cell type (k) of the source, cell
type (j) of the target and relative spatial positions |n − m| ≡
(1x,1y) of the source and target cell types in the horizontal and
vertical directions. Note that we are using the feature being coded
for as a proxy for the excitatory cell type here. By construction,
we have W(j, k,1x,1y) = W(k, j,1x,1y) so that the matrix is
symmetric under exchange of source and target cell type.

We present several 2D slices through the connectivity matrix
(Figure 2A bottom row and Figure S3A second row). In addition
to the dependence on differences in orientation tuning, the exact
position and phase of the two neurons also contribute to the
computation of the synaptic weights. In some cases, neurons with
the same orientation tuning but different phases can have an
inhibitory effect on each other (for example, panels 1 and 5 in
both rows of Figure 2A). These results generalize well to other
classical RFmodels, such as Gabor filters (which have been shown
to be representative of RFs in cats and primates Jones and Palmer,
1987; Ringach et al., 2002; Ringach, 2004) as well as synthetic
filters which are sharp/banded (see Figure S3).
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FIGURE 2 | Spatial profiles of lateral connections. (A) Top: Subset of filters constructed (on 15 × 15 pixel grid) using estimates of spatial receptive field (RF) sizes from

in-vivo recordings in mouse V1 (Durand et al., 2016), Bottom: Synaptic weights computed using Equation (5) onto the target neuron representing the left-most filter k1
in above row located at position Ex1 from the neurons representing filters k2 at position Ex2. (B,C) Lowrank and sparse components, respectively of weights shown in

bottom panel of (A) (please see text for details). For all the weight heatmaps, axes represent distances from the center in terms of the RF size. Note that the colorbar

for (C) ranges from −0.1 to 0.1 for clarity.

2.3. Types of Inhibition and Relation to
Mouse Cell Types
Two types of inhibition naturally arise in this computation
(Figure 1B). The first is divisive normalization of excitatory
neuronal activities (Equation 3), which could be implemented

by the pyramidal (Pyr) targeting inter-neurons (PTI) category of

Jiang et al. (2015) and corresponds well with the parvalbumin
(PV)-expressing inter-neurons (Pfeffer et al., 2013). These

neurons receive the average inputs of the pyramidal neurons
whose RFs overlap with their classical RF and project back equally
to them (see Supplementary Information).

The second type of inhibition arises in the computation
of weights using Equation (5), which produces both positive
and negative weights. These weights can be decomposed into
excitatory and inhibitory components in various ways, with the
simplest being a split into positive and negative parts. In an
elegant study, Zhu and Rozell (2015) show that decomposing
a recurrent excitatory connectivity matrix G (in a model of
sparse coding) into a low-rank matrix (L) and a column-
sparse matrix (S) [using an adaptive version of robust principal
component analysis (Charles et al., 2013) (RPCA)] permits

inhibitory interneurons having a diversity of tuning properties
and characteristic E/I cell ratios. They suggest that L and S
could be related to the PV and somatostatin (SOM) expressing
mouse interneuron types, respectively. The technique exploits
the fact that natural scene input statistics and models have low-
dimensional structure. Motivated by this, we used a publicly
available open-source library (Bouwmans et al., 2015; Sobral
et al., 2015) and developed an adaptive version of the included
RPCA algorithm based on the Principal Component Pursuit
method (PCP) (Candès et al., 2011).

Following the convention in Zhu and Rozell (2015), the
main idea involves solving the following convex optimization
problem iteratively,

L, S = arg minL,S||L||∗ + ||3S||1 subject to G = L+ S (6)

where ||.||∗ is the sum of absolute values of eigenvalues
(encouraging L to have lowrank) and ||.||1 is the l1 norm (sum of
absolute values of the vectorized matrix) to encourage sparsity.3
is a diagonal weighting matrix updated at each iteration using the

rule 3ii =
β

||S(i)||1+γ
, where S(i) is the ith column of S, β controls

Frontiers in Computational Neuroscience | www.frontiersin.org 4 April 2020 | Volume 14 | Article 31

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Iyer et al. Contextual Integration in Neural Networks

FIGURE 3 | Orientation and distance dependence of synaptic weights for (B,C) Lowrank connections and (D,E) Sparse connections and comparison with

experimental data. (A) Top: Connection probability as a function of difference in preferred orientation between excitatory neurons observed experimentally (from Ko

et al., 2011). Bottom: Normalized connection probability between excitatory neurons as a function of inter-somatic distance as reported experimentally in mouse

auditory cortex (Levy and Reyes, 2012) (see Methods for details). For (B,D) Top: Predicted average positive synaptic weights from our model as a function of

difference in orientation. Bottom: Dependence of mean positive synaptic weights (connected points) on distance from RF center of target filter k1 and corresponding

Gaussian fits for the positive weights (dashed black lines). For (C,E) Same as in (B,D), for negative synaptic weights. In all plots, red bars/lines represent positive

weights and blue bars/lines represent negative weights.

competition between lowrank and sparsity and γ controls the
speed of adaptation.

We used this to decompose the lateral connections (W) from
our model into low-rank and sparse components (Figures 2B,C).
Representing our connectivity matrix as W, we have W =
WLR +WS. The low-rank component can be decomposed using
singular value decomposition as WLR = U6VT . U, V and WS

can be further separated, respectively into positive and negative
components so that we have W = WLR+ + WLR− + WS+ +
WS− with WLR+ = U+6VT

+ + (−U−)6(−V−)
T and WLR− =

U−6VT
+ + (−U+)6(V−)

T .
We used γ = 1.0 for the learning rate and β = 0.01 to

control the balance between lowrank and sparse. These were
chosen such that the column-sparse matrix WS was left with
∼15% of non-zero entries compared to W and we retained only
14 of the 18 components in the SVD ofWLR, retaining 99% of the
variance inWLR. The different components in the decomposition
can then be interpreted as disynaptic Pyr-Pyr connections
(from WLR+), direct Pyr-Pyr connections (WS+), sparse (WS−)
and lowrank (WLR−) disynaptic inhibition from surround Pyr
neurons at relative spatial locations (1x,1y) onto center
Pyr neurons.

In attempting to relate these different components and
computations to cell types, we note that a large number of cell
types have been characterized using transcriptomic methods by
Tasic et al. (2018). In particular, they have observed a large
diversity of SOM inhibitory subtypes. We propose that the
low rank and sparse inhibitory components might correspond

different SOM subtypes, with PV interneuronsmediating divisive
normalization as explained above.

2.4. Orientation and Distance Dependence
of Connections
Both the lowrank and sparse excitatory connections (red bar
plots in Figures 3B,D top row) obtained from our model
show orientation dependence consistent with the connection
probability (Figure 3A top panel) reported experimentally (Ko
et al., 2011), with the sparse excitatory connections showing
a stronger dependence on orientation tuning. The orientation
dependence of lowrank and sparse inhibitory connection
strengths is summarized in the top row (blue bars) of
Figures 3C,E. The lowrank inhibitory connections’ dependence
is consistent with recent data on the weak orientation tuning
of PV interneurons (Znamenskiy et al., 2018). Interestingly,
our model predicts almost a non-specific dependence of the
sparse inhibitory connections on the difference in orientation
tuning, compared to the excitatory connections and could be
tested experimentally.

The bottom rows of Figures 3B–E show the dependence of
the mean positive (red lines) and negative (blue lines) synaptic
weights, respectively onto a target neuron k1 from all neurons
a fixed distance away, measured in terms of receptive field
size. Using the cortical magnification of 30 deg/mm (Garrett
et al., 2014; Zhuang et al., 2017), the standard deviation of a
Gaussian fit (Figures 3B,D, black dashed line, also see Methods)
can be converted to σlr = 155 µm and σs = 87 µm,
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FIGURE 4 | The MNIST dataset that was used in the experiments. Along with the original images, we introduced two types of noise perturbations: additive white

gaussian noise (AWGN) and salt-and-pepper noise (SPN). An example image is shown to the left; the top row shows the AWGN stimuli, and the bottom row shows

the SPN stimuli. Noise levels varied from 0.1 to 0.5 (increasing from left to right). The original image is reproduced from the MNIST (LeCun, 1998) dataset.

respectively, qualitatively similar to the measured distances (Levy
and Reyes, 2012) of 114 µm extrapolated from multi-patch
recordings in mouse auditory cortex (Figure 3A bottom panel,
see also Methods) and reported dependence in mouse visual
cortex (Seeman et al., 2018). Both the lowrank and sparse
inhibitory connections have a somewhat larger spatial extent than
the excitatory connections (σlr ≈ 155µm ≈ σs), which could
be verified experimentally. To the best of our knowledge, unlike
in the rat somatosensory cortex (Silberberg and Markram, 2007;
Berger et al., 2009), these disynaptic connections have not been
measured directly in mouse cortex.

2.5. Application: Image Classification
The field of deep learning has traditionally focused on
feedforward models of visual processing. These models have
been used to describe neural responses in the ventral stream of
humans and other primates (Cadieu et al., 2014; Güçlü and van
Gerven, 2015; Yamins and DiCarlo, 2016; Wang and Cottrell,
2017) and have resulted in many practical successes (Gu et al.,
2017). More recently, convolutional neural networks that include
recurrent connections (both lateral and top-down) have also been
proposed (Spoerer et al., 2017).

We incorporated lateral connections, learned in an
unsupervised manner using our model, into multiple layers
of convolutional neural networks which are trained in a
supervised manner (network architectures used shown in
Table S1). We first trained convolutional neuronal networks
using standard backpropagation techniques. After training, we
learned the lateral connections between units within a layer
in an unsupervised manner. We show example learned lateral
connections between different filters in the first convolutional
layer (Figure S10).

We tested our trained models with and without lateral
connections on the original MNIST dataset (LeCun, 1998),
as well as on noisy versions of this dataset (Figure 4). We
hypothesized that lateral connections would provide the greatest
benefit under noisy conditions, allowing units to integrate
information from extra-classical receptive fields instead of relying
solely on noisy feedforward input. To simplify computations, we
assumed that contributions from the surround are sufficiently

small and used a linearized form of Equation (4) for the
firing rate,

f
m,(l)
j,x = c

m,(l)
j,x

(

1+ α
∑

k

∑

n6=m

W
mn,(l)
jk

c
n,(l)
k,x

)

(7)

where the second term on the right side represents the
contribution from the extra-classical RF, α represents a
hyperparameter that tunes the strength of the lateral connections,

andW
mn,(l)
jk

are the synaptic weights from surrounding units n on

to unitm within layer l.
We find that both the base network and the network

with lateral connections achieve high accuracy on the original
test images (∼98%). We also find that performance decreases
gradually with increasing noise levels. In general, accuracy is
lower for the salt-and-pepper noise (SPN) images compared to
the additive white Gaussian noise (AWGN) images, suggesting
that SPN images may be more difficult for the base model to
handle. We find that lateral connections improve performance
at higher levels of AWGN (standard deviations above 0.3) and
also at higher levels of SPN (fraction of changed pixels above 0.1).
We also tested decomposed versions of the lateral connections, by
only using the low-rank or sparse components of the inhibitory
weights. In general, the lateral connections seemed to improve
performance of the model across different noise types, and
furthermore, only using the sparse component of the inhibitory
weights increased performance, suggesting a regularizing effect.

To check that model weights from Equation (5) indeed
provide better functional results, for each layer, we replaced the
weights with a uniform distribution of weights (w = 1/NT

where NT is the total number of lateral connections in each
layer). This leads to comparable results to the base model in
the first row (CNN). Our results are summarized in Table 1.
We provide an example of a separate application showing
that lateral connections aid in image reconstruction in the
Supplementary Information Section: Image Reconstruction.

Please note that when applying our formalism to such multi-
layer networks (e.g., deep neural networks), we treat each feature
map as containing units which respond to a given feature at
a specific location within the image. For the first layer of the
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TABLE 1 | Model accuracy (%) on the MNIST dataset.

Models Original AWGN SPN

– 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

CNN 98.71 98.61 98.21 96.88 92.03 81.78 97.28 92.01 80.85 65.29 48.28

CNNEx 97.25 97.17 96.83 95.86 93.34 88.24 96.06 93.45 87.97 77.99 63.04

CNNEx (avg) 98.71 98.58 98.15 96.83 91.89 81.90 97.33 92.11 80.79 64.87 47.94

CNNEx (lr) 97.25 97.18 96.83 95.87 93.37 88.29 96.08 93.49 87.99 78.00 63.10

CNNEx (s) 97.40 97.38 97.00 96.13 93.80 88.84 96.34 93.93 88.44 78.46 63.47

We separate results for the original images and the two types of noise perturbations by columns (AWGN, additive white gaussian noise; SPN, salt-and-pepper noise). The results for

the baseline model (CNN) and the model with lateral connections (CNNEx) are shown in the first two rows. The third row [CNNEx(avg)] shows results comparable to the baseline model

(CNN) when we replaced the weights in Equation (5) with a uniform distribution of weights (w = 1/NT where NT is the total number of lateral connections in each layer). The last two

rows, lr and s correspond to models with just the low-rank and just the sparse component, respectively of the inhibitory lateral connections. Including lateral connections seems to

improve performance with increasing noise. Using only the sparse inhibitory component also increases performance, suggesting a regularizing effect. All reported values are averages

over 10 random initializations.

Bold values represent highest accuracy for each case.

network (which sees the image as input), the learned lateral
connections are captured by the derivations above. For deeper
layers, we use the same formalism and set of assumptions,
learning lateral connections between the hidden units based on
their activations over a set of training images. During inference,
we pass the real-valued activations modulated by the learned
lateral connections onto the next layer (we do not perform any
probabilistic sampling).

3. DISCUSSION

We have presented a normative network model of cortical
computation in which the lateral connections from surround
neurons enable each center pyramidal neuron to integrate
information from features in the surround. Our model predicts
that the strength of lateral connections between excitatory
neurons should be proportional to covariance of their activity
in response to sensory inputs (Ko et al., 2014). Using the
BSDS database of natural images and classical RFs parameterized
using mouse V1 neuron responses, we find that excitatory
neurons show like-to-like connectivity and distance dependence
of connections in agreement with experiments.

We showed that adding these connections to deep
convolutional networks in an unsupervised manner makes
them more robust to noise in the input image and leads to better
classification accuracy under noise. Including contributions
from such lateral connections to noisy feedforward activity in a
single-layer network also leads to better decoding performance.
Intuitively, this suggests that under noisy conditions lateral
connections enable each neuron to use available information
from all surround neurons to provide the best possible
representation it can.

The computation naturally suggests two forms of inhibition—
local divisive normalization of excitatory neuronal activity in a
patch (corresponding to classical RFs) and subtractive inhibition
arising from the surround (extra-classical RFs). Decomposing
the predicted lateral connectivity matrices for these networks
into low-rank and sparse components allows us to relate the
components to different cell types and explore the effects

of cell-type specific perturbations on the performance of
convolutional neural networks in an image classification task.

3.1. Relation to Previous Work
A number of normative and dynamical models relating
contextual modulation of neuronal responses and lateral
connectivity have been proposed in the literature. Normative
models based on sparse coding (Olshausen and Field, 1996a,b,
1997; Bell and Sejnowski, 1997; Rozell et al., 2008; Zhu and
Rozell, 2013, 2015) and its extension to spiking network
models (Zylberberg et al., 2011; Shapero et al., 2014) predict
anti-Hebbian lateral connections between excitatory neurons,
in contrast with experimentally observed like-to-like excitatory
connectivity. Such anti-Hebbian lateral connections can
equivalently be implemented with a separate population of
interneurons having Hebbian connectivity with excitatory
neurons (King et al., 2013). The anti-Hebbian lateral connections
arise as a consequence of feature competition induced by the
sparsity constraint between dictionary elements with overlapping
RFs at the same location.

Extensions of the sparse coding models have been proposed
that give rise to like-to-like horizontal connections. Garrigues
and Olshausen (2008) achieve this by including a pairwise
coupling term in the prior for the sparse coding model. A
recent study (Capparelli et al., 2019) achieves this by explicitly
including spatial dependencies among dictionary elements with
non-overlapping RFs into the sparse coding framework.

Other related normative models (Schwartz and Simoncelli,
2001; Karklin and Lewicki, 2009; Spratling, 2010; Coen-Cagli
et al., 2012) propose different computational goals, while
successfully capturing different aspects of observed lateral
connectivity. Dynamical models with like-to-like recurrent
connectivity (Li, 1998; Piëch et al., 2013) have also been
developed to explain contour saliency (Li, 1999; Li and Gilbert,
2002) and tomodel perceptual organization in primates (Li, 2005;
Mihalas et al., 2011). However, these models and their extensions
do not include knowledge of the cell types involved and there is
not an exact, formal description of the computations involved.
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In contrast with these models, we are not building a statistical
model of natural images and we are agnostic to the network-
level computation which would determine the RFs. Instead, we
are proposing that the local circuit—lateral connections between
the excitatory neurons and their interactions with the inhibitory
populations—provides contextual integration irrespective of the
function implemented, which is encoded in the feedforward
connections. This allows the circuit to be canonical, and have
similar structure throughout cortex. The role of this local circuit
is to allow the desired function to still be implemented with
missing or partially corrupted inputs. While we limit our neuron
functions to represent a feature from the previous feature map
(which happens to be the input image for just the first layer in
the network), this feature is in general arbitrary and we posit
that each neuron performs inference for the presence of that
feature, combining evidence from feed-forward (FF) connections
with priors from lateral connections. We estimate weights from
surround neurons (Equation 5) that would enable such inference.
This allows us to incorporate our framework into any (multi-
layer) network trained for specific tasks (e.g., digit classification
in MNIST), with lateral connections (learned in an unsupervised
manner) aiding the underlying computations when feedforward
evidence is corrupted by input or neuronal noise. Given the
appropriate classical RFs, we also expect our results to hold
for different species (see Supplementary Information for results
with Gabor RFs found in primates and cats) and cortical areas
(in integrating information from different frequencies in auditory
cortex, or locations in somatosensory cortex).

Similar to the above models, we show that our model is
able to reproduce various aspects of physiology and contextual
modulation phenomena. We provide comparisons with these
othermodels where possible in the Supplementary Information.

3.2. Model Assumptions and Limitations
In sketching a proof for how a network of neurons can directly
implement Bayes’ rule to integrate contextual information, we
have made some simplifying assumptions that limit the scope of
applicability of our model. We discuss some of those here.

For simplicity, we have assumed a linear relationship between
probability of feature presence and neuronal responses. While
we use a simple filter model (ReLU + normalization) to model
responses and connectivity in mouse V1, our basic theoretical
argument holds for any set of features on the previous feature
map. In the CNNs, the same principle is applied at multiple
layers in depth where the representations are highly non-linear.
We chose a relatively simple dataset and network architecture
as a proof-of-concept for our model. Future experiments will
have to test the scalability of learning optimal lateral connections
on more complex network architectures and larger image
datasets [e.g., ImageNet (Deng et al., 2009)], and whether these
connections provide any benefit against noise or other types of
perturbations, such as adversarial images.

Many probabilistic models of cortical processing have
multiple features at each location that contribute to generating
an image patch, but not all of them require probabilities to
sum to one (for eg, sparse coding) unlike our model. In
contrast, our model is not a generative model for natural image

patches. Interactions between neurons at the same location arise
(via divisive normalization) in our model as a consequence
of requiring probabilities to sum to one, leading to feature
competition. We note that integration of sparse coding models
with our model is possible, but beyond the scope of this study.

For each location, we only derive the connections from
surrounding neurons onto the center neuron, without higher-
order effects of the reverse connections from the center to the
surround neurons. The proof to derive Equation (4) also requires
the inputs to the neurons to be independent. One simple way to
achieve such independence is to have non-overlapping classical
receptive fields. Practically, we have observed that relaxing the
requirement of independence, as it was done for the CNN
analysis which include connections between neurons with partly
overlapping RFs, continues to result in significant improvement
in the function of the network.

To simplify computations involved with testing the
performance of CNNs with lateral connections included,
we linearized the expression in Equation 4 by assuming that
contributions of lateral connections from each patch are not
very large. As a quick estimate, we computed the effect of lateral
interactions for every point in 200 natural images, and find they
have a mean of 0.03 and a standard deviation of 0.12.

Typically, models with lateral interactions amount to a
recurrent network eliciting waves of activation (Muller et al.,
2018). As our lateral connections are balanced, with each
connection having the same delay, and are relatively small,
running once though the recurrent loop allows for fast processing
without deviating too far from the recurrent network. We thus
believe that we are justified in using a feed-forward model to
include lateral interactions.

Even accounting for these assumptions and limitations,
our simple model provides good qualitative and quantitative
agreement with experimental observations in mouse cortex and
provides experimentally testable predictions for connectivity
between different cell types. Incorporating such biologically
inspired lateral connections in artificial neural networks also aids
in their performance, especially in the presence of noisy inputs.
Our framework demonstrates how supervised and unsupervised
learning techniques can be combined in vision-based artificial
neural networks and can be easily adapted to networks trained
on other tasks.

4. METHODS

4.1. Classical Receptive Field
Parameterization
Filters were constructed on a 15 × 15 spatial grid. We summed
up the area under all pixels whose intensities were >95% of the
maximum pixel to get an effective area A and effective radius
r using A = πr2 for each filter in the basis set. The filter size
was computed as the mean radius of all basis filters. Basis filters
were constructed by averaging estimates of spatial receptive field
(RF) sizes from 212 recorded V1 cells (Durand et al., 2016). They
consisted of four types of spatial RFs observed experimentally:
ON only, OFF only and two versions of ON/OFF cells with the
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first having a stronger ON subfield and the second a stronger
OFF subfield. Using the average sizes of all recorded V1 units, we
modeled each subfield as a 2D Gaussian with standard deviation
σ = 0.5× average subfield size, which was measured to be 4.8◦

for the OFF subfields and 4.2◦ for the ON subfields. The relative
orientation between the two subfields for each ON/OFF class was
varied from 0 to 315◦ uniformly in steps of 45◦, resulting in a total
of 18 basis filters. For the ON/OFF class, the distance between the
centers of the two subfields was chosen to be 5◦ (which equates
to roughly 2σ ). In accordance with data, the amplitude of the
weaker subfield was chosen to be half that of the stronger subfield
(which was set to be 1). The two subfields were then combined
additively to form a receptive field. The size of these filters was
estimated to be r ≈ 7◦.

4.2. Distance Dependence of Synaptic
Weights
To draw the plot in Figure 3A (bottom panel) for the

experimentally measured data frommouse auditory cortex (Levy
and Reyes, 2012), we used an open-source freely available
graphics software called GraphClick http://www.arizona-
software.ch/graphclick/. We obtained the normalized
connection probability as a function of the reported distances
in Levy and Reyes (2012). We quantified the distance
dependence of mean positive and negative synaptic weights
obtained from our model as follows. We first computed
W±(1x,1y) = 〈W±(1x,1y, k1, k2)〉k1 ,k2 and then computed
the average of W±(r(1x,1y)) for all points on the square
given by r = max(|(1x)|, |(1y)|) on the (43 × 43) grid of
synaptic weights. We fit a Gaussian function of the form

w̄ = wm exp
(

− r2

2σ 2

)

+ w0. Here, w̄ represents the normalized

mean synaptic weight from our model as a function of the
distance r. The parameters (wm,w0, σ ) are respectively the
amplitude, dc offset and standard deviation of the Gaussian. We
optimized for these three parameters using the SciPy curve_fit
function in Python.

4.3. Adding Lateral Connections to Deep
Convolutional Networks
We trained and evaluated our models on the MNIST (LeCun,
1998) dataset. To test the generalization of our models under
noise, we added two types of noise to the original images: additive

white Gaussian noise and salt-and-pepper noise. We used a
network architecture consisting of two convolutional layers, each
followed by a max-pooling operation, and two fully-connected
layers, with the final output passed through a soft-max non-
linearity. The ReLU non-linearity was used after all other layers.
Ten models with different random seeds were trained using
stochastic gradient descent. To learn the lateral connections, we
applied (5) to the activations of the first two convolutional layers
over the set of training images, while keeping the weights of
all filters fixed. During inference (Equation 7), the contribution
from lateral connections are scaled by an additional α parameter,
whose value was chosen based on a held-out set of validation
data. Decomposition into lowrank and sparse components for
lateral connections used β = 0.1 and β = 0.25 for the two
convolutional layers. All reported results are averages over the 10
trained models.
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